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Abstract

Spectrum sensing is one of the important functions in the context of cognitive

radio systems. It determines the presence or absence of free channels in the

spectrum and makes them available for the secondary users. Cyclostationary

spectrum sensing is one of the spectrum sensing techniques which involves

the detection of signals based on their features such as cyclic frequencies,

symbol rates, carrier frequencies and modulation types. It detects signals at

very low signal-to-noise ratios. Cyclostationary spectrum sensing involves the

use of large number of samples for detection resulting in high complexity, cost

and low efficiency. In addition there are performance degrading constraints

such as cyclic and sampling clock offsets that can occur at the receiver end.

These offsets are caused by local oscillator frequency offsets, Doppler effects

and jitter.

In order to address some of these issues in the absence of the constraints,

the thesis proposes an efficient low complexity multi-slot cyclostationary spec-

trum sensing technique that uses small number of samples to detect small

spectral components made possible by the use of fast Fourier transform and

slots of small lengths. Statistical and simulation tests are performed to verify

the functionality of the model to offer low complexity and consequently low cost

and efficiency.

The thesis also proposes another multi-slot cyclostationary spectrum sens-

ing model that included the receiver constraints such as cyclic frequency offset

and sampling clock offset in the test statistic. This model is analysed statisti-

cally and uses small lengths of fast Fourier transform and slots to effect signifi-

cant reduction of these constraints which is also verified with Matlab simulation
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results.

In order to have a non ad hoc systematic way of detecting and optimizing

the sizes of fast Fourier transform and slots, the thesis also proposes step

by step algorithms that can be applied to any set of total number of samples

representing a wideband channel. This will result in getting the appropriate

sizes of slots and fast Fourier transform that will produce low complexity, cost

and efficient detection. Matlab simulations are also used to verify this.

Finally, the proposed models are able to address the issues previously men-

tioned which are associated with the cyclostationary spectrum sensing.
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Chapter 1

Introduction

1.1 Motivation and State of the Art

Radio frequency spectrum is a physical resource that is naturally limited in

availability. This calls for its efficient utilization in order to provide users with

different services at higher data rates. There is increasing demand for the

spectrum due to rapidly expanding markets of wireless broadband, multimedia

users and applications which require high data rates. The radio frequencies

are therefore becoming scarce due to spectrum segmentation and dedicated

frequency allocation of the standardized wireless systems. As the demand

for broadband services and higher data rates continue to increase, efficient

spectrum usage is now a critical issue. On the other hand, several spectrum

occupancy measurement campaigns carried out in different parts of the world

indicate that a significant amount of the wireless spectrum are under-utilized

over a wide range of radio frequencies [6]. The Federal Communications

Commission (FCC) of the United States of America (USA) survey measure-

ments indicated that several licensed frequency bands are unused up to ninety

percent of the time [7].

Currently, wireless networks are regulated by fixed spectrum assignment

policies, where the spectrum is regulated by governmental agencies such as

the Office of Communications (OFCOM) in the United Kingdom (UK). Frequen-

cies are allocated to license holders mostly on a long term basis for large ge-

1
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ographical regions. A large portion of the assigned spectrum is being used

sporadically [8]. The spectrum usage is concentrated on certain portions of

the spectrum while a significant amount is either under-utilized or not utilized

at all as illustrated in Fig.1.1. As the demands of services continue to increase,

the scarcity of communication spectrum has become one of the major issues

for the development of new communication systems. It is either because the

spectrum is not available in some places or not sufficient in others. In this

context, Cognitive Radio (CR), a context-aware intelligent radio communica-

tion system, has emerged as a promising solution to address the spectrum

scarcity by exploring spectral opportunities and deliver a more efficient utiliza-

tion of the available spectral resources [9]. The CR, which was first proposed

as a solution in mobile communications is sometimes considered as making

software defined radios more significant as discussed in [10]. The United

States (US) FCC and UK OFCOM have already opened up significant parts

of the Television (TV) spectrum for unlicensed use in order to encourage the

realisation of Cognitive Radio implementation based on geo-location database

spectrum sensing approach, see [11], [12], [13] and [14].

Figure 1.1: Spectrum occupation in time domain.
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1.2 Cognitive Radio System

This section will explain the principles of Cognitive Radio (CR) and the building

blocks. Cognitive Radio is a context-aware intelligent radio capable of reconfig-

uring itself by learning from the surrounding communication environment and

adapting to it. CR results in flexible and dynamic spectrum access. The ba-

sic underlying principle is to permit unlicensed (secondary) users to access

opportunistically and without interference some licensed bands which are tem-

porarily and/or spatially unoccupied by the licensed users, see e.g [15]. In

order to meet increasing demand for services, Cognitive Radio is a promising

solution to address the spectrum scarcity by exploring spectral opportunities

and to deliver a more efficient utilization of the available spectral resources,

see e.g [9].

1.3 Cognitive Radio Functional Blocks

The concept of CR can be divided into four main blocks as shown in Fig. 1.2.

Namely: spectrum awareness, spectrum management, spectrum sharing and

spectrum mobility. Spectrum Awareness aims at determining spectrum avail-

ability and the presence or absence of licensed users (primary or incumbent

users). Spectrum management predicts the length of time the spectrum holes

(unused bandwidth or vacancies as in 1.1) will be available for use between

when the primary user has need of it [16]. Spectrum sharing allocates the

spectrum holes among the secondary users according to demand. Spectrum

mobility maintains hitless or error free (seamless) communication during fre-

quency allocation to or from the primary and secondary users thus producing

better spectrum usage transition [17].
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Figure 1.2: Illustration of the concepts involved in Cognitive Radio.

1.4 Spectrum Awareness

Spectrum awareness is divided into three main sections namely: spectrum

sensing techniques, database estimation and Signal-to-Noise-Ratio (SNR) tech-

niques as shown in Fig. 1.3

Figure 1.3: Spectrum Awareness Techniques.
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1.4.1 SNR Estimation Technique

This technique enables the Secondary User to have some information about

the SNR and channels of the Primary signals. The purpose is to help the

secondary user in controlling its transmission power towards the co-channel it

shares with the primary user, thereby radiating at an acceptable interference

level. Non-Data-Aided (NDA) SNR estimators predict the SNR values directly

from the unknown information-bearing part of the received PU signal [18]. This

method is not very useful in cognitive networks because it is not opportunity-

based. This research will explore the spectrum sensing functional block of

cognitive radio.

1.4.2 Database Technique

A geolocation database contains the spectrum usage information of the pri-

mary users in several places. This information can include frequency, place,

time, location, coverage areas, transmission powers, SNR, radio technologies,

etc. These databases are being provided by independent operators, regulated

in the UK by the Office of Communications (OFCOM) [13, 14, 19], [20]. The

database is expected to serve large number of requests daily. It may require

significant amount of data to service each user [21]. However, the challenge

is in keeping the updating of the databases active in real-time communication

environments to minimize interference to users . The geo-location spectrum

approach is being proposed by OFCOM [14, 21] pending when the full cog-

nitive radio concept will be implemented without harmful interference to the

primary users. The full cognitive radio requires sensing the spectrum without

the use of databases [22–24].

1.4.3 Spectrum Sensing

This is an important method to determine spectrum occupancy. From the con-

cept of cognitive radio, spectrum sensing is one of the crucial tasks in estab-
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lishing cognitive radio networks. It determines the presence or absence of

the primary users and spectrum availability [17]. It looks at spectral holes in

different parametric bases such as time, frequency, space, polarization and an-

gular domains. It is expected that the secondary user radio or terminal has the

ability to sense the presence or absence of the primary user through a signal

processing based technique. Spectrum sensing for cognitive radio uses some

unique characteristics such as: no prior knowledge of the signal statistics or

waveforms and noise form. The detection of the primary user signal has to

be active and immediate; processing of very low signals which may be due to

fading and multi-path phenomenon and noise and interference levels will vary

with time and uncertainty [25].

1.5 Research Gaps

The research gaps identified in this research are presented below.

Detection of low signal-to-noise ratio (SNR) signals in a wideband chan-

nel (channel with multiple carriers) with cyclic frequency and sam-

pling clock offsets.

Cyclic Frequency Offset (CFO) is due to the imperfect knowledge of the

cyclic frequency or symbol rate while Sampling Clock Offset (SCO) is due

to the imperfect knowledge of the sampling rate or sampling period at the

receiver end of the radio system. These are receiver constraints and

affect the accuracy of detection using cyclostationary spectrum sensing

method. From literatures, little attention has been given to the reduction

of these constraints.

Low computational complexity, cost and high efficiency.

The approach of using small windows in the implementation of wideband

cyclostationary spectrum sensing has not been fully explored. This re-

sults in low computational complexity, cost and high efficiency.
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Model optimization in frequency domain

Little attention has so far been given to the best of the author’s knowl-

edge with regards to the optimization of cyclostationary spectrum sensing

models in the frequency domain which is necessary in order to evaluate

the effectiveness of an implementable hardware system.

1.6 Research Objectives

The objectives are to develop statistical and test-based wideband cyclostation-

ary spectrum sensing models that will perform the following.

• The detection of the presence of RF signals of very low SNR values in order

to demonstrate the robustness of the models to noise.

• The ability to offer low computational complexity will be analysed and im-

plemented through achieving significant sensing of the RF spectrum with

small number of samples.

• Efficiency in terms of the number of samples used will be verified using the

model.

• Low cost sensing of the RF spectrum in terms of resources such as Fast

Fourier Transform (FFT) will be done by comparing with different sizes of

FFT and slots.

• The reduction of receiver constraints such as cyclic frequency offset and

sampling clock offset in a wideband communication environment will be

analysed and implemented. This will be demonstrated by comparing the

cases of with and without the constraints.

• Algorithms for both detection and optimization of the performance of the

models will be considered, in order for the models to be applicable to

different sample sets. This will consider different sizes and numbers of

FFT and slots. The optimization will also offer low computational com-

plexity.
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1.7 Research Contributions

The contributions of this research are as follow.

• Design and implementation of multi-slot wideband Cyclostationary Feature

Detection (WCFD) model which offers low computational complexity and

robustness to noise.

• Design and implementation of wideband Cyclostationary Spectrum Sensing

model for the reduction of receiver constraints namely: CFO and SCO. It

also offers low computational complexity and robustness to noise.

• The development of generic optimization algorithm and code for the WCFD

for the scenarios with or without the receiver constraints.

The above research contributions were achieved in the chapters as follow.

Chapter Four

This chapter addresses the design and implementation of a Wideband Cyclo-

stationary Spectrum Sensing using a multi-slot test statistic without the con-

straints namely CFO and SCO. The combinations of small size Fast Fourier

Transforms (FFTs) and time-based slots are used to produce a higher detec-

tion of signals as against the use of large size FFTs with and without slots.

Time averaging is quicker with small FFTs and slots because fewer samples

are needed which result in a quicker exit point when the signal is detected.

The use of small FFTs and slots for spectral correlation also results in lower

computational complexity. The detection of signals of low signal-to-noise ratios

(SNRs) are shown. The use of appropriate sizes of FFTs can save in terms of

the resources required by the FFTs such as processor time. Small FFTs will

also prevent the leakage of processors typical of large FFTs over a longer time.

Matlab simulations were used to verify the performance of the test statistic in

achieving these contributions. This chapter has been published in [26].
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Chapter Five

This chapter addresses the issue of receiver constraints: cyclic frequency off-

set and sampling clock offset. It includes the development of the design and

implementation of a Wideband Cyclostationary Spectrum Sensing system us-

ing a multi-slot test statistic incorporating the aforementioned receiver con-

straints. The effects of these constraints on the test statistic are analysed.

The results indicate that small sizes of FFTs in combination with multi-slots

are capable of significantly reducing the effects of cyclic frequency offset and

sampling clock offset and helping to detect signals at very low SNRs. It also

offers low complexity and high efficiency. Matlab simulations were used to ver-

ify these contributions. A part of this work has been published in [27].

Chapter Six

The issue of algorithms for cyclostationary signal detection and optimization

are examined in more detail in this chapter for signals with and without re-

ceiver constraints. A step by step algorithm is described which is capable of

producing the right sizes of FFTs and slots. These can be applied to any num-

ber of samples covering potentially any wideband channel which could serve

as a non ad hoc approach. Matlab simulations were used to verify these contri-

butions. A part of this chapter has been published in [28] while the full chapter

will be published in the paper to be submitted to the Institute of Electrical and

Electronic Engineers (IEEE) Transactions on Cognitive Communications and

Networking.

1.8 Research Methodology

Theoretical analysis of the various stages of the proposed wideband cyclosta-

tionary spectrum sensing models are presented. The applicable mathematical

equations such as cyclic autocorrelation function (CAF), Spectral correlation

function (SCF), computation Complexity and Detection Hypothesis are consid-

ered.
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The models considered both scenarios when there are cyclic frequency and

sampling clock offsets and when there are not. The models are robust to noise

and detects signals of low SNR. algorithms for the selection of the parameters

of the models in order to optimize the performance of the models have been

developed. This will result in the use of the parameters such as small sizes

of FFT and slots which will offer low computational complexity. Also, it makes

it possible for the models to be adapted to different sizes of sample sets for

various communication scenarios.

Matlab has been used for the simulations. This software is extensively used

in academic research, particularly for the fields of signal processing and com-

munications. It is user-friendly and can be adapted for use in many real world

communication systems scenarios. All the sections that make up the wide-

band cyclostationary spectrum models were analysed and the overall models

tested. Matlab codes were also used extensively in analysing and testing the

proposed models. The results obtained, which include figures, graphs and ta-

bles were then interpreted and analysed to demonstrate each achievement of

the research contributions. More details of the methodology are presented in

chapters four, five and six.

1.9 Thesis Organization

This chapter has introduced the subject of cognitive radio systems and the

building blocks which will progress to a more detailed discussion on spectrum

sensing techniques in the next chapter.

Chapter two presents the different types of spectrum sensing techniques.

The discussions on them end up in cyclostationary spectrum sensing which is

the main topic of this research.

Chapter three focuses on the principles of cyclostationarity such as cyclic

autocorrelation function and spectral correlation function. It also looks at the

different adaptations of the cyclostationary spectrum sensing such as narrow-

band and wideband channels. The issue of receiver constraints such as sam-



1.9. Thesis Organization 11

pling clock offset and cyclic receiver offset which are some of the important

considerations of this research are discussed.

Chapter four presents the multi-slot wideband cyclostationary spectrum

sensing model in the absence of the receiver offsets. The model investigates

the use of small sizes of fast Fourier transform and slots to obtain efficient

detection.

Chapter five focuses on the reduction of sampling clock offset and cyclic

frequency offset. The test statistics were derived to reflect the presence of

these constraints. It also considers the issue of computational complexity, op-

timization and the robustness to noise of the model.

Chapter six concentrates on the production of detection and optimization

algorithms. These algorithms were followed in the simulations to show low

complexity with and without receiver constraints at the selected combinations

of fast Fourier and slot sizes. It also considers the performance of the optimized

sizes of fast Fourier transform and slots.

Chapter seven presents the thesis conclusion and the suggested future

work.



Chapter 2

Spectrum Sensing

Spectrum sensing is an important process in Cognitive Radio. Spectrum sens-

ing determines the presence or absence of the primary users and spectrum

availability [17]. It looks at spectral holes in different parametric bases such

as time and frequency. Spectrum Sensing can be classified according to the

categories shown in Fig. 2.1.

Figure 2.1: Spectrum Sensing Techniques.
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2.1 Cooperative Sensing System

A Cooperative sensing system is when multiple cognitive radios share their

local sensing information for more accurate primary signal detection. This in-

formation includes the statuses of certain carrier frequencies within their local

environments [17], [29]. Cooperative sensing can be implemented in either a

centralized or a distributed method.

Cooperative sensing methods can also be categorized as a soft or hard

combination, according to the nature of the information being shared among

the cognitive radios. The soft combination is when each radio or node senses a

certain frequency band and then sends the results of the received signal to the

central node for decision on the presence or absence of a user, see [30–32].

On the other hand, in a hard combination approach, each user takes an extra

step of deciding whether a primary user is present or not and then reports the

results to the central unit.

2.1.1 Centralized Cooperative Method

Here a group of Secondary users sense the radio environment locally and re-

port to the nominated central unit or controller for managing the sharing of

the free spectrum as discussed in [33–35]. The central unit also called the

Fusion Centre (FC) collects the sensing information from the cognitive radios,

identifies the available spectrum bands and makes broadcasts to other cog-

nitive radios in the networks. A centralized sensing system is more accurate

and effectively mitigates both the multi-path fading and shadowing effects as

a result of the shared information. The central unit can also assign a specific

weight to each spectrum sensing result in order to mitigate fading. However,

the centralized sensing system requires a backbone infrastructure which may

be costly [36].
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2.1.2 Distributed Cooperative Method

In the distributed system there is no central unit, rather the secondary users

individually sense the radio environment and send out the information to other

cognitive users in the network as discussed in [37]. It is simpler to implement

and does not require a huge backbone infrastructure but falls short of mitigating

against multi-path fading and shadowing effects [17].

Several algorithms have been used in distributed sensing to coordinate the

sensed data at different cognitive nodes. A discrete time protocol was dis-

cussed in [38] where a secondary user senses a band of interest during a

certain time slot, and later sends its results to a set of randomly selected

neighbouring cognitive radios. Similarly, another approach has been discussed

in [39], where a small group of cognitive radios exchange their local decisions

during a particular time slot. After which a cognitive user within this group

sends all the received information to a randomly selected neighbour that will

then act as the designated user of the free frequency in the next time slot. This

process is repeated until all the cognitive users receive the sensing informa-

tion.

2.2 Interference Based Sensing System

This method considers the leakage radiation from a primary receiver’s local

oscillator. An external sensor is attached near the Primary User’s (PU) receiver

which can transmit a signal back to the Secondary User (SU) for the purpose

of identifying the PU [16].

2.3 Non-cooperative

Each of the detection methods under this category independently detects the

PU signals and acquires vacant channels for the SU. This approach has an

advantage of requiring less operational bandwidth. These methods are as
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follow.

2.3.1 Energy Detector

This is a non-coherent type of detector requiring no prior knowledge of PU

signal waveform detection method. Energy detectors detect the primary signal

based on sensing the energy, see e.g [17,40]. An energy detector evaluates

the received signal’s energy at the antenna input.

2.3.2 Implementation of Energy Detector

Energy Detection can be implemented in either the time or frequency domain

with similar results. However, in practice it is more flexible to implement Energy

Detection in the frequency domain than in the time domain due to the use of

fast Fourier transform, see e.g [41]. In the time-domain, as in Fig. 2.2, the

received radio signal from the RF front end or receiver is passed through a

band pass filter with a particular bandwidth and converts it to a digital signal

in the Analogue/Digital (A/D) block. This is then squared and summed up.

The output is then compared to a predefined threshold. This comparison is to

ascertain the existence or absence of the primary user, see e.g [40,42]. In the

frequency domain, the Fast Fourier Transform (FFT) is also used to implement

ED as shown in Fig. 2.3.

Figure 2.2: Energy detector in the time domain.



2.3. Non-cooperative 16

Figure 2.3: Energy detector in the frequency domain.

2.3.3 Advantages

There are two main advantages of Energy Detection when compared against

other detection techniques such as the cyclostationary feature detection.

• Energy detection requires less computational complexity than some other

spectrum sensing methods such as the cyclostationary feature detection.

It relies on the overall energy of the signal including noise and does not

require much re-sampling of the signal for the detection.

• Energy Detection requires no prior knowledge of the Primary User’s signal

in order to detect the signal. This is possible since it does not distinguish

the signal content from the noise.

2.3.4 Disadvantages

The detection performance is subject to the uncertainty of noise power since it

evaluates the signal’s energy which is made up of noise as well. This will result

in arriving at incorrect detection levels. Other disadvantages can include:

• Energy Detection cannot be used to distinguish the primary user’s signals

from the secondary user’s signals in a cognitive radio system because it

does not process the features of the signal such as the cyclic frequency.

• Energy Detection is not capable of detecting the signals of a spread spec-

trum system which usually are noise-like.

• It is not effective in handling signals of low SNR values because of the inabil-

ity to distinguish noise from signal.
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2.3.5 Energy Detection Test Statistic

Let the discrete received signal be represented by,

x[n] = s[n]+w[n] (2.1)

where n, s[n] and w[n] are the sample index, signal only and Additive White

Gaussian Noise (AWGN) respectively. The test statistic for energy detection

can be stated as,

SED =
N−1∑
n=0

|x[n]|2 (2.2)

where N is the total number of samples during the observation or sensing

period. The decision on the occupancy status of a channel is achieved by

comparing the magnitude of the test statistic YED (2.1) against a fixed threshold

λED as expressed in (2.3) and (2.4) and discussed in [43], [44], [45] and [41].

This will result in two hypotheses H0 and H1 which are defined to correspond

to the following,

SED <λED for H0 : s[n] = η[n], noise only (2.3)

and

SED ≥λED f or H1 : s[n] = x[n]+η[n], of signal and noise. (2.4)

2.4 Matched Filter

A Matched Filter (MF) is obtained by correlating a known signal or reference

with an unknown signal in order to detect the presence of the reference sig-

nal in the unknown signal. This is a coherent detection method where the

secondary user has a priori knowledge of the primary user signal. The oper-

ation of matched filtering is equivalent to the correlation in which the unknown

signal is convolved with the filter whose impulse response is the mirror and

time shifted version of a reference signal. In other words, MF is equivalent

to convolving the unknown signal with a conjugated time-reversed version of

the reference signal. The matched filter is one of the optimal linear filters for
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optimizing the SNR in the presence of additive stochastic noise as discussed

in [46,47]. The test statistic for MF as used in [46–48] can mathematically be

expressed as,

SMF =
∣∣∣∣∣N−1∑

n=0
h∗[n]x[n]

∣∣∣∣∣
2

(2.5)

where h∗[n] and x[n] are the conjugated (*) time-reversed version of the known

or reference signal and the unknown signal respectively.

Matched filters are commonly applied in radar systems where a known sig-

nal is transmitted, and the reflected signal which is the received signal is then

examined for common features of the transmitted signal. This is difficult to

apply in real radio communication systems where the full nature of the wave-

form or signal is not constant at all times or where the radio environment is

not predictive. However, it can be used in data communications where binary

messages are being sent out from the transmitter to the receiver across a noisy

channel. MF can be used to detect the transmitted pulses in the noisy received

signal.

Matched filter uses fewer samples to achieve acceptable detection such

as a low probability of missed detection or false alarm [49] in a short time.

However, more samples are needed as the SNR increases which results in

SNR walls [50].

2.4.1 Implementation of Matched Filter

According to Fig. 2.4, the received signal, x(t ) is passed through a band-pass

filter (BPF). This measures the energy in the selected band. The output signal

of the BPF is convolved with the match filter whose impulse response is the

same as the reference signal. The output of the Matched Filter is then com-

pared to a threshold of a known signal (reference) for detecting the existence

or absence of the primary user as was used in [46].
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Figure 2.4: Conventional Matched Filter.

2.4.2 Advantages of Matched Filter

• Matched Filter (MF) is an optimal detection method when the there is prior

knowledge of the received signal, thereby maximizing the SNR in the

presence of noise [41], [51], [52].

• Matched Filter requires short time to reach a significant and acceptable de-

tection performance such as low probability of false alarm [49].

• MF uses fewer received samples to achieve acceptable detection perfor-

mance [51].

2.4.3 Disadvantages of Matched Filter

• Matched Filter (MF) requires full prior knowledge of every received signal

for detection. Therefore, it requires receivers with their corresponding

algorithms for different signals.

• MF has implementation complexity and requires high power consumption

due to the different receiver to be implemented [53], [51].

• MF is difficult to apply in real communication environments where the full

nature of the waveform is not always known.

2.4.4 Cyclostationary Feature Detection

A process is said to be Cyclostationary if the signal statistics vary periodically

with time [2]. Modulated signals on their own are not truly periodic but have

features with in-built periodicity such as carrier, symbol rate and modulation

type such as Quadrature Phase Shift Keying (QPSK) [54]. These features are
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used to detect the presence or absence of primary users [5, 33, 55]. Also,

a process shows cyclostationarity if the Auto Correlation function (ACF) and

mean are periodic. A Cyclostationary Feature Detector (CFD) which can be

used to detect the features of the signal such as frequency or cyclic frequency

is robust to noise [54]. More details of CFD will be given in chapter 3 as this

technique is the focus of this research.

2.4.5 Advantages of Cyclostationary Feature Detectors

Cyclostationary Feature Detectors have some advantages over Energy Detec-

tion Methods (most widely used form of spectrum sensing).

• It has discriminatory capability, see [56]. CFD is able to differentiate between

the features of signals such as carrier frequency and cyclic frequency.

• CFD can function in lower SNR better than Energy detectors because of the

mentioned discriminatory ability [33]

• It can detect signals without classification and without its prior knowledge.

2.4.6 Disadvantages of Cyclostationary Feature Detectors

• CFD has high computational complexity when compared with energy detec-

tion. This is because, it requires a greater number of samples for the

detection of the signal’s features such as the carrier and cyclic frequen-

cies.

• CFD has a relatively long sensing time which is comparable to the number

of samples used for the detection as discussed in [33], [56].

• CFD suffer from receiver offsets such as Cyclic Frequency Offset (CFO) and

Sampling Clock Offset (SCO), see [57,58]
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2.4.7 Compressive Sensing

Compressed or compressive sensing is a signal processing technique that is

used to sufficiently acquire and reconstruct a signal with fewer samples than

the theoretical Shannon-Nyquist sampling limit. This will reduce the complexity

of analogue-to-digital converter (ADC) and offer efficient detection if the signal

is properly recovered. It is applied to signals that have sparse representation in

the bandwidth of interest. Compressed sensing exploits the sparsity of a signal

for its recovery [59, 60]. In order for signals to be correctly reconstructed in

Compressive sensing (CS) , a condition called the Restricted Isometry Prop-

erty (RIP) will be met. RIP defines the limit of effective compressive sampling

[61]. Conventional spectrum sensing techniques sample at higher rates about

or above the Nyquist rate. Compressive sampling reduces the amount of spec-

trum to be sampled before sensing. CS replaces samples with a general linear

measurement [61,62] and can fundamentally be expressed as,

y =Φx (2.6)

where y is the measurement,Φ is the sensing function and x is the original

signal vector. When y and Φx are considered as vectors, it follows that y is the

sum of all the instantaneous measurements.

2.4.8 Wideband Compressive Sensing

It was illustrated in [63,64] and recently in [61] that if signal x is S-sparse, it can

be compressed by taking some measurements M as shown in (2.7), where N

is the number of Nyquist samples and C is some positive constant.

M ≥C Sl og N . (2.7)

The choice of M depends on the sparsity factor S , since the occupation rate of

the wideband channel is unknown. In [65], it was proved that a sparse signal

can be reconstructed with fewer samples. This became the basis for the first

study on compressed sensing in [62, 66] where Basis Pursuit (BP) was used
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for signal recovery. Let the signal vector x be represented by,

x =∑
y
αyΦy (2.8)

where Φy is the waveform due to the parameter y and αy represents all the

coefficients expressed as a column vector. BP finds the signal representation

whose coefficients have minimal L1−Norm as in (2.9). That is, min||α||1 subject

to,

Φα= x. (2.9)

Compressive Sampling (CS) in Wideband was first studied in [59]. CS was

used with a Stationary Wavelet Transform (SWT) to implement Wideband Spec-

trum Sensing (WSS) in [67–69]. It requires a large number of samples as

discussed in [70]. Another CS approach used Non-Gaussian Testing to detect

a Primary User (PU) signal from the compressed samples without reconstruct-

ing the cyclic spectrum of the sampled signal [71]. It compares the frequency

response distribution of the compressed signal against the Gaussian Noise

distribution. A multi-antenna receiver was suggested in [72]. The accuracy of

synchronization of all signals from different antennas may affect the sampling.

The use of an ultra-wideband (UWB) channel was explored in [73]. The use

of a Matched-filter with compressive sampling and interference immunity was

studied in [74]. This assumed that the spectral shapes of the PU signals were

known which were compared with the Power Spectral Density (PSD) of the re-

ceived signal. In compressive sampling, the recovery of the compressed signal

can be done with L1 −Norm Regularized Least Squares minimization (LR-LS)

before the detection or estimation of the spectral occupancy for low complexity

at reduced SNR. The L1 −Norm Regularized Least Squares minimization (LR-

LS) is expressed mathematically as, Let RN represent the received signal such

that x ∈ℜN , where x is a vector. Considering noise vector e in (2.10) we have,

y =Φx +e (2.10)
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where ||e||22 ≤ ε while e is assumed to have a value less than ε [61,66].

argmin
x̂∈ℜN

||x||1 (2.11)

where x̂ is the recovered signal, such that

||y −Φx||22 ≤ ε. (2.12)

Equation 2.12 represents L2 −Norm which is the constraint that is needed to

shrink the required measurements for recovering the signal vector x in (2.10).

Therefore, the LR-LS can be expressed as,

x̂ = argmin||x||1 +||y −Φx||22 ≤ ε. (2.13)

2.4.9 Drawbacks of Compressive sampling

Some of the constraints of CS as discussed in [75–77] are as follow.

•Structured sensing matrices. The sensing matrix is often dictated by the

physical properties of the sensing process (e.g., the laws of wave propa-

gation) and constraints associated with its practicability.

•The requirement for structured sparsity.

This is important because sparsity patterns may not be equally the same

along the entire signal duration.

•Application-specific prior information

Application information such as the likelihood of a certain minimum dis-

tance between sparse coefficients may be a constraint as this is not al-

ways available.

•Hardware design

The hardware design of a compressive sensing device is still a challenge

despite the progress already made. Noise is a major limiting factor as

well as calibration of CS devices [75,76].
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•Accuracy of spectral location.

The locations of the spectral components may not be accurate due to

the sub-Nyquist sampling rate and uncertainty in the amount of spectrum

estimation adequate for effective sensing of the wideband of interest.

2.5 Fourier Analysis

Fourier analysis describes the method of representing general functions by the

sums of simpler trigonometric functions such as sines and cosines. In Fourier

analysis, functions are decomposed into oscillatory components while the pro-

cess of rebuilding the function from these components is known as Fourier

synthesis. There are different types of Fourier transforms which depend on the

types of signals as shown in table 2.1, see [78].

2.5.1 The Sampling process

Consider a signal x(t ) shown in Fig. 2.5(a), whose spectrum is band-limited

to B Hz. Let x(t ) be sampled at a rate of fs (samples per second) by multiply-

ing x(t ) by an impulse train p(t )) shown in Fig. 2.5(b), which consists of unit

impulses repeating periodically every T seconds, where T = 1
T , see [79, 80].

The sampled signal or discrete x(n) shown in Fig. 2.5(c) consists of impulses

spaced every sampling interval T seconds. The value of x(t ) at t = nT is x(nT )

which is the strength of the nth impulse at t = nT . Therefore,

x(n) = x(t )p(t )

=
∞∑

n=−∞
x(nT )p(t −nT )

(2.14)

where p(t ) is the pulse train or pulse shape filter and defined by

p(t ) =
∞∑

n=−∞
p(t −nT ). (2.15)
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Table 2.1: Types of Fourier transforms.

Type of signal Type of Fourier Transform

Aperiodic-Continuous

This signal goes up to both positive

and negative infinities without periodi-

cally repeating itself. These include de-

caying exponentials and the Gaussian

curve

Fourier Transform (FT)

Periodic-Continuous

The signal repeats itself in a regular or

periodic pattern from negative to pos-

itive infinity such as sine waves and

square waves.

Fourier Series (FS)

Aperiodic-Discrete

The signals is only defined at discrete

or definite points between positive and

negative infinity, and is not repeated in

a periodic patttern

Discrete Time Fourier Transform

(DTFT)

Periodic-Discrete

The signal repeats itself in a periodic or

regular pattern from negative to positive

infinity.

Discrete Fourier Transform (DFT)

Short-time Fourier Transform (STFT)

Time-Dependent Fourier Transform

(TDFT), Fast Fourier Transform (FFT)

This can also be expressed as discrete complex samples by

x[n] =
∞∑

n=−∞
x(nT )p(t −nT )e j 2π fc t cos(2π fc t

=
∞∑

n=−∞
x(nT )p(t −nT )e j 2π fc t

(2.16)

where fc is the carrier frequency as was used in [81].
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Figure 2.5: Fourier Transform of x(t )

2.5.2 Fourier Transform

The Fourier transform (FT) decomposes a time-series signal x(t ) in Fig. 2.6(a)

or function of time into the frequencies that make it up as shown in Fig. 2.6(b).

FT of a signal x(t ) is a complex-valued function of frequency, whose absolute

value represents the amount of that frequency present in the original function of

time x(t ) while the complex argument is the phase offset of the basic sinusoid

in that frequency, see, [78–80,82]. FT is also known as the frequency domain
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representation of the original time-series signal. The Fourier Transform of the

Figure 2.6: Fourier Transform of x(t)

original pulse signal x(t ), would be represented as

X (ω) =
∫ ∞

−∞
x(t )e− jωt d t (2.17)

and the inverse Fourier Transform is

x(t ) = 1

2π

∫ ∞

−∞
X (ω)e jωt dω, (2.18)

where ω = 2 π f and f is the frequency of the signal.

2.5.2.1 Properties of Fourier Transform

The properties of the Fourier Transforms will be described in this section.

Linearity If x(t ) and y(t ) have the Fourier transform H( f ) and Y ( f ), respec-

tively, then the sum x(t ) + y(t ) has the Fourier transform X ( f ) + Y ( f ).∫ ∞

−∞

[
x(t )+ y(t )

]
e− j 2π f t d t =

∫ ∞

−∞
x(t )e− j 2π f t d t +

∫ ∞

−∞
y(t )e− j 2π f t d t

= X ( f )+Y ( f ).

(2.19)

Therefore,

x(t )+ y(t ) = X ( f )+Y ( f ). (2.20)

Symmetry If h(t ) and H( f ) are a Fourier transform pair, then

H(t ) ⇔ h(− f ) (2.21)
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The FT pair above can be shown by rewriting

h(−t ) =
∫ ∞

−∞
H( f )e− j 2π f t d f (2.22)

and by interchanging t and f ,

h(− f ) =
∫ ∞

−∞
H(t )e− j 2π f t d t (2.23)

.

The FT properties can be summarized as in Table 2.2, see [83].

Table 2.2: Properties of Fourier Transform

Time Domain Frequency Domain

Property Expression Equivalent Prop-

erty

Fourier Trans-

form

Linearity x(t )+y(t ) Linearity X ( f ) + Y ( f )

Symmetry H(t ) Symmetry h(− f )

Time Scaling h(kt ) Inverse Scale

Change

1
|k|H( f

k )

Inverse Scale

change

1
|k|h( t

k ) Frequency Scal-

ing

H(k f )

Time shifting h(t − t0) Phase shifting H( f )e− j 2π f t0

Modulation h(t )e j 2πt f0 Frequency shifting H( f − f0)

Even function he (t ) Real function He ( f ) = Re ( f )

Odd function ho(t ) Imaginary Ho( f ) = j Io( f )

Real function ht = hr (t ) Real part even,

Imaginary part

odd

H( f ) = Re ( f ) +
j Io( f )

Imaginary function ht = j hi (t ) Real part odd,

Imaginary part

even

H( f ) = Ro( f ) +
j Ie ( f )
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2.5.3 Fourier series

Fourier series (FS) is a way of representing a function as the sum of waves.

Technically, it decomposes any periodic function or signal x(t ) into the weighted

sum of sines and cosines or equivalent complex exponentials as

x(t ) =
∞∑

n=−∞
Cne j kw t (2.24)

where Cn is the Fourier coefficient.

2.5.4 Short-Time Fourier Transform

Short-Time Fourier Transform (STFT) which is also known as Time-Dependent

Fourier Transform (TDFT) can be defined in both continuous and discrete time

instants.

Continuous-time STFT

The signal x(t ) to be transformed is multiplied by a non-zero window func-

tion w(r ) for only a short period of time t . The Fourier transform of the

signal is taken as the window w(t ) is slid along the time axis t , resulting

in a two-dimensional representation of the signal, see [80, 84]. This can

be expressed mathematically as

X (t ′,ω) =
∫ ∞

−∞
x(t )w(t − t ′)e− jωt d t (2.25)

where X (t ′,ω) is the continuous-time STFT for each window w(t ) centred

at t = t ′ with the continuous frequency variable ω.

Discrete-time STFT

In the discrete case, the STFT can be represented as

X (k,ω) =
∞∑

n=−∞
x(n)w(n −k)e− jωn (2.26)

where the window w(n) is of discrete length k while the frequency parameter

ω is still continuous [80].
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2.5.5 Discrete-Time Fourier Transform

In Discrete-Time Fourier Transform (DTFT), a discrete signal x[n] or a sampled

version of continuous time signal which is not periodic is transformed into the

frequency domain. DTFT relates an aperiodic, discrete signal, with a periodic,

continuous frequency spectrum, see [78]. It can be expressed as

X [Ω] =
∞∑

n=−∞
x[n]e− jΩn (2.27)

where Ω is between 0 and 2π and is the discrete time frequency parameter.

DTFT is not suitable for Digital Signal Processing (DSP) applications because

in DSP, the spectrum is only computed at discrete values of the frequenies ω

, see [78]. Also, in DSP applications, a signal is measured only at discrete

points.

2.5.6 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier

Transform (FT) of discrete signals separated by samples at finite times or pe-

riod T (i.e a finite sequence of data). Consider a finite sequence x[n] de-

fined as 0 ≤ n ≤ (N − 1). Let N samples of the signal x(t ) be denoted by

x[0], x[1], ...., x[k], ..., x[N − 1].. The Fourier transform of x(t ) is given in (2.17).

Let each sample x[k] be regarded as an impulse having an area x[k]. Since the

integrand exists only at the sample points for a DFT as explained previously,

the Fourier Transform in (2.17) becomes,

F (ω) =
∫ (N−1)T

0
x(t )e− jωt d t (2.28)

F (ω)) =
∫ (N−1)T

0
x(t )e− jωt d t

= x[0]e− j 0 +x[1]e− jωT +x[2]e−2 jωT + ....+x[k]e− jωkT + ...+x[N −1]e− jω(N−1)T

=
(N−1)T∑

k=0
x[k]e− jωkT

(2.29)
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Note that can be evaluated for any ω, but with N data points only N final outputs

will be significant, see [80, 82]. Since there are finite samples, the DFT treats

the data as periodic such that x(N ) to x(2N −1) is the same as x(0) to x(N −1).

Therefore, the DFT equation in (2.29) will be evaluated for the fundamental

frequency, i.e one cycle per sequence ( 1
N T Hz or 2π

N T rad/sec), its harmonics

and the dc component at ω = 0. Therefore we set,

ω= 0, 2π
N T , 2π

N T ×2, ... 2π
N T ×n, ... 2π

N T × (N −1),

and substitute ω into (2.29) to have the general DFT equation,

X [n] =
(N−1)∑

k=0
x[k]e− j 2π

N nk for 0 ≤ n ≤ (N −1). (2.30)

From where the Inverse Discrete Fourier Transform (IDFT) becomes

x[k] = 1

N

(N−1)∑
n=0

X [n]e+ j 2π
N nk for 0 ≤ k ≤ (N −1), (2.31)

while equations (2.30) and (2.31) are known as the DFT pair.

2.5.6.1 Properties of Discrete Fourier Transform

The properties of the Fourier transform given in Table 2.2 can be extended to

the Discrete Fourier Transform.

Linearity If x(k) and y(k) have discrete Fourier transforms X (n) and Y (n), re-

spectively, then the sum x(k) + y(k) has the Discrete Fourier transform

X (n) + Y (n).

x(k)+ y(k) ⇔ X (n)+Y (n). (2.32)

This follows directly from the DFT pair in (2.30) and (2.31).

Symmetry If x(k) and X (k) are a discrete Fourier transform pair, then

1

N
X (k) ⇔ x(−n) (2.33)

The DFT pair of equation (2.33) is established by rewriting equation (2.31)

x[−k] = 1

N

(N−1)∑
k=0

X [n]e+ j 2π
N n(−k) (2.34)

and by interchanging k and n,

x[−n] = 1

N

(N−1)∑
n=0

X [k]e− j 2π
N nk . (2.35)
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Some of the properties of the DFT can be summarized as in Table 2.3, see [83].

Table 2.3: Properties of Discrete Fourier Transform

Property Discrete Fourier Transform

Linearity x(k)+y(k) ⇔ X (n) + Y (n)

Symmetry 1
N X (k) ⇔ x(−n)

Time shifting x(k − i ) ⇔ X (n)e− j 2πni /N

Frequency shifting x(k)e j 2πni /N ⇔ X (n − i )

Even functions xe (k) ⇔ Re (n)

Odd functions xo(k) ⇔ j Io(n)

Correlation y(k) =∑(N−1)
i=0 x(i )h(k + i )

2.5.7 Fast Fourier Transform

There are different methods of calculating the Discrete Fourier Transform (DFT)

such as solving simultaneous linear equations. The Fast Fourier Transform

(FFT) is a more efficient algorithm for the computation of the DFT. It is also

known as the Cooley-Tukey algorithm to reflect the developers, see [78,83,85].

It reduces significantly the computation time. The FFT algorithm popularly

known as Cooley-Tukey algorithm can be grouped into two basic types namely:

Decimation-in-Time (DIT) and Decimation-in-Frequency (DIF).

2.5.7.1 Decimation-in-Time

For the Decimation-In-Time (DIT), the FFT is computed by dividing up, or dec-

imating, the samples x[n] into sub-sequences until only 2-point DFT’s remain

for a radix 2 FFT, see [79, 83]. This algorithm is called the decimation-in- time

since the division is on the input time samples, see [83]. Let us consider the

basic computational structure associated with the DIT algorithm. For conve-
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nience, we define,

WN = e− j 2π
N (2.36)

and the DFT equation (2.30) can be re-written as,

X [k] =
(N−1)∑

n=0
x[n]W nk

N for 0 ≤ k ≤ (N −1). (2.37)

and the IDFT becomes

x[n] = 1

N

(N−1)∑
k=0

X [k]W −nk
N for 0 ≤ n ≤ (N −1). (2.38)

For simplicity as discussed in [79], let us choose N to be a power of 2. The

N -point data sequence x[n] will be divided into two N
2 -point of even-and-odd-

numbered sequences, g [n] and h[n], respectively as follow.

X0, X2, X4, ..., XN0−2︸ ︷︷ ︸, X1, X3, X5, ..., XN0−1︸ ︷︷ ︸.
even sequence g [n] odd sequence h[n]

From (2.37),

X [k] =
(N /2)−1∑

n=0
x[2n]W 2nk

N +
(N /2)−1∑

n=0
x[2n +1]W (2n+1)k

N . (2.39)

It can be shown from (2.36) that

WN /2 =W 2
N . (2.40)

Therefore, we have

X [k] =
(N /2)−1∑

n=0
x[2n]W nk

N /2 +W k
N

(N /2)−1∑
n=0

x[2n +1]W kn
N /2

=Gk +W k
N Hk for 0 ≤ k ≤ (N −1)

(2.41)

where Gk and Hk are the N
2 -point DFTs of the even-and-odd-numbered se-

quences, g [n] and h[n], respectively. Since Gk and Hk are the N
2 -point DFTs,

they are periodic in N /2. Therefore,

Gk+(N /2) =Gk

Hk+(N /2) = Hk

Xk+(N /2) = Xk

W k+(N /2)
N =W k

N

(2.42)
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Note that

W k+(N /2)
N =W N /2

N W k
N

= e− jπW k
N

=−W k
N

(2.43)

From equations (2.41), (2.42) and (2.43), we obtain

X [k + (N /2)] =Gk −W k
N Hk . (2.44)

The linearity property of the DFT demonstrated above is useful in reducing

the number of computations. The first N /2 points (0 ≤ n ≤ (N /2)− 1 of Xk by

using equation (2.41) and the last N /2 points by using equation (2.44) as

X [k] =Gk +W k
N Hk for 0 ≤ k ≤ (N /2−1) (2.45)

and

X [k + (N /2)] =Gk −W k
N Hk for 0 ≤ k ≤ (N /2−1) (2.46)

Therefore, an N -point DFT can be computed by combining the two (N /2)-points

DFTs as in equations (2.45) and (2.46). These equations are being shown in

a flow or process graph in Fig. 2.7. This structure is known as the Butterfly

and is so called because of its criss-cross appearance. where Gk and Hk are

Figure 2.7: Fourier Transform of x(t )

the N
2 -point DFTs of the even-and-odd-numbered sequences, g [n] and h[n],

respectively. The second FFT algorithm, the decimation-in-frequency (DIF), is

similar to the decimation-in-time algorithm. The only difference is that instead
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of dividing xn into two sequences of even-and odd-numbered samples, we

divide xn into two sequences formed by the first N /2 and the last N /2 points.

The decimation continues the same way as with DIT, until a single-point DFT is

reached in logN steps. The total number of computations is the same for both

DIT and DIF algorithms.

2.5.7.2 The FFT Complex Multiplications and Additions

The DFT requires N 2 complex multiplications and N (N −1) complex additions

in order to compute an N -point DFT. This can be reduced by the use of FFT.

At each steps of the FFT, N /2 complex multiplications are needed to combine

the results of the previous steps, see [79, 82, 83]. Since there are logN steps,

in order to compute an N -point DFT with the FFT, a total of N /2 log N complex

multiplications and N log N complex additions will be required. Therefore, the

FFT reduces the number of computations from the order of N 2 to N log N .

This has facilitated the use of the FFT in computing the DFT in digital signal

processing. More details on FFT complexities can be found in Table F.

2.5.8 DFT Errors

There are two main types of errors that affect the accuracy of Discrete Fourier

Transform namely: Aliasing and Leakage.

2.5.8.1 Aliasing

Aliasing can be described as an overlapping in the frequency domain of two dif-

ferent samples continuous signals. Aliasing occurs when samples of continuous-

time signals or sinusoids of at least two different frequencies produce the same

discrete-time signal see [80, 82]. That is, the different analogue signals gen-

erate the same discrete-time identity. It happens when the sampling rate fs

is lower than the Nyquist criterion of 2 × fh where fh is the highest signal fre-

quency. Since fs is the reciprocal of the sampling interval Ts , in order to avoid
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aliasing, the condition in (2.47) will be met.

fs = 1

Ts
≥ 2 fh (2.47)

Equation (2.47) satisfies the Nyquist criterion. this is important since the dis-

crete time signal processing considers the limit on the highest frequency that

can be processed, see [82]. Aliasing will result in incorrect frequency value.

Aliasing can also be reduced by pre-filtering or down-converting the signal in

order to minimise its high frequency spectral content.

2.5.8.2 Leakage

Recall from sections 2.5.2.1, 2.5.6 and equations (2.17), (2.30), that the Fourier

transform of a periodic signal requires the integration to be performed over the

interval -∞ and +∞ while the DFT computes over an integer number of cycles

of the signal or expects the signal to be period. If the DFT is computed over

a non-periodic waveform then the transform may be corrupted. It is equivalent

to computing DFTs of a signal with major discontinuities. hence, other fre-

quency components. This effect is known as Leakage and arises because the

DFT appears to be for a signal with different frequencies, see [79, 82, 86, 87].

The leakage can in turn cause aliasing. Leakage can be reduced by using a

tapered window function for signal truncation.

2.5.9 Bandpass and Equivalent Lowpass Signals

A Bandpass (BP) signal x(t ) = A(t )cos2π fc t +θ is defined as having its Fourier

transform X ( f ) to be non-zero only in some small band around a central fre-

quency fc , see [79,88]. It follows that a Bandpass signal has most of its energy

centred around some frequency fc . As an illustration, consider a bandpass

modulated signal z(t ) = A(t ) cos 2π fc t +θ in Fig. 2.8, whose spectrum is cen-

tred at fc . The carrier signal is cos2π fc t while A(t ) is the modulating signal of

bandwidth W and is also the real-valued envelope of x(t ). The bandwidth B of

the BP signal is equal to the width of the positive-frequency interval on which
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the signal is non-zero as seen in Fig. 2.8b. The BP signal can be expressed

as

x(t ) = A(t )cos(2pi fc t +θ(t ))

= A(t )

2
e j (2π fc t+θ(t )) + A(t )

2
e− j (2π fc t+θ(t ))

(2.48)

and

X ( f ) = 0 for | f − fc | >W where W < fc (2.49)

as can be seen in Fig. 2.8.

Figure 2.8: Bandpass AM Modulated signal

Bandpass signals are classified as real signals and are widely used in Ra-

dio Frequency (RF) communication and radar signals. In the analysis and

processing of BP signals, it is convenient to use its related equivalent signals

called the Equivalent Lowpass (ELP) signals, see [88].

Firstly, in order to get the FT of the complex-valued analytic signal x(t ) =
A(t )cos2π fc t +θ(t ), we suppress the negative frequency part of the BP signal,
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xa(t ) = A(t )e j (2pi fc t+θ(t ))

= A(t )cos(2π fc t +θ(t ))+ j A(t )si n(2π fc t +θ(t ))
(2.50)

and is shown in Fig. 2.9.

Figure 2.9: Fourier transform of complex-valued analytic signal xa(t )

Secondly, in order to get the FT of the Equivalent Lowpass signal, we

frequency-shift the positive frequency part down by fc to get

xl = e(− j 2pi fc t )xa (t )

= A(t )e jθ(t )
(2.51)

where A(t )e jθ(t ) is the Equivalent Lowpass signal that represents the bandpass

signal A(t )cos2π fc t +θ(t ) shown in Fig. 2.8 while the FT of the ELP signal is

shown in Fig. 2.10. Note that |Xl ( f )| in Fig.2.10 does not necessarily have

even symmetry as a complex signal whereas the bandpass signal it represents

is real valued with symmetry about the zero frequency, see [79].
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Figure 2.10: Fourier transform of complex-valued analytic signal xa(t )

In radio communications, It is more convenient to use the complex-valued

equivalent lowpass signal to analyse bandpass signals. This gives the oppor-

tunity of dealing with low frequencies rather than high frequencies associated

with bandpass signals.

2.6 Window Functions

A window function is a mathematical function that has zero values outside

the chosen period. It is symmetrical about the centre which is usually about

the maximum value and tapers away from the centre [80, 82]. When another

function or data sequence is multiplied by a window function, the product is

also of zero value outside the chosen window period. There are different types

of window functions with different shapes. For example an N -point the Triangle

window is given as,

for N odd,

w(n) =


2n

N+1 1 ≤ n ≤ (N +1)/2

2− 2n
N+1 (N +1)/2+1 ≤ n ≤ N

(2.52)
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and for N even,

w(n) =


2n−1

N 1 ≤ n ≤ N /2

2− 2n−1
N (N /2+1) ≤ n ≤ N

. (2.53)

It has nonzero values at points 1 and N , see [80], as shown in Fig. 2.11

Figure 2.11: Triangular Window

The Hanning window is a cosine-sum window is similar to the Hamming

window except that its end points touch zero value as shown in Fig. 2.12 This

is unlike the Hamming window where the end points do not just touch the zero

value. The Hanning window is given as

w(n) = 0.5

[
1− cos

(
2πn

N −1

)]
0 ≤ n ≤ N −1 (2.54)



2.6. Window Functions 41

Figure 2.12: Hanning Window

The general expression of a windowed signal v[n] can be expressed as

follow [79,80]. Considering a discrete-time signal,

x[n] = A0cos (ω0n +θ0)+ A1cos (ω1n +θ1) −∞< n < θ (2.55)

where ω0 =Ω0T and ω1 =Ω1T . The windowed sequence is

v[n] = A0w[n]wcos (ω0n +θ0)+ A1w[n]cos (ω1n +θ1) (2.56)

where v[n] is the window sequence. In order to obtain the DFT of v[n], equa-

tion 2.56 can be expressed in terms of the complex exponentials and using the

frequency shifting property of the DFT in Table 2.3,

v[n] = A0

2
w[n]e jθ0 e jω0n+ A0

2
w[n]e− jθ0 e− jω0n+ A1

2
w[n]e jθ1 e jω1n+ A1

2
w[n]e− jθ1 e− jω1n.

(2.57)

from the Time and frequency shifting properties of the Fourier Transform in

Table 2.2, the Fourier transform of the windowed sequence is

V (e jω) = A0

2
e jθ0W

(
e j (ω−ω0)

)
+ A0

2
e− jθ0W

(
e j (ω+ω0)

)
×+ A1

2
e jθ1W

(
e j (ω−ω1)

)
+ A1

2
e− jθ1W

(
e j (ω+ω1)

)
. (2.58)

According to equation 2.58, the Fourier Transform of the windowed signal con-

sists of the Fourier transform of the window, reproduces at the frequencies ±ω0

and ±ω1 and scaled by the complex amplitudes of each complex exponential

that make up the signal.
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2.6.1 The Effects of Windowing

There are two main primary effects on the spectrum as a result of applying a

window function to the signal [79,80,89].

Spectral Spreading and Frequency resolution

The choice of window especially tapered window increases spectral spread-

ing, smearing, or broadening of the impulses in the theoretical Fourier

representation [79,80]. That is, it increases the bandwidth by an amount

of the window function. This reduces the ability to resolve sinusoidal

signals that are closely spaced in frequency. Spectral spreading can be

reduced by increasing the window size N . This is equivalent to increasing

the signal period T and therefore reduces the spectral component f (i.e

increases spectral or frequency resolution). Signal bandwidth is inversely

proportional to the signal duration (width). Thus, the wider the window,

the smaller is its bandwidth, and the smaller is the spectral spreading.

A wider window accepts more data and results in closer resolution or

approximation, therefore causing smaller distortion or smaller spectral

spreading, see [80]. Smaller window width results in poorer resolution

and therefore causes more spectral spreading (more distortion). How-

ever, the wider window may adversely cause Spectral leakage.

Spectral Leakage

Since the bandwidth of the window is not really bandlimited, then its

spectrum only reduces asymptotically to zero. This in turn causes the

spectrum or Fourier transform of the signal multiplied with the window to

asymptotically at the same rate rerduce to zero, even if the spectrum of

the signal may be bandlimited, see [79,80]. Therefore windowing causes

the spectrum of the signal to leak into the band where ideally it is ex-

pected to be zero. This effect is called Spectral Leakage. Spectral Leak-

age can be reduced by using a tapered window to truncate the signal

such as Hanning, Welch, Blackman and Kaiser-Bessel windows, see Ap-

pendix G. This will essentially reduce the amount of data allowed by the
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window. Therefore, there is a trade-off between the Spectral spreading

and Spectral Leakage in the choice of the right window to use. Both the

type of window and the window size are considered.

Windowing smears or broadens the impulses in the Fourier transform and

results in not defining the exact signal frequency sharply

For more details, a comparison of different windows and their characteris-

tics are presented in Appendix G. The choice of the application of a window

depends on the compared characteristics.

2.7 Chapter Two Summary

In this chapter we have described some of the conventional spectrum sensing

techniques that can be applied in communication systems. The basic imple-

mentation of some of them were explained while highlights were given of their

advantages, disadvantages and applications in communication systems.

From the drawbacks of the discussed spectrum sensing techniques and in

order to detect signals of very low SNR, cyclostationary feature detection can

be an option. However, the issue of receiver constraints which affects the de-

tection accuracy of cyclostationary spectrum sensing technique will have to be

considered. This research will focus on the development of the design and im-

plementation of wideband cyclostationary spectrum sensing method with em-

phasis on the reduction of the receiver constraints while achieving low compu-

tational complexity, high efficiency and robustness to noise.



Chapter 3

Cyclostationary Spectrum Sensing

In this chapter we will describe more in details the cyclostationary spectrum

sensing technique which is within the research interest of this work. As men-

tioned in the previous section, modulated signals have built-in periodic features

such as the sinewave component of the modulated signal (carrier), symbol rate

and modulation type as mentioned in [54]. These features can be used to de-

tect the presence of primary users as in [5], [55] and [33]. These components

have statistical characteristics which vary periodically and unlike noise whose

statistical distribution does not vary with time or said to be stationary. Also,

a process shows cyclostationarity if the Auto Correlation function (ACF) and

mean are periodic. Simply put, a cyclostationary signal is one which has cor-

relation or similarities between areas in its spectrum. It exhibits both periodic

and stationary characteristics. A Cyclostationary Feature Detector (CFD) capi-

talizes on these features of the modulated signal which exhibit cyclostationarity

to deliver good signal sensing. CFD is non-coherent because, in order to de-

tect the primary user’s signal, it does not require the prior knowledge of the

primary user’s modulated signal envelope. It considers the features of the re-

ceived signal and in this case, the exact types of signal envelopes are not

necessary even with the ability to detect the presence of the primary user’s

signal. However, it exhibits an element of coherency in detecting the types of

signal features. Coherency is involved, when it is necessary to classify the fea-

tures under detection, for example, the modulation type as discussed in [54].

44
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For the purpose of spectrum sensing applications, the subject of interest is the

ability to detect the presence of a primary user signal and not the classification

of features in the signal. The CFD can detect signals with low signal-to-noise

such as a spread spectrum signal. This makes cyclostationary feature detec-

tion unique.

3.1 Cyclic Autocorrelation Function and Cyclo-

stationarity

From [5, 90, 91], a process or signal x(t ) is said to have first-order periodicity

when it is periodic in t with a period T ,

x(t ) = x(t +T ) (3.1)

It can be represented using Fourier series coefficients as ,

x(t ) =
∞∑

k=−∞
ak e j kw0t , (3.2)

where

w0 = 2π

T
, (3.3)

is the fundamental frequency and Fourier coefficient ak , given as,

ak = 1

T

∫
T

x(t )e− j kw0t d t . (3.4)

Therefore, a process x(t ) is said to have first-order cyclostationarity, if its

mean Mx is periodic in t with a period T ,

Mx(t ) = Mx(t +T ) (3.5)

On the other hand, a process x(t ) is said to have second-order periodicity

if its quadratic transformation y(t ) (3.6) is periodic in t with a period T ,

y(t ) = x(t )2 (3.6)

Therefore, a process x(t ) exhibits second-order cyclostationarity in the wide-

sense when its mean and autocorrelation are periodic with some period, say,
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T , see [5, 90–92]. That is, second-order cyclostationarity exhibits both the

characteristics of first and second order periodicities. Autocorrelation function

(AF) of the signal x(t ) is the similarity with a time-lagged version of itself ,

i.e., x
(
t + τ

2

)
and x

(
t − τ

2

)
where τ is the relative time difference between two

instances of time t1 and t2. For an appropriate model, the signal is assumed

to be a cycloergodic process which means that the long run behaviour of the

time-averaged measurements or samples of the signal can be predicted from

the calculated expectations based on the probabilistic model of the process,

see [2,5,93].

Similarly, the probabilistic autocorrelation of the random process X , at two

time instances, t1 and t2 can be defined as the correlation of two random vari-

ables X (t1) and X (t2) and is expressed as,

Rx (t1, t2) = E [X (t1)X (t2)]

=
∫ ∞

−∞

∫ ∞

−∞
x1x2 fx(t1)x(t2)(x1, x2)d x1d x2

= lim
N→∞

1

2N +1

N∑
n=−N

x (t1 +nT ) x (t2 +nT )

= Rx (t ,τ) .

(3.7)

It follows as discussed in [4, 5, 90], that the autocorrelation function (AF)

for a signal x(t ) with periodic T in t is the mean of the lag products which is

synchronized to T as shown in (3.7)

Therefore, the autocorrelation function of the signal x(t ) can be expressed

in terms of the expected value E as used in [2] as,

Rx

(
t + τ

2
, t − τ

2

)
= E

[
x

(
t + τ

2

)
x

(
t − τ

2

)]
. (3.8)

A process exhibits second-order periodicity wide-sense cyclostationarity when

its mean and autocorrelation are periodic with some period, say, T , see [5,91,

92].

Autocorrelation Function can be represented by Fourier series as in (3.9)

Rx

(
t + τ

2
, t − τ

2

)
=∑

α

Rα
x (τ)e− j 2παt (3.9)
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for α over all integer multiples m of the fundamental frequency of periodicity 1
T0

i.e. α= m
T0

where α is the Fourier or cyclic frequency, T0 is the period and Rα
x (τ)

is the Fourier-series coefficient as discussed in [4].

The Fourier coefficient which is a function of the lag product τ is given as,

Rα
x (τ) = lim

T→∞
1

T

∫ T /2

−T /2
Rx

(
t + τ

2
, t − τ

2

)
e− j 2παt d t . (3.10)

, see [2,5,90,94]. This is a time-based Cyclic Autocorrelation Function (CAF)

which depends on the time-difference or lag parameter τ. The CAF computes

the correlation of the received signal with a delayed, frequency shifted, ver-

sion of itself.The cycle frequency or the frequency of autocorrelation is α =

m/T . The CAF Rα
x which is periodic with α becomes the conventional au-

tocorrelatiom function (CoAF) R0
x when α = 0 and represents the direct cur-

rent (dc) component of the lag-product waveform x (t +τ/2) x (t −τ/2) for each

value of τ where as Rα
x is the alternating current (ac) component corresponding

to sinewave frequency,α. The CAF at fundamental periodic frequency 1/T is

shown in (3.10). However, for a cyclostationary signal which has more than one

fundamental frequency or periodicity such as (1/T1, 1/T2, 1/T3, . . ., 1/Tn), α

will cover all integer multiples of all fundamental frequencies i.e (m1/T1, m2/T2,

m3/T3, . . ., mn/Tn).

It should be mentioned that the limit in (3.10) will be omitted if the signal

x(t ) has only one period. For an appropriate model, the signal is assumed to

be a cycloergodic process (limit is retained) and we can substitute (3.8) into

(3.10) to obtain the generalised Cyclic Autocorrelation Function (CAF)

Rα
x (τ) = lim

T→∞
1

T

∫
T

x
(
t + τ

2

)
x

(
t − τ

2

)
e− j 2παt d t . (3.11)

This results in representing the generalised non-conjugate Cyclic Autocorrela-

tion Function for a cyclostationary signal as,

Rα
x (τ) = lim

T→∞
1

T

∫
T

x
(
t + τ

2

)
x∗

(
t − τ

2

)
e− j 2παt d t . (3.12)

The expression of non-conjugate refers to the term on the left of (3.12). Simi-
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larly, the conjugate CAF is expressed as,

Rα
x∗ (τ) = lim

T→∞
1

T

∫
T

x
(
t + τ

2

)
x

(
t − τ

2

)
e− j 2παt d t . (3.13)

Notice that none of the factors on the right in (3.13) is conjugated as discussed

in [55, 95] except for the term on the left. The conjugation is to accommodate

complex-valued signals. A more detailed description for the CAF can be found

in Appendix A.

It should be mentioned that every cyclostationary process is an Asymptot-

ically Mean Stationary (AMS) process, see [5, 93, 96]. These are processes

that have time-variant probabilistic parameters such as mean and autocorre-

lation and are not identically zero. That is the time-variant distributions have

asymptotic behaviour and in this case will not be exactly zero, see [96,97].

3.2 Spectral Correlation Function

The generalised CAF in (3.12) can be expressed as the conventional cross-

correlation of the two complex-valued frequency-shifted versions of x(t ) . It

can also be shown that periodicity in time-based autocorrelation can also be

observed in the frequency domain, see e.g [5]. According to Cyclic Wiener

relation, the time-based CAF can be expressed in the frequency domain by

the Fourier Transform of CAF (3.12) as,

Sαx ( f ) = F T
{
Rα

x (τ)
}= ∫ ∞

−∞
Rα

x (τ)e− j 2π f τdτ. (3.14)

It is called the cyclic spectrum, Spectral Correlation Function (SCF) or Cyclic

Spectral Density (CSD) function for a given cyclic frequency α. The Wiener re-

lationship is also called the Wiener-Khintchine theorem and it states the Fourier

transform relation between the conventional power spectral density and the au-

tocorrelation

S0
x( f ) = F T

{
R0

x(τ)
}= ∫ ∞

−∞
Rα

x (τ)e− j 2π f τdτ. (3.15)

where S0
x( f ) is the conventional power spectrum and R0

x(τ) is the conventional

autocorrelation function.
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It is shown in [2, 4, 5, 90, 98] that the spectral correlation function can be

measured by the limiting average of the cyclic periodogram which is defined

as,

IαT ( f ) = 1

T
XT

(
t , f + α

2

)
X ∗

T

(
t , f − α

2

)
. (3.16)

As the temporal correlation increases without bound, the spectral resolution

1/T ′ is allowed to decrease to zero. The limit SCF can be expressed as,

Sαx ( f ) = lim
1/T ′→0

lim
T→∞

1

T ′

∫ T ′/2

−T ′/2

1

T
XT

(
t , f + α

2

)
X ∗

T

(
t , f − α

2

)
dt (3.17)

where XT
(
t , f

)
is the short time Fourier transform or complex envelope of the

narrow-band spectral component of x(t ) with centre frequency f , bandwidth

on the order of 1/T with T as the signal period for the observation time T ′. The

complex envelope is expressed as,

XT (t , f ) =
∫ t+T /2

t−T /2
x(u)e− j 2π f udu. (3.18)

The limit SCF in (3.17) is also known as temporally or time smoothed cyclic

periodogram. Therefore the SCF (3.17) shows the limit as spectral resolution

1/T ′ becomes infinitesimal (i.e 1/T ′ → 0) of the limit of the temporal correlation

(i.e T →∞) of the two spectral components of x(t ) with frequencies f +α/2 and

f −α/2.

The SCF in (3.17) is a function in 2-dimensional (2-D) representation of sig-

nal frequency f and cyclic frequency α. When α = 0 it becomes the conven-

tional Power Spectral Density Function (PSDF), which is the spectral density of

average power in time domain [2]. However, for α 6= 0, it shows that Sαx ( f ) is the

density of spectral correlation, that is, the density of correlation between spec-

tral components at the frequencies f +α/2 and f −α/2. It then follows that a

signal that has periodic autocorrelation is cyclostationary and will characteristi-

cally have spectral correlation. A cyclostationary signal has peaks at the cyclic

frequencies [96], [4] and [54]. In summary, Fourier analysis of the autocorre-

lation function of the cyclostationary signal produces the cyclic autocorrelation

function. Then, Fourier transform of the cyclic autocorrelation function results

in the Spectral Correlation Function or Spectral Density Function (SDF) which
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is the basis for cyclostationary feature detection. More detailed descriptions

can be respectively found in Appendices A, B and C for the CAF, SCF and

SCF of Phase-Shift Keying signals such as Binary Phase Shift Keying (BPSK),

Quadrature PSK (QPSK) and Offset QPSK (OQPSK) signals. As previously

mentioned, the peaks of cyclostationary signals occur at α and in relation to

the modulation type as shown in Table 3.1 as discussed in [1,3,54,55,95].

Table 3.1: Cyclic features for some modulation types [1–5].

Modulation type Peaks at (α, f )

BPSK
( 1

T , fc
)

,
(
2 fc ,0

)
,
(
2 fc ± 1

T ,0
)

QPSK
( 1

T , fc
)

MSK
( 1

T , fc
)

,
(
2 fc ± 1

2T ,0
)

QAM
( 1

T , fc
)

AM
(
2 fc ,0

)
In Table 3.1, α is the cyclic frequency, f is the spectral frequency at which

there is correlation while fc is the carrier signal. The cyclic frequency α is a

function of the symbol rate and carrier frequency. The conjugate CAF is used to

detect the features at a signal’s symbol rate
( 1

T

)
while the non-conjugate is used

to detect features at the carrier frequency and is applicable in cyclostationary

feature detection (CFD) as discussed in [2,99].

3.3 Cyclostationary Spectrum Sensing model

A Cyclostationary Spectrum Sensing (CSS) or Cyclostationary Feature Detec-

tion (CFD) model operates on the principles of cyclostationarity, correlation

and detection. As discussed earlier, the spectral correlation density function

(SCDF) shows the variations of intensities of the spectral components (peaks)

in the frequency spectrum which distinguishes points of spectral energy con-

centration of the modulated signals from noise where the SCDF is just flat.

This character of spectral redundancy makes it possible for signal selectivity

in CFD. As previously mentioned in sections 3.1 and 3.2, cyclic spectrum do-
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main preserves the signal’s features such as carrier frequency and cyclic fre-

quency, therefore the overlapping features in the power spectrum density are

non-overlapping features in the cyclic spectrum domain which is the domain of

cyclostationary feature detection, see [56], [100].

It should be mentioned that Cyclostationary Spectrum Sensing functions

at the receiver front end of a cognitive radio system. The blcock diagram of

the conventional CFD is shown in Fig. (3.1 with all the associated blocks,

see [101,102].

Figure 3.1: Conventional Cyclostationary Feature Detector.

The received signal x(t ) is sampled and converted to a discrete data set

in the Analogue-to-Digital Converter (ADC). The Hanning window produces a

finite data set to reduce spectral leakage inherent with the fast Fourier Trans-

form (FFT) especially when the signal is not completely periodic as discussed

in [87]. The FFT decomposes the signal into component frequencies or spec-

tral components which are then correlated at
(

f +α, f −α)
to give the Spectral

correlation function Sαx
(

f
)
. This is averaged over the period Tacq (selected time

period) to get the peaks and then passed through a detection algorithm that

compares the peaks with a reference threshold.

3.3.1 Feature Detection

The detection of the presence or absence of signals is a function of the periodic

peaks in the considered spectrum. These peaks distinguish signal from noise

which has flat PSD and no spectral peaks, see [103]. In a low SNR condition,

detection will still occur because of the spectral peaks or redundancy due to the

periodicity in the signal which will be extracted during correlation. As discussed

in [104, 105], the detection algorithm compares the peaks of a Test Statistic

T S of the spectral correlation function density against a reference threshold λ
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to determine the presence or absence of signal at the spectrum frequency f

and cyclic frequency α of the received signal, i.e

|TS| <λ, for when the signal is absent, H0; (3.19)

and

|TS| ≥λ, for when the signal is present, H1. (3.20)

3.4 Narrowband Spectrum Sensing

In Narrowband Spectrum Sensing the signal band of interest is usually small.

The channel frequency response or characteristics are considered to be flat

within the band. Gardner in his papers [2,55] first gave the fundamental frame-

work for feature detection to overcome the problems of unknown and varying

levels of noise and interference activity. Further work by [106] on CFD dealt

with multi-cycle detection [91, 99, 107, 108]. In [109], a blind narrowband cy-

clostationary feature detector based on a sparsity hypothesis was presented.

Further works in [110–112] elaborated on narrowband sensing. Universal

Software Radio Peripheral (USRP) with GNU Radio was used in [111] while

in [112] the PU signal parameters were estimated. In [113], Cyclic Spectrum

leakage due to FFT was exploited. However, spectral leakage can be reduced

by windowing as discussed in [86] and [87]. The sensitivity of cyclic fre-

quency mismatch was discussed in [58] in a single cycle carrier narrowband

CFD. Sampling clock offset in narrowband single cycle CFD was studied in

[114–116]. The research in [113, 117] looked at blind narrowband CFD. Fre-

quency Shift (FRESH) Filters in CSS was used in [91,118] and applied Cycle

frequency Domain Profile (CDP) to detect the signals. However, narrowband

spectrum sensing although applicable in lower frequency spectrum is not very

useful in communications where the band is often wide.
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3.5 Wideband Spectrum Sensing

Wideband spectrum sensing (WSS) requires the sampling of a received signal

at very high rates usually exceeding 1 Giga symbols per second (GSps) and

which is very difficult to realize by state of art analogue to digital converters

(ADCs) as discussed in [119,120]. Note that the term wideband is used to re-

spresent wideband channel which describes a channel with multiple frequency

carriers. WSS is defined in [120] as simultaneous sensing of a wider range

of frequencies beyond the single user’s bandwidth such as Satellite C Band

downlink (3.4-4.2 GHz). It increases the probability of finding unused frequen-

cies. WSS can be achieved using Wideband RF Front-End (WBRFF) or multi-

channel Narrowband RF Front-End (NBRFF). WBRFF covers a wider range of

frequencies at a time while multi-channel NBRFF handles a single sub-band

at a time which is aggregated to equate a wider range. Sensing with NBRFF

(multi-channel) involves adjusting or tuning the local oscillator in the down-

conversion chain to respond to different frequencies which are consequently

sensed. In [121], multiple narrowband channels are sensed simultaneously

and aggregated to give the total available channels for transmission. On the

other hand, WBRFF down-converts to a baseband signal. The down-converted

baseband signal is passed through a BandPass Filter (BPF). Sensing a wide-

band spectrum entails changing the filtering done by the BPF whilst keeping

the RF Front-end constant, see [120].

There are contributions in implementing WSS in cooperative CR networks

with prior knowledge of the PU signal [122] using generalized likelihood ra-

tio detector where emphasis was on knowing some modulation parameters

of the PU signal. More cooperative approaches can be found in [123, 124].

The use of Spectral Analysis of Randomized Sampling (SARS) in wideband

sensing was investigated in [125]. The Spectral Analysis tool used was the

Random Sampling on Grid (RSG) which utilizes a sampling rate lower than

the conventional Nyquist rate. It is affected with performance degradation due

to the non-stationary nature of a communication signal. Further works as in
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[126], adopted Complex valued Power Spectrum Density (CPSD) using a sub-

Nyquist rate. It considers the signal to be a complex value rather than as a

magnitude as is usually done in energy detection. It was not clear how this

method would perform with a noise-like Spread Spectrum signal. In the same

vein, [127] adopted a wideband spectrum sensing approach based on a time-

domain coprime sampling and sub-band-bin energy detector. This relied on the

energy detection of PSD obtained from the Fourier transform of the estimated

autocorrelation of the samples obtained from time-based coprime sampling. In

[128], the combination of Energy and Cyclostationary Feature Detectors was

studied to blindly detect Orthogonal Frequency-Division Multiplexing (OFDM)

signals.

3.5.1 Non-Blind Wideband Cyclostationary Sensing

Spectrum sensing is said to be non-blind when some known parameters of

the PU signal are applied during a sensing process. Conventionally, detec-

tion processes involve the detection of a PU signal relying on the signal power

which obviously are impaired in the face of a low signal to noise (SNR) spec-

trum which may be due to e.g. multipath, spread spectrum and interference.

Non-Blind Wideband Cyclostationary Sensing (NWCS) detects the presence

of the signal through the features. This makes it more robust to noise and

low SNR. This has been studied using different methods. Sub-Nyquist sam-

ples were adopted in [3] to implement Non-blind Wideband Cyclostationary

Sensing (NBWCS) assuming known modulation parameters. The use of a low

complexity approach for reconstructing the Nyquist Spectral Correlation Func-

tion (SCF) from the sub-Nyquist samples was researched in [129]. The paper

optimized the sparsity of SCF with known signal parameters. Partial intercep-

tion of a signal was used in [130] in conjunction with some unknown features

for the rest of the band. A new approach in [1] combined CFD with Com-

pressive Signal Processing (CSP) without the need for signal reconstruction.

The prior knowledge of some of the parameters of the received signal helps to
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produce a more perfect detection of the signals considering the sensitivity and

importance of spectrum sensing in a cognitive radio system.

3.5.2 Blind Wideband Cyclostationary Feature Sensing

Blind Wideband Cyclostationary Spectrum Sensing (BWCSS) performs spec-

trum sensing with no knowledge of the signal. The first study on BWCSS was

in [131] where the recovery of a 2D Cyclic Spectrum of the compressed sam-

ples was estimated using L1 −Norm minimization. The spectrum occupancy

testing was on a band-by-band basis to reduce computational complexity at

the expense of increased detection time. It should be mentioned that most

of the works in blind cyclostatioanry detection considered compressed sam-

pling or sensing. This is because blind detection involves the estimation of

spectral holes or vanacies without going through the full spectrum, therefore,

fewer number of samples can be appropriate. Following this was a study in

[132] that used Jittered Random Sampling (JRS) to get the compressed sam-

ples before applying L1−Norm minimization to recover the 2D Cyclic Spectrum

of the compressed samples. Energy Detection and Cyclostationary Feature

Detector methods were combined in [133]. This method although blind in-

volved more samples as there was no compression. Further work adopted

compressed sensing as in [134]. This approach performs better with a limited

number of samples. Sampling Clock Offset (SCO) and Cyclic Frequency Off-

set (CFO) which may arise as a result of frequency offsets, jitter and incorrect

knowledge of the sampling rate were not considered. Also, [135] quantified the

improvement in energy efficiency of Cyclostationary Feature Detection in CR

by modifying the narrowband compressed sensing method already adopted

in [110] by using Basis Pursuit (BP) rather than Orthogonal Matching Pursuit

(OMP). In [136], multiple receive antennas were adopted. From these works,

the success of blind Cyclostationary wideband sensing depends on the num-

ber of samples and the accuracy of estimation to achieve maximum detection

and reduce false alarms.
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3.6 Cyclic Frequency and Sampling Clock Offsets

Cyclostationary Feature Detectors require the knowledge of both the carrier

frequency fc and symbol rate 1/T for correctly sensing the signal. The im-

perfect knowledge of them will result in constraints or challenges or impair-

ments which will impact on the performance of the CFD. These constraints are

the Cyclic Frequency Offset (CFO) and Sampling Clock Offset (SCO). CFO

is caused by the imperfect knowledge of the carrier frequency, local oscillator

mismatch or Doppler shifts as discussed in [57, 81]. Zeng in his paper [58] in-

cluded transmitter clock error in addition to the oscillator error. It is known that

any clock or oscillator could produce errors. The transmitter clock will produce

a symbol period T with offset and the oscillator produces a carrier frequency

fc with offsets due to the error of oscillation. At the receiver, these errors of T

and fc will be repeated by the receiver clock and oscillator. These will affect

the cyclic frequency α which is a function of the symbol rate 1/T and for some

modulation types is also a function of the carrier frequency multiples, i.e. 2 fc

as shown in table 3.1. Let the CFO be represented by ∆α. Given that,

α′ =α× (1+∆α) (3.21)

where α′ and α are the actual and ideal cyclic frequencies at the Receiver and

transmitter respectively. When ∆α is zero, then the actual and ideal cyclic fre-

quencies are the same. Zeng in his paper [58] showed that in the presence of

a non-zero CFO the performance of the CFD was degraded and was not im-

proved even by increasing the number of samples for the detection. However,

the solution to the problem of CFO was not presented in this paper.

Sampling Clock Offset (SCO) occurs from the frequency error produced by

the oscillator affecting the sampling period Ts at the Analogue to Digital (A/D)

stage of the receiver as discussed in [116]. Sampling frequency or rate 1/Ts

is often in multiples of the symbol rate 1/T . Therefore, imperfect knowledge of

the symbol rates at the Analogue to Digital (A/D) stage of the receiver results

in a SCO δ which in turn affects the sampling rate 1/Ts. SCO can be stated
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as,

T ′
s = (1+δ)×Ts (3.22)

where T ′
s is the actual sampling period used at the receiver, Ts is the ideal

sampling period with good knowledge of the symbol rate at the transmitter.

SCO will result in a drift in sampling times or points within the symbol time

and this time-shift varies as the number of samples increases. A constant

time offset produces a phase offset in both frequency and SCF domain as

mentioned in [137].

The impairments associated with A/D stage were discussed in [114]. Arash

Zahedi-Ghasabeh in his papers [116], [138] presented a method to compen-

sate for performance degradations in the presence of SCO and CFO for a pilot-

aided Cyclostationary detector for Orthogonal Frequency Division Multiplexing

(OFDM). Rebeiz in his paper [81], proposed a new multi-frame test statistic that

reduces the degradation due to cyclic frequency offsets and sampling clock

offset using the discrete Fourier transform (DFT) and cyclic autocorrelation

function. He developed an offline optimization framework and determined the

best frame length that maximizes the average detection performance of the

proposed cyclostationary detection method given the statistical distributions of

the receiver impairments. This was also demonstrated in a Ricean channel.

However, there are some gaps that call for more research in terms of pro-

viding a closer guide to hardware realisation. It was not clearly shown in that

work how the approach offers the much needed reduction in computational

complexity and improvement in efficiency in terms of the number of samples

required for effective detection. Computational complexity should also be ex-

tended to the Fast Fourier Transform (FFT) which is used in practice. This has

not been explored to the best of the author’s knowledge.

There are no detection algorithms associated with the research either generic

or conventional that are designed to make it easier to serve as a hardware or

practical implementation guide. Algorithms are needed to provide systematic

steps necessary for the practical realisation of e.g frame length for other sam-

ple sets outside the maximum fixed 5000 samples that was the choice of the
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work in [81]. Cyclostationary Feature Detectors should also be able to show

more robustness to noise at values of CFO or SCO up to 0.01. A more re-

cent work used complex exponential basis model to reduce CFO only through

the estimation of the Doppler frequency shift which could cause the CFO in

cognitive vehicle, see [139].

In order to address the problems mentioned above, we propose a multi-slot

wideband cyclostationary feature detection with test statistics that will be anal-

ysed using the Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT)

and Spectral Correlation Function (SCF). This will enable us to operate in the

domain of computation and perform analysis closer to practical realisation. We

will derive recommended FFT sizes, slot sizes, number of slots that will offer

low computational complexity, efficiency, low computational cost at low signal-

to-noise ratios. Consideration will be given to the application of this model in

order to reduce the effects of CFO and SCO and demonstrate its effectiveness

in a Ricean channel. A Ricean channel is chosen because of its bi-variate nor-

mal random characteristic and non-zero mean. It is applicable to SCF which is

a function of cyclic frequency and spectrum frequency with a non-zero mean.

This will be followed with generic optimization and detection algorithms that

enhance a hardware implementation. To the best of our knowledge there has

not been any work that looked into the use of small FFTs and slot sizes to

reduce the effects of SCO and CFO. Furthermore, there is a need to develop

algorithms for the detection and optimization, at low computational complexity,

to help make a practical realisation more possible.

3.7 Energy Detection and Cyclostationary Feature

Detection in Simulink

A Simulink-based experiment was developed to compare the energy detection

in Fig. 3.2 with the cyclostationary feature detection in Fig. 3.3 and the results

shown in Fig. 3.4. Figure 3.2 shows the arrangement of Simulink blocks for the
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implementation of energy detection model. The Random Integer Generator

(RIG) block randomly generates data. This is fed into the Buffer which con-

verts it to frames. M-PSK Baseband Modulator produces QPSK output of the

input to the Raised Cosine Transmit Filter (RCTF). The RCTF output is added

to noise from the Gaussian Noise Generator (GNG). The resultant noisy signal

is fed to the Hanning Window block which filters through the wanted band. A

Welch Periodogram (equivalent to FFT, magnitude squared and average) was

set to produce mean square output of the signal, equivalent to its energy. The

MinMax outputs maximum values only. This is necessary since detection is

based on peaks. The Threshold compares the input with the operand inside

the block and outputs digit 1 if condition is true otherwise digit 0. The Detector

output on Threshold switch can be monitored on Scope as 1 or 0. Adjusting the

RCTF and GNG will alter the signal-to-noise (SNR) received at the Raised Co-

sine Receive Filter (TCRF). The combination of RCTF and TCRF is equivalent

to Up and Down conversion process in a real communication channel.

Figure 3.2: Energy Detection in Simulink

The Cyclostationary Feature Detection in Fig. 3.3 is similar to the previous

Energy Detector except with the additions of FFT, Autocorrelation Function

(ACF), Absolute and Average. These additional blocks are necessary for the
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implementation of ACF to produce the Spectral Correlation function of the sig-

nal. The output of the Threshold switch can be monitored on Scope as 1 or

0.

Figure 3.3: Cyclostationary Feature Detector in Simulink

The results of the tests for both ED (in blue colur) and CFD (in orange

colour) were monitored on the Scope and presented in Fig. 3.4. The graph

shows that at low SNR below -1.3 dB, the Energy Detection (blue) does not

recognize the presence of signal contrary to CFD result (orange). The CFD is

able to detect the signal down to -22 dB. This demonstrates that CFD is more

robust to noise than ED and this makes the CFD better than ED.
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Figure 3.4: Energy and Cyclostationary Feature Detectors comparison

Note that digit 1 in Fig. 3.4 when expressed in terms of statistical probability

of detection is a value between 0 and 1 (exclusive).

3.8 Chapter Three Summary

In this chapter the descriptions of the principles or processes of the cyclosta-

tionary spectrum sensing method were given in more details. Explanations and

mathematical details were given for the fundamental principles of cyclic auto-

correlation, spectral correlation functions and cyclic features such as cyclic

frequency, carrier frequency and modulation types. The applications of the cy-

clostationary spectrum sensing in both narrowband and wideband were also

considered.

The impact of receiver constraints such as sampling clock offset and cyclic

frequency offset were discussed. The adaptation of cyclostationary spec-

trum sensing with and without prior knowledge were discussed. Also, the ad-

vantages and dis-advantages of cyclostationary spectrum sensing over other

spectrum sensing methods were discussed.

The cyclostationary feature detection was compared with the optimal en-

ergy detection. It was found to show more robustness to noise than the energy

detection by detecting signals of low-signal-to-noise values.



Chapter 4

Multi-slot Wideband

Cyclostationary Feature Detector

Consideration will be given to a wideband radio frequency (RF) spectrum of

multiple spectrally non-overlapping signals. In the context of spectrum sens-

ing for Cognitive Radio (CR) systems, interest will be on the processing of a

received RF wideband signal or a wideband channel of bandwidth B centred

at any carrier frequency fc and down-converted or demodulated to baseband

of bandwidth B . Note that the term wideband signal or wideband channel rep-

resents a signal or channel with multiple frequency carriers. Downconversion

to baseband is important in order to meet the requirement of Analogue to Dig-

ital Conversion (ADC) stage and also because spectral correlation between

baseband spectral components is high compared with bandpass as supported

in [96]. This analysis will also apply to other channel bandwidths. Given the

time and power limitations in the sensing stage, it is important to consider a

limited sensing time of length Tacq during which the radio receiver acquires a

total number of NB complex samples at a sampling rate fs and symbol period

T . The objective is to implement an efficient low complexity model that detects

the presence of the signals in the wideband spectrum. Spectrum sensing takes

the discrete samples of the wideband signal and outputs the signals occupying

the wideband channel. It should be mentioned that the work done in [81] using

a multi-frame cyclic autocorrelation function (CAF) statistic did not consider the

62
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size of the FFT in arriving at the best possible frame size which is relevant in

determining the computational complexity and efficiency of the approach. By

adopting a frequency domain test statistic, spectral correlation function (SCF)

it is possible to associate the length of the FFT in samples and arrive at more

implementable conclusions concerning the sizes and numbers of FFT and slot.

In addition, our analysis is focused on a more practical approach.

4.1 System Model

Let us represent the wideband signal s(t ) that occupies the wideband spectrum

or channel over a time variable t ∈ [0,Tacq] as su(t ) ∀u ∈ [1, ...,U] consisting of

U Primary User (PU) signals with residual carrier frequencies fcu as was used

in [140]. We propose a wideband multi-slot window-based Fast Fourier Trans-

form (FFT) Cyclostationary Feature Detection (CFD) model that detects the

wideband signal su(t ) by correlating in the frequency domain with the spectral

correlation function (SCF) as defined in (3.17).

Figure 4.1: Wideband Multi-slot Cyclostationary Feature Detector.

In Fig. 4.1, the received high frequency wideband signal in GHz is first

down-converted to baseband in MHz and sampled at Nyquist rate to give a

complex-valued sequence of length of samples NB . This sequence of complex

samples is segmented into non-overlapping blocks of N samples for correlation
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which in this research are called slots. The relationship can be stated as,

NB = Tacq

Ts

= P ×N

(4.1)

where Tacq, Ts , P and N are the total sensing or acquisition time for the wide-

band channel, the sampling period, the number of slots and samples per slot

respectively. Since we are detecting across the entire wideband channel after

it has been down-converted to baseband, the sampling period Ts is applicable

to the baseband channel being detected. Note that the entire down-converted

baseband channel is sampled at a single sampling rate. This is different from

a type of multi-channel wideband approach where the wideband is not down-

converted but first divided into individual channels. Each channel would then

need to be sampled with a different oscillator and detection applied to individual

signal bandwidths of interest which is not cost effective because channelization

occurs before the sampling. Also, the use of a window in the FFT computation

within the slots reduces spectral leakage as we sample through the baseband

channel, see section 2.6.1. As was described in section 2.5.1 and adopted

in [81, 140], we assume the received signal s(t ) is down-converted and sam-

pled with sampling period Ts giving a complex-valued discrete time signal as,

s (n) =
U∑

u=1
xu (n) (4.2)

and

xu (n) =
{ ∞∑

l=−∞
αu (lTu) pu (nTs − l Tu)

}
e j 2π fc u nTs +wu (n) (4.3)

where Tu, αu (lTu) and pu(nTs) are the symbol period, transmitted information

symbols and the pulse shaping filter of the uth transmitted signal respectively

while wu[n] is the complex AWGN in the band occupied by the uth transmitted

signal. Note that the transmitted information symbols with unit average power

is σ2
α; a pulse shape filter is pu(nTs) of unit energy; Signal to Noise Ratio

(SNR) is given by σ2
α/σ2

w = 1/σ2
w where σ2

w is the noise variance in the channel

occupied by the PU signal su.
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Applying a windowed Short-Time Fourier Transform (STFT) to the compu-

tation of the complex envelope in (3.18) and as the transform of length L slides

along the signal, it produces a number of down-converted spectral components

with approximate bandwidth 1/L given as,

X (L, f ) =
∞∑

n=−∞
x(n)w(n −L)e− j 2π f n (4.4)

where w(n) is a data tapering window of length L of the narrow-band spec-

tral component of the received discrete-time signal x(n) at the continuous fre-

quency f , see section 2.5.4 on STFT. Notice that time is discrete n while the

frequency is continuous f which makes it difficult to be computed. Therefore

for the purpose of computation, we will use the measurement of the spectral

correlation which is given by the limiting average of the cyclic periodogram

discussed in [103,141] and defined by,

Īα(n,k) = 1

L
XL

(
n,k + α

2

)
X ∗

L

(
n,k − α

2

)
(4.5)

where XL (n,k) is the L −point window-based FFT around the nth sample for

integer cyclic frequency α. It allows fine control over the spectral resolution of

the SCF estimate through the choice of window.

When the cyclic periodogram is applied in a slot of size N and as the

amount of processed data increases in the slot in a sensing time Tacq, the

average estimate of the non-conjugate SCF based on the received samples

for the p th slot from (4.5) becomes,

Sαx (k, p) = 1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
X ∗

L,p

(
n,k − α

2

)
(4.6)

Note that we assume that α is the integer multiples of 1/L, therefore the mul-

tiple cyclic periodograms given in (4.6) will converge without additional phase

compensation, see [141]. Note that AWGN is a widesense stationary (WSS)

process and exhibits no cyclic correlation and has no spectral features at α 6= 0,

see [103]. When we consider a multi-slot wideband channel and as the num-

ber of slots P of slot size N increases as the sensing time Tacq approaches

the maximum value, the estimate of the non-conjugate SCF for the wideband
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channel from (4.6) becomes,

S̄αx (k) = 1

P

P∑
p=1

(
1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
X ∗

L,p

(
n,k − α

2

))

= 1

P

P∑
p=1

Sαx (k, p)

R
{
S̄αx (k)

}=ℜ
{

1

P

P∑
p=1

(
1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
X ∗

L,p

(
n,k − α

2

))} (4.7)

where R
{
S̄αx (k)

}
is the non-conjugate multi-slot test statistic, denoted as TS1.

Note that R {.} denotes the real part of a complex expression or number. As the

sensing time Tacq is finite, P also has to be finite. It follows that the conjugate

multi-slot test statistic denoted as TS2 is given as,

R
{
S̄αx∗(k)

}=R{
1

P

P∑
p=1

(
1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
×XL,p

(
n,
α

2
−k

))}
(4.8)

and indicated by the absence of conjugation (*) in the right side of the equation

as discussed in [95, 141]. The multi-slot non-conjugate Test Statistic TS1 is

used to detect features at the carrier frequency as in Table 3.1 while the multi-

slot conjugate Test Statistic T S2 is used to detect the features at a signal’s

symbol rate 1/T as discussed in [95]. These test statistics in the frequency

domain will enable us to make analysis towards the reduction of computational

complexity by considering the sizes and numbers of FFTs and slots. This will

eventually lead to a reduced number of samples necessary for hardware im-

plementation of cyclostationary feature detection. The test statistics will make

it possible to consider the trade-off between frequency resolution and the num-

ber of samples for computation by using FFTs for analysis. In addition it leads

to the avoidance of the use of large FFTs which may result in processor bleed-

ing. To the best of our knowledge, these have not been similar considerations

of the analysis and implementation of the cyclostationary feature detection in-

volving the combinations FFT and slot sizes or the application of this combina-

tion in the reduction of computational complexity.

Equations (4.7) and (4.8) show that the TS is the correlation of the FFT of

the received wideband signal with itself as discussed in [26,105,137,142–144]
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and in this research the correlation is done in the down-converted baseband

channel on slot by slot basis. The Test Statistic results in a two-dimensional

(2-D) plot with cyclic frequency α and carrier frequency f of the SCF which can

also can be presented in a redone-dimensional (1-D) plot of SCF versus the

number of samples for the purpose of analysis. Recall that the objective is to

implement an efficient, low complexity robust wideband CFD. The introduction

of slots in effect is similar to reducing the total number of samples from NB to

N and the applicable FFTs will correlate between the separate small spectral

components across a smaller number of samples for the slot. This will en-

hance the probability of detecting across small spectral components instead of

detecting across large spectral components applicable without slots. However,

the frequency resolution of the FFT given as fs/L should also be considered in

the analysis for more efficient detection.

Note that the discrete form of the continuous time conventional SCF (3.17)

is a form of the proposed model Test Statistics in (4.7) and (4.8) where P in

(4.7) = 1 and N in (4.7) = N ′ in (3.17) and given as

S̀αx (k) = 1

N ′
N ′−1∑
n=0

1

L
XL

(
n,k + α

2

)
X ∗

L

(
n,k − α

2

)
R

{
S̀αx (k)

}=R{
1

N ′
N ′−1∑
n=0

1

L
XL

(
n,k + α

2

)
X ∗

L

(
n,k − α

2

)} (4.9)

where R
{
S̀αx (k)

}
is the discrete conventional SCF test statistic and N ′ is the total

samples available for the SCF without slots.

4.1.1 Threshold and Detection

Fundamentally, Additive White Gaussian Noise (AWGN) is a wide-sense sta-

tionary process and has no cyclic correlation of any order [103]. The Spectral

Correlation Function (SCF) of noise asymptotically has no spectral features at

α 6= 0. The SCF is expected to be flat in the presence of AWGN. From the

Central limit theorem (CLT) as in [104], [105], [145], [146] and [90], the SCF

Sαx ( f ) distribution is Gaussian and for the total samples N is given as,

• Sαx ( f ) ∼ N (µ0,σ2
0) under null hypothesis H0;
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• Sαx ( f ) ∼ N (µ1,σ2
1) under alternative hypothesis H1;

where µ(.) and σ2
(.) represent the mean and variance of the SCF at H0 and H1

respectively. For the two hypotheses H0 and H1, they are defined to correspond

to the following,

H0 : s(t ) = η(t ), for noise only (4.10)

and

H1 : s(t ) = x(t )+η(t ), for presence of signal and noise (4.11)

where η(t ) is Additive White Gaussian Noise (AWGN) and x(t ) is the re-

ceived signal without noise. A binary decision rule of the two hypotheses H1

and H0 will be adopted in order to detect the absence or presence of the sig-

nals after the computation of the spectral correlation of the process. The sec-

ond moment or power of the non-conjugate Test Statistic can be expressed

from (4.7) as,

E
[|T S1|2

]= E[
R

{∣∣S̄αx (n,k)
∣∣2

}]
(4.12)

We will also investigate the detection performance of the test statistic in a

Ricean channel environment. Considering the non-conjugate Test Statistic TS1

and given that the SCF has non-zero mean at H0, the TS1 will have Ricean

distribution over an AWGN channel. Let λ be the selected threshold that is

approximately at the level of the test statistic magnitude at noise only condition

H0 and gives a Constant False Alarm Rate (CFAR) during the detection. Since

a cyclostationary feature detector (CFD) collects the energy of the received

signal at a given cyclic frequency α corresponding to the modulation type, the

power of the cyclic feature determines the detection performance of the de-

tector. The energy of the received signal is concentrated at α. Given that the

second moment of the generalized SCF corresponds to the power of the cyclic

feature, the analysis of the detection performance in a Ricean channel will be

done using the non-conjugate second moment in (4.12).

It is mathematically intractable to the best of the author’s knowledge, to

find the threshold λ for the Probability of False Alarm Pfa and Probability of



4.1. System Model 69

Detection Pd for Cyclostationary feature detector due to the limited knowledge

about the received signal as discussed in [3], Monte Carlo simulations will

be used to evaluate the performance and identify the optimal threshold that

gives Constant False Alarm Rate (CFAR) as was also adopted with other Test

Statistics in [3], [143], [104], [106], [147]. Since CFD is robust to noise, it

makes sense to select the threshold level that is approximately at the level of

the test statistic magnitude at noise only condition H0. The non-conjugate Test

Statistic will then be compared against the detection threshold to determine

the probability of false alarm and probability of detection of the signal during

the 103 Monte Carlo iterations as used in [144] to give,

Pfa = Prob{T S1 >λ | H0} , for when the signal is absent, H0; (4.13)

and

Pd = Pr ob {T S1 >λ | H1} , for when the signal is present,H1. (4.14)

4.1.1.1 Detection Algorithm

The detection algorithm can be summarized as follow. Note that this algorithm

is able to quit at any time a signal is detected. If multiple bands are being

detected then the algorithm can continue until all bands have been searched.

Algorithm 1 Algorithm for the Detection Process

1: Inputs: FFT Size L, slot size N , slot number P , Test statistic T S1 and

Threshold λ .

2: Output: |S| = Magnitude of T S1 simulation

3: Select N , P , L,

4: for p = 0 to P-1 do

5: Run simulation with T S1, N , P and L.

6: if |S| ≥ λ then
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7: Signal is present.

8: Therefore exit the algorithm.

9: else

10: signal is absent.

11: end if

12: end for

4.1.2 The Means and Variances of the Test Statistic TS1 at

both H0 and H1

As mentioned in section 4.1.1 in order to investigate the detection performance

in a Ricean channel, the mean and variance at both H0 and H1 will be es-

tablished prior to the calculation of the probability of false alarm Pfa and the

probability of detection Pd. The mean at H1 is expressed as,

µ1 = E[S̄αx (k)]. (4.15)

The test statistic at H0 can be expressed from (4.7) as,

R
{

S̄αη (k)
}
=R

{
1

P

P∑
p=1

(
1

N

N−1∑
n=0

1

L
Xη,L,p

(
n,k + α

2

)
×X ∗

η,L,p

(
n,k − α

2

))}
(4.16)

where η is the notation for noise. It then follows that the mean at H0 and H1

from (4.16) and (4.7) are given as,

µ0 =R
{

S̄αη (k)
}

(4.17)

and

µ1 =R
{
S̄αx (k)

}
(4.18)

respectively. Similarly, the mean for signal only (not H1) µs can be derived from

(4.17) and ( 4.18) as,

µs =µ1 −µ0. (4.19)

The second order moment of the non-conjugate SCF for the multi-slot test

statistic at H1 can be expressed from (4.6) as,

E
[
R

{{
Sαx (k, p)

}2
}]

= E
[
R

{{
1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
X ∗

L,p

(
n,k − α

2

)}2}]
. (4.20)
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Following the expression of variance as discussed in [148, 149] for different

test statistics, the variance at H1 can be given from (4.20) and (4.7) as,

σ2
1 = E

[
R

{{
Sαx (k, p)

}2
}]

−{
E
[
R

{
S̄αx (k)

}]}2 . (4.21)

Similarly, from (4.20) and (4.21), the second order moment and variance at H0

can be expressed as,

E

[
R

{{
Sαη (k, p)

}2
}]

= 1

P

P∑
p=1

R

{{
Sαη (k, p)

}2
}

(4.22)

and

σ2
0 = E

[
R

{{
Sαη (k, p)

}2
}]

−
{
E
[
R

{
S̄αη (k)

}]}2
(4.23)

respectively. The variance at signal only σ2
s can be derived from (4.21) and

(4.23) as,

σ2
s =σ2

1 −σ2
0. (4.24)

4.1.3 Probability of Detection and Probability of False Alarm

As stated in section 4.1.1 since the SCF has non-zero mean at H0, the TS1

will have Ricean distribution over an AWGN channel as was used in [81]. The

Ricean parameters can be estimated using moments and variances of the vari-

ables as was discussed in [149–152] for different test statistics. Therefore, we

will use the moments and variances for the test statistic already derived in the

previous section 4.1.2. We will use these parameters to express both the prob-

ability of false alarm and probability of detection with the generalized Marcum

Q function as was discussed in [145,150,153,154] for different test statistics.

Therefore, the probability of false alarm Pfa at the detection threshold λ can be

expressed as,

Pfa = Prob{T S1 >λ | H0} =Q
(
µ0

σ0
,
λ

σ0

)
, (4.25)

where Q(.), σ0 and µ0 are the generalized Marcum-Q function, noise deviation

and mean of the test statistic at noise only. (4.17). Under H1 the Ricean

parameters can be estimated as,

µ1 =
√
µ2

s +µ2
0 (4.26)
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and

σ2
1 =

σ2
s

2
+ σ2

0

2
(4.27)

where σ2
s and σ2

0 have already been derived in (4.24) and (4.23). From where,

σ1 =
√
σ2

s

2
+ σ2

0

2
. (4.28)

Note that σ2
1 is from the conventional Ricean parameter 2σ2. Therefore, the

expression for the probability of detection can be given as,

Pd = Pr ob {T S1 >λ | H1} =Q
(
µ1

σ1
,
λ

σ1

)
(4.29)

where µ1 and σ1 are the mean and deviation of TS1 at signal plus noise H1 as

derived above.

4.1.4 Frequency and Time Resolutions trade-off

Cyclic frequency α is a function of symbol rate 1/T and signal frequency f while

the cyclic frequency resolution ∆α is determined by the windowed FFT size L

and in a multi-slot wideband by the combination of slot size N and number of

slots P . It should be mentioned that in this research, the FFTs are implemented

as windowed FFTs, but for simplicity will be referred as FFT. Similarly, FFT

frequency resolution ∆ f is a function of the FFT size L and sampling frequency

fs as discusssed in [82] and can be expressed for an L-point FFT as,

∆ f =
1

T
= fs

L
= 1

LTs
(4.30)

where Ts , L, fs and T are the sampling period, FFT length in samples, sam-

pling rate and signal period respectively. Small FFTs require less points for

computation and offer lower complexity according to the complexity formula

given conventionally in [155,156] as L log L. This takes less processing power

and increases the temporal resolution ∆t , but reduces the frequency resolu-

tion ∆ f (4.30) as discussed in section 2.6.1. This will result in better efficiency.

However, the increase in time resolution reduces the frequency resolution ∆ f
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which is made better with larger FFTs (4.30) as discussed in section 2.6.1.

There is obviously a trade-off between ∆t and ∆ f which are needed for effi-

cient and low cost spectrum sensing. The selection of larger L will mean to

take more samples to arrive at the frequency domain result, which also means

that more samples will be taken for a longer time, loosing temporal resolution.

This makes it more important to find the trade-off between ∆ f and ∆t by which

an FFT size can be selected. The total number of FFTs required for one slot of

size N can be seen to be,

M = N

L
. (4.31)

Since a Cyclostationary Feature Detector (CFD) collects the energy of the

received signal at a given cyclic frequency α according to the modulation type,

the power of the cyclic feature determines the detection performance of the

detector since the energy of the received signal is concentrated at α. Given

that the second moment of the generalized SCF corresponds to the power of

the cyclic feature, analysis of the detection performance will be done using the

non-conjugate second moment in (4.12).

The issue of spectrum sensing in cognitive radio and the use of FFT for

correlation has much practical significance and is the subject of the next sec-

tion. One of the drawbacks of cyclostationary spectrum sensing is the use of a

large number of samples for analysis. Among the objectives of this research is

to statistically analyse a model that utilises fewer samples for correlation and

detection of individual channels in a wideband scenario.

4.2 Signal to Noise Ratio of the Test Statistics

The SNR for the test statistic SNRTS can be defined as the ratio of the test

statistic power under the signal only condition at a given cyclic frequency α, to

that under noise only Ho and expressed from (4.20) and (4.22 ) as,

SNRTS =
E
[
R

{{
Sαx (k,p)

}2
}]

E
[
R

{{
Sαη (k,p)

}2
}] . (4.32)
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For the SNRTS, the discrete variable x represents the signal only (signal without

noise) condition.

4.3 Results and Discussion

In this section, consideration was given to signals of linear modulation types

such as QPSK and BPSK whose features were discussed in [1], [2], [3] and

presented in this report in Table 3.1. Mathworks Matlab programming soft-

ware application was used for simulations. This software has been extensively

used in academic research, particularly for the fields of signal processing and

communication. It is user-friendly and can be adapted for use in many real

world communication systems scenarios. Matlab codes were used more ex-

tensively in analysing and testing the proposed models. The results obtained

were quantified to demonstrate the implementation of the research objectives.

These included figures, graphs and tables. The results were obtained ana-

lytically and through simulations using Monte Carlo iterations, [157] in order

to determine the sizes of FFT and slot that will give efficient and low com-

plexity detection. The simulations were based on the proposed non-conjugate

multi-slot test statistic TS1 in (4.7), (4.13), (4.14), discrete conventional SCF in

(4.9), energy detection test statistic in (2.2), while the analytical results were

based on second moment of TS1 in (4.12), proposed non-conjugate multi-slot

test statistic TS1 in (4.7), probability of false alarm Pfa in (4.25) and probability

of detection Pd in (4.29). The section provides some results showing the per-

formance of TS1 to correlate the spectral components of the waveforms in the

wideband and to detect the frequencies using different slot sizes N and Fast

Fourier transform (FFT) sizes L.

It should be mentioned that all the plots involving the probability of detection

in this section asymptotically approach the maximum detection mark of 1. It

follows that as a cyclostationary process, its mean and autocorrelation are

asymptotically not zero, see [5,96,97] and section 3.1.
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4.3.1 Verifications of the Effects of Slot Size N and FFT size

L on Probability of Detection under noiseless condi-

tions

Some of the simulation parameters for this subsection are listed in Table 4.1.

In order to satisfy Nyquist criterion, sampling was done at 4× bandwidth (B) of

the carrier frequency fc of the analytical signal.

Table 4.1: Simulation Parameters with QPSK signal.

Variables Specifications

Frequency fc (MHz) 2.5, 5

Modulation type QPSK

Channel Bandwidth B (MHz) 2.5, 5

Sampling rate fs 4×B

Slot size N (samples) 128, 256, 512

Number of slots P (samples) 8, 16

FFT size L (samples) 4, 8, 16, 32, 64, 128

Sensing time Tacq 2×10−4

Total samples NB 2048, 4096

SNR -5dB

The effects of varying the slot size N and FFT size L were investigated by

considering their probabilities of detection (4.14) in terms of number of sam-

ples (sample size) using 103 Monte Carlo iterations. The results are cumula-

tively displayed following the correlation and detection done on a per slot basis.

For the purpose of correlation, the FFTs must be in the powers of 2. In Fig.

4.2, a 5 MHz QPSK baseband modulated signal was used with different FFT

sizes of 4, 8, 16, 32, 64, 128 for slot size N of 512 samples and the number

of slots P 8 at 0.2 milliseconds (ms) sensing time Tacq. This was sampled at

Nyquist sampling rate fs of 20 MHz for a total samples NB of 4096. Note that

NB was rounded up to the nearest powers of 2. The results in Fig. 4.2 are

cumulatively displayed following the correlation and detection done on a per
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Figure 4.2: Probability of detection simulation see (4.14)) for QPSK signal at

-5dB SNR, with a range of different sizes of FFT, N = 512 samples, P = 8, fc =

5 MHz, fs = 20 MHz and total samples NB = 4096.

slot basis. It is shown that 512 samples, the larger FFT sizes of 64 and 128 re-

quire more samples to asymptotically reach the maximum detection probability

mark of 1 than the smaller ones. For instance FFT with sizes of 128 and 64

samples required more than 4000 samples compared against approximately

3000 for an FFT with size of 32 samples. This can be understood because

a smaller non-overlapping FFT will have a greater number of opportunities to

detect cyclostationary behaviour in comparison to a larger FFT in a slot. From

this it can be noted that when detection in a wideband scenario is done on

a time slot basis as in a multi-slot model rather than using just a single slot

for the entire wideband channel, the process of detecting the signals earlier is

enhanced. From this, it can be noted that the process of detecting a signal

earlier is enhanced, in a wideband scenario when using a multiple slot model

in comparison to a single slot applied to the entire wideband. Detection time is

reduced as the whole wideband channel will not have to be correlated before

applying the detection algorithm expressed in section 4.1.1.1. This is further

shown in Figs. 4.3 and 4.4.

When N was reduced to 256 samples as shown in Fig. 4.3 for the same 2.5

MHz frequency baseband signal, the samples needed for each FFT to reach
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the maximum detection probability mark were reduced, for instance, FFT of 64

samples then required approximately 2500 samples while FFT of 32 samples

needed 2000 samples. Further reduction of N to 128 samples for a different 2.5

Figure 4.3: Probability of detection (simulation see (4.14)) for QPSK signal at

-5dB SNR, with multi-FFTs, N = 256 samples, P = 16, f = 5 MHz, fs = 20 MHz

and total samples NB = 4096.

MHz QPSK signal in Fig. 4.4 shows more reductions in the samples needed

to asymptotically reach the maximum detection probability mark. Therefore,

the change in carrier frequency value does not affect the observed response

of the slot size. For instance FFT of 32 samples now requires approximately

1000 samples as against 2000 samples in Fig. 4.3. Analysing these results it

can be stated that the smaller the slot size the less the samples required for

correlation and detection. It should be pointed out that the same analysis can

be applied to other linear digital modulation types such as Binary Phase Shift

Keying (BPSK). Furthermore, the Pd can be compared across different slot

sizes for the same P as shown in Fig. 4.5. It shows that the smaller slots get

to the maximum detection mark with less number of samples than the larger

slots. Therefore, it can be stated that the smaller the slot size, the less number

of samples required for detection which can result in faster processing of the

spectral components. It can be observed that the smaller the FFT size, the

smaller the number of samples required to reach the maximum probability of
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Figure 4.4: Probability of detection (simulation see (4.14)) for QPSK signal at

-5dB SNR, with multi-FFTs, N = 128 samples, P = 16, f = 2.5 MHz, fs = 10

MHz and total samples NB = 2048.

Figure 4.5: Probability of detection (simulation see (4.14)) of 5MHz QPSK sig-

nal for different slot sizes using T S1, at -5dB noise, FFT size 16 , P = 16 sam-

ples, f = 5 MHz and fs = 20 MHz.

detection mark. These differences in the number of samples required become

even more significant when we consider that a greater number of the samples

will be needed for larger bandwidths. This will require more resources such

as more processing power for the processors and result in more complexity as

more FFTs will be involved. It will also cause more delays since a greater num-
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ber of samples will mean more processing time and an increase in resource

cost. Such a system may be less efficient and effective when compared with a

system that maximizes the sample requirements.

Notice that Figs. 4.2, 4.3 and 4.4 show the capability of the FFTs to cor-

relate the spectral components and detect the signal. However, they do not

completely indicate the best option of which FFT size to be selected. Further

analysis is required to consider the capability of each FFT in terms of frequency

resolution which is important for more accurate detection and that is the focus

of the next subsection.

4.3.2 Section Summary

From the figures above, it can be noted that the detection of the spectral com-

ponents of the signal is quicker with the smaller FFTs reaching the peak detec-

tion with small number of samples. Therefore, the adoption of small FFTs in a 1

slot process feature detection entails correlating all the samples of the slot be-

fore applying the detection hypothesis comparison described in section 4.1.1.1.

This may result in delay of the discovery of spectral holes in the spectrum and

therefore less efficient. The multi-slot method offers quicker correlation and

consequent detection and quicker discovery of spectral holes.

4.3.3 The Effect of FFT sizes on the Spectral Correlation

with the Test Statistic for different bandwidths

The aim of this section is to gain insight into how the different lengths or sizes

of the FFTs affect the magnitude of the spectral correlation density using the

non-conjugate test statistic TS1 or its second moment |TS1|2 during the cor-

relation process. This is prior to the TS1 magnitude being compared against

the selected threshold λ as described in the detection algorithm in section

4.1.1.1. Some of the simulation parameters for this section are listed in Table

4.2. Since the Cyclostationary Feature Detection (CFD) collects the energy

or power of the received signal at a specific cyclic frequency α, the power of
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the cyclic feature gives the detection performance of the CFD. Therefore, the

second moment of the non-conjugate test statistic |TS1|2 (4.12) corresponds to

the power of the cyclic feature. Note that in this section, the results of Figs. 4.6

to 4.11 are computed and displayed on a slot by slot basis without the accumu-

lation of the slots. These show the spectral correlation densities of the spectral

components of the signal on a per slot basis for an FFT size depending on the

signal distribution. This is a process prior to the application of the correlation

magnitude to the detection algorithm described in section 4.1.1.1.

Table 4.2: Simulation Parameters for different Bandwidths.

Variables Specifications

Frequency fc (MHz) 5, 10, 20

Modulation type QPSK

Bandwidth B (MHz) 5, 10, 20

Sampling rate fs 4×B

Slot size N (samples) 256, 512

Slot number P (samples) 8, 16, 32

FFT size L (samples) 4, 8, 16, 32, 64

Sensing time Tacq (seconds) 1×10−4

We will use the Hanning window which produces a finite data set to re-

duce spectral leakage inherent with the fast Fourier Transform (FFT) especially

when the signal is not completely periodic as discussed in section 2.6 and pre-

sented in Appendix (G), see [86, 87, 89]. Let us examine the effect of the fast

Fourier Transform (FFT) size L based on the Hanning window for different sig-

nal bandwidths using the second moment of the non-conjugate Test statistic

|TS1|2 (4.12). Given that the received signal will be down-converted to base-

band of bandwidth B MHz, the maximum signal bandwidth is the same as the

highest signal frequency. The sampling rate fs is 4×B for a sensing time Tacq

of 0.1 ms. For a 5 MHz QPSK signal in Fig. 4.6, the use of different sizes of

FFT produced Spectral Correlation Density (SCD) peaks or envelopes specific

to that FFT. These peaks represent the concentration or spread of the cyclic
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feature power of the received signal. It shows that the smaller the FFT, the

higher the correlation peaks. This is expected since the smaller the FFT length

(size) the more the number of FFTs that will be contained in any slot according

to (4.31). Also, since the process of spectral correlation involves the correlation

of the FFTs, then having more available FFTs for correlation results in higher

spectral correlation density (SCD). Fig. 4.6 shows that the smaller the FFT size

the less the number of slots required to have high spectral correlation density

or form the correlation peaks or envelope. The correlation peaks shown in

all the plots for the |TS1|2 represent the expected spectral peaks due to the

QPSK modulated signal similar to the peaks described in Table 3.1. When the

Figure 4.6: Effects of FFT size vs Number of slots (analytic, see (4.12)) with

N = 256 and P = 8, f = 5 MHz , fs = 20 MHz and NB = 2048 samples.

bandwidth is increased to 10 MHz together with the slot number P as shown

in Fig. 4.7, the magnitude of the Test Statistic TS1 increased significantly for

some FFTs. This is due to the increased sample size NB (4096) for the wide-

band (4.1) channel. For instance, for FFT of 16 samples, it increased from

35×101 in Fig. 4.6(c) to 14×102 in Fig. 4.7(c). Apparently, it can be observed

that because of the high peaks obtained with small FFTs, correlation based

on them will cover more small spectral components than the larger FFTs. In

Fig. 4.8, the bandwidth B is expanded to 20 MHz with 8192 samples for N

= 512 samples. The FFTs still show similar behaviour with increased magni-

tude due to increased number of FFTs per slot. For the same N and with 10
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Figure 4.7: Effects of FFT size vs Number of slots (analytic, see (4.12)), f = 10

MHz, N = 256, P = 16, fs = 40 MHz and NB = 4096 samples.

Figure 4.8: Effects of FFT size vs Number of slots (analytic, see (4.12)), f = 20

MHz, N = 512, P = 16, fs = 80 MHz and NB = 8192 samples.

MHz signal, when the slot number P is reduced to 8 with 4096 samples as

shown in Fig. 4.9, the FFTs show reduced magnitude compared with Fig. 4.8

due to the reduction in P and consequent total samples. It can be stated that

across different bandwidths, each FFT shows this similar performance where

the smaller FFTs produced higher magnitude of the test statistic TS1 in (4.7).

The test statistic magnitude increased as the bandwidth was increased due to

the fact that a greater number of samples are usually associated with higher

bandwidths. It should be mentioned that the same results will be obtained us-

ing the conjugate second moment of the unconstrained Test Statistic TS2 in

(4.8).
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Figure 4.9: Effects of FFT size vs Number of slots (analytic, see (4.12)), f = 10

MHz, N = 512, P = 8, fs = 40 MHz and NB = 4096 samples.

The slot size N can further be reduced to ascertain specifically the effects

on the non-conjugate unconstrained magnitude of the Test Statistic |T S1|2.

Consider a 2.5 MHz frequency QPSK signal in a 2.5 MHz bandwidth (1024

samples) at fs = 4×B, sensing time of 0.1 ms and N reduced to 128 samples

as in Fig. 4.10. It shows significant reductions in the magnitude of |T S2|2 for

each FFT compared with previous figures. The reduction in magnitude is con-

Figure 4.10: Effects of FFT size vs Number of slots (analytic, see (4.12)) with

f = 2.5 MHz, N = 128, P = 8, fs = 10 MHz and NB = 1024 samples.

tinued in Fig. 4.11 when N is further reduced to 64 samples for the same signal

parameters as for Fig. 4.10. As expected, the reduction is due to the reduced

number of FFTs in each slot (4.31) and given that spectral correlation involves
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the correlation of the FFTs within themselves in the slots.

However, this decreasing magnitude of the spectrally correlated peaks may

affect the detection of the signal when compared against the selected refer-

ence threshold λ. On the other hand, with the increased bandwidth (4096

samples) in Fig. 4.7 and compared with Fig. 4.8 in previous section 4.3.3 for

the same 16 slot numbers, the result is increased magnitude of the spectral

peaks due to the increased number of FFTs following the increase in N to 512

in Fig. 4.8 as against 256 samples in Fig. 4.7.

Figure 4.11: Effects of FFT size vs Number of slots (analytic, see (4.12)) with

f = 1.25 MHz, N = 64, P = 8, fs = 10 MHz and NB = 512 samples.

4.3.4 Section Summary

It can be concluded that the FFT size and number of FFTs in a slot, L and

M respectively determine the magnitude of the peaks and also that the com-

bination of small slot and FFT sizes produces more correlation peaks. This

confirms that the smaller FFTs are able to correlate small narrow-band spec-

tral components with fewer number of samples than the larger FFTs.
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4.3.5 Relationship between bandwidth, slot size N and num-

ber P

This section is concerned with investigating the relationship between band-

width, slot size and number of slots. In what follows, highest frequency or

bandwidth of a baseband signal is B MHz, sampling rate is given by fs = 4×B

MHz and the sensing time is 0.1 ms for the wideband. Figs. 4.12(a) and

4.12(b) show the probability of detection for two different bandwidths B of 10

MHz (4096 samples) and 20 MHz (8192 samples) respectively with the same

slot size. Note that the probability of detection asymptotically approaches 1.

Also, the variation of bandwidth is expressed by the total number of samples

NB which in turn is a function of frequency, sampling frequency and sensing

time Tacq. In both Figs. 4.12(a) and 4.12(b), given a fixed slot size N of 256

Figure 4.12: Probability of detection vs Number of slots (simulation, see(4.14))

for 10/20 MHz bandwidths at N = 256, NB = 4096/8192 samples.

samples, the expected ideal performance for an individual FFT is to have the

maximum detection probability with a small number of slots or samples in order

to achieve the objective of a low-complexity and effective detection model. FFT

sizes 32 and 64 require more slot numbers P than FFT sizes 8 and 16 to reach

the maximum detection probability. As expected, increasing the bandwidth re-

sults in a greater number of samples in order to cover the entire bandwidth and

for fixed N , more slots will be created and required for correlation as expressed



4.3. Results and Discussion 86

in (4.1) and (4.31). FFT size 64 takes 5 slots in larger bandwidth in Fig. 4.12(b)

as against 3 in F.g 4.12(a).

Similar results can be seen at larger signal bandwidth of 20 MHz as in Fig.

4.13. In Fig. 4.13(a) it shows that 2 slots of 512 samples are required for FFT

sizes of 8, 16, 32 samples while an FFT of size 64 samples requires 3 slots

for maximum detection. However, this is different in Fig. 4.13(b) when N is

reduced to 256 samples with more slots giving lower Pd per slot as supported in

(4.1) and (4.31). Although more slots are required in Fig. 4.13 (b), representing

Figure 4.13: Probability of detection vs Number of slots (simulation, see(4.14))

for 20 MHz bandwidth at N = 512/256 samples, NB = 8192 samples.

the results of Fig. 4.13 in terms of total samples shows that the reduction of N

from 512 to 256 samples still gave fewer total samples for peak detection.

4.3.6 Section Summary

It follows that for the same bandwidth, the smaller the N , the more the slots

created, see (4.1). Consequently, the more the number of slots required for

detection while the effective total samples for peak detection will be reduced

as in Fig. 4.13(b). Therefore using smaller N reveals the effective number

of samples required for peak detection and therefore reduces redundant or

excessive samples resulting with the use of larger N .
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4.3.7 Correlation Performance of the Test Statistic TS1 under

low SNR values

The performance of the test statistic TS1 in terms of its robustness can be

investigated by using a QPSK modulated signal at different values of Signal-

to-Noise Ratio (SNR). Fig. 4.14 is for signal only and will be compared against

Figs. 4.15 and 4.16 which have the presence of noise. Fig. 4.15 is for a QPSK

Figure 4.14: Magnitude of Test Statistic T S1 vs Number of slots (analytic,

see(4.12)) for QPSK signal only with f = 5 MHz, N = 128, P = 16, fs = 20

MHz.

signal at -3 dB SNR. As expected noise raises the levels of the peaks as it

usually spreads at the signal base. This raise is more evident in Fig. 4.16 at -5

dB SNR where the levels show more significant increases.
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Figure 4.15: Magnitude of Test Statistic T S1 vs Number of slots (analytic,

see(4.12)) for QPSK signal plus noise with f = 5 MHz, N = 128, P = 16, fs

= 20 MHz, SNR = -3dB.

Figure 4.16: Magnitude of Test Statistic T S1 vs Number of slots (analytic,

see(4.12)) for QPSK signal plus noise with f = 5 MHz, N = 128, P = 16, fs

= 20 MHz, SNR = -5dB.

4.3.8 Robustness of Test Statistic to noise

The performance and robustness to noise can also be verified in terms of the

Receiver Operating Characteristic (ROC) as shown in Fig. 4.17. For the ROC

curves, the threshold level is kept constant, while the probability of detection Pd

(4.29) is performed for each value of the probability of false alarm P f a (4.25).

It shows good performance up to -26 dB with FFT length 16. Note that

similar results will be obtained with other smaller FFTs. The robustness to
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noise of the Test Statistic can be further verified by expressing Fig. 4.17 in

terms of the number of total samples as shown in Fig. 4.18. This is able to

achieve lower SNR values qith small slot and FFT sizes than other works such

as discussed in [81]. It is shown in Fig. 4.18 that the lower the SNR values

Figure 4.17: Receiver Operating Characteristics (analytic, see (4.29, 4.25))

under low SNR values with FFT size 8, f = 5 MHz, N = 128 samples, P = 16,

fs = 20 MHz and NB = 2048 samples.

of the signal, the more samples are required to reach peak detection which is

expected. Similar results were obtained with other total number of samples.

It should be mentioned that detection of such low level signals is not possible

with some spectrum sensing methods such as Energy Detection.

4.3.9 Comparison with Energy Detection and Conventional

Spectral Correlation Density Function

In Fig. 4.19 simulations were carrierd out to compare the detection perfor-

mance of the model test statistic TS1 (4.7 ) against the Energy Detection (ED)

test statistic (2.1) as given in [44,158]. The detection magnitude due to TS1 is

significantly higher than that the ED statistic at low values of SNR. Note that

similar results will be obtained with other FFT lengths such as 16 and 64. It

shows the robustness to noise of the proposed test statistic more than the En-

ergy Detection which is one advantage of cyclocstationary feature detection
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Figure 4.18: Detection Performance vs Total Number of samples (simulation,

see (4.14) under low SNR values with FFT size 8, f = 5 MHz, N = 128, P = 16,

fs = 20 MHz.

as given in (2.4.5). Comparison can be made between the non-conjugate test

Figure 4.19: Comparison between the CFD Test Statistic TS1 and Energy De-

tection (ED) (simulation, see (2.2, 4.7)) under signals for low SNR values with

f = 5 MHz, N = 128 samples, FFT = 32 samples, P = 16, fs = 20 MHz.

statistic T S1 (4.7) and the discrete conventional spectral correlation function

without slots ( 4.9) and FFT size of 256 samples. Note that the conventional

discrete SCF is simulated on the basis of the maximum-likelihood estimates

over the total available samples for the wideband N ′, see 4.9). The multi-slot

test statistic T S1 with multi-FFT sizes as shown in Fig. 4.20 shows higher prob-

ability of detection at lower SNR values which is significant with smaller FFT
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sizes such as 4, 8 and 16. Other combinations of FFT and slot size will produce

similar results.

Figure 4.20: Comparison between the discrete conventional SCF and model

non-conjugate test statistic (simulation, see (4.9, 4.7)) T S1 for multi-SNR val-

ues with 5 MHz QPSK signal using T S1 , N = 256, P =16, fs = 20 MHz and FFT

szes 4-64.

4.3.10 Detection performance in terms of real signal fea-

tures

In this section, the detection performance will be verified in terms of the loca-

tions of the signal frequency f and cyclic frequency α using the test statistic

TS1 in 3-dimensional plots. In Fig. 4.21, the two extreme right and left peaks

or envelopes show the accurate locations of the real-valued signal frequency

f at ± 10 MHz with the fundamental at 0 Hz. Note that BPSK signal has the

cyclic frequency α as twice the carrier frequency as given in Table 3.1. For

clarity, this can be shown from aerial view in a contour plot as in Fig. 4.22.

Here, the locations of both f and α are more clearly shown. Similar results

can be obtained using other FFTs. This is expanded to include two BPSK sig-

nals as in Fig. 4.23. The locations of both the signal and cyclic frequencies are

shown for both BPSK signals. Note that this can also be expanded to include
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Figure 4.21: Detection in terms of real signal features (simulation, see (4.7))

with FFT size 16, f = 10 MHz, N = 256 samples, P = 16, fs = 40 MHz and NB =

4096 samples.

Figure 4.22: Contour plot of Fig. 20 (simulation, see (4.7)) with FFT size 16,

f = 10 MHz, α = 2 f , N = 256, P = 16, fs = 40 MHz.

more signals in the wideband channel as shown in Fig. 4.24. As previously

mentioned, BPSK signals have their cyclic frequencies α as twice the carrier

frequency as given in Table 3.1.
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Figure 4.23: Contour plot (simulation, see (4.7)) for two BPSK signals with FFT

size 16, f = 10,5 MHz, α = 2 f , N = 256, P = 16, fs = 40 MHz.

Figure 4.24: Contour plot (simulation, see (4.7)) for BPSK signals with FFT

size 32, f = 10 MHz, α = 2 f , N = 256, P = 16, fs = 40 MHz.

4.4 Chapter four Summary

In this chapter the wideband multi-slot window-based Fast Fourier Transform

Cyclostationary Feature Detection model was analysed and implemented in

Matlab software. Descriptions of the Test Statistics were given for both con-

jugate and non-conjugate processes. Considerations were also given to the

two conditions of signal only and signal with noise. The trade-off between fre-
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quency and time resolutions were considered in the investigations. As a sta-

tistical model, the probabilities of detection and false alarm were implemented

analytically and simulations and both showed good performances. From the

results, the effects of the size of the fast Fourier transform and the number

slots on the second moment of the Test Statistic were investigated for different

values of signal-to-noise ratios and bandwidths.

The detection performance of the model in terms of real value signal fea-

tures such as signal frequency and cyclic frequency with specific location de-

tection showed that the model can be applied to real communications settings.

It has also been shown that smaller fast Fourier transforms give better detec-

tion using reduced sample size than the larger ones. Also, the smaller slot size

is of advantage depending on the fast Fourier transform size adopted. Addi-

tionally, the smaller slot size will enable correlation of the spectral components

at shorter time and eventual shorter detection time which will compensate in

terms of temporal resolution. This is in contrast with correlating the entire wide-

band channel once for a longer time prior to the detection algorithm which is

the case for a 1 slot model. Detection of low level signals were shown with

the simulations which is expected of a cyclostationary feature detector. Also,

the simulations show that the model can be adopted in both narrowband and

wideband environments.



Chapter 5

Wideband Cyclostationary Feature

Detector under Receiver

Constraints

Cyclostationary feature detectors (CFDs) require the knowledge of the signal’s

carrier frequency and symbol rate for spectral correlation. It has been dis-

cussed in [159] that under perfect knowledge of the signal’s symbol rate and

carrier frequency, CFDs can theoretically suppress noise at all SNRs with in-

creasing sensing time or samples by averaging out the stationary noise. There-

fore, cyclostationary detectors are more reliable detectors at low SNRs since

they do not suffer from the known SNR wall phenomenon. However, there

are some factors which may constrain the knowledge of a signal’s cyclic fea-

tures such as the cyclic frequency offset (CFO) ∆α and sampling clock offset

(SCO) δ. Cyclic Frequency offsets may occur due to the mismatch of local

oscillator, Doppler shifts and insufficient knowledge of the actual carrier fre-

quency of the signal or channel as studied in [57]. In this condition, the radio

receiver is said to have a non-zero CFO which is a concern. The presence

of non-zero CFO will impede the CFD detection performance resulting in the

costly option of a large number of samples for detection. This will affect the

detection performance more in low SNR scenarios requiring a large number

of samples in order to suppress the noise as studied in [160], [161] and

95
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[162]. It was also discussed in [58] that under a non-zero CFO, the cyclic fre-

quency used for detection decays with increased sensing time and even at low

SNRs. This behaviour is analogous in effect to the SNR wall issue significant

in energy detection-based methods [159]. Therefore, reliable signal detec-

tion becomes difficult to achieve under CFOs below a certain SNR threshold

and consequently, cyclostationary feature detectors lose their advantages over

energy-based detectors.

However, none of these works proposed a solution to overcome the per-

formance degradation due to these constraints with cyclostationary detection

based methods. Further work in [81] proposed a multi-frame Test Statistic

using a cyclic autocorrelation function to reduce the constraints in the time do-

main otherwise involving the use of relatively large frames with a large number

of samples and thus greater computational complexity. It should be mentioned

that cyclic frequency offset is different from carrier frequency offset which is

conventionally being investigated in other spectrum detection techniques in

many literatures. The latter is the subject of this research. The cyclic frequency

offset is applicable to cyclostationary feature detectors and not applicable to

some detectors such as energy and matched filter detectors.

Another constraint is the Sampling Clock Offset (SCO) δ which occurs from

the frequency offset produced by insufficient knowledge of the symbol rates

1/T at the Analogue to Digital (A/D) stage of the receiver as discussed in [114],

[137], [163] where T is the symbol period. Every symbol period is generated

by the transmitter clock and it is well known that a clock will have a certain

accuracy or error expressed in parts per million (ppm). A digital modulated

communication signal such as QPSK with T has a cyclic frequency of α = 1/T .

This shows that SCO affects the CFO in terms of the symbol rate. Therefore,

the imperfect knowledge of the symbol rate produces an SCO which results

in a drift in sampling times. This time-shift varies as the number of samples

increases; producing phase shifts further which can affect the cyclic frequency

offset. SCO can be formulated in terms of T as,

δ= 1

T
− 1

T
(1+ε) (5.1)
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where ε is the clock error in ppm.

The presence of SCO impacts the detection performance of cyclostationary

feature detection as shown in [115] using spectral correlation density (SCD)

and convolution processes; [116,138,164] used the spectral correlation func-

tion for a pilot-aided cyclostationary feature detection in orthogonal frequency

division multiplexing (OFDM) where the phase offset due to SCO was esti-

mated and compensated from one frame to the next. A blind solution ap-

proach to the SCO problem was adopted in [140] where the symbol rate of

the incoming signal was estimated and sampled so that the resulting samples

were interpolated at the correct rate. The drawbacks of these methods are:

interpolation is costly in terms of power and the interpolation rate has to be

modified for each signal of interest in the wideband, which is a computationally

expensive solution. The effects of CFO can be seen in Fig. 5.1 where the

magnitude of the Cyclic Autocorrelation Function (CAF) of the affected QPSK

signal is very low compared with the CAF of the unaffected signal and reduces

at an increasing number of samples.

Figure 5.1: Conventional Cyclic Autocorrelation Function with and without CFO

(simulation, see (4.9)).

In Fig. 5.2 (b), the effect of CFO is shown as a shift on the location of the

signal frequency (away from ± 0.2) compared with the same signal in Fig. 5.2

(a) without CFO.
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Figure 5.2: Conventional Spectral Correlation Function with and without CFO

(simulation, see (4.9)).

Since the effects of both the CFO ∆α and SCO δ get intensified as the num-

ber of samples are increased, our proposed multi-slot cyclostationary feature

detection approach will remedy these constraints looking at relatively small

number of samples in conjunction with window-based fast Fourier transform.

More so, in a practical implementation, the SCF is estimated from the fre-

quency domain processing of the received signal, by taking the average of the

autocorrelation or cross correlation of the FFT coefficients. It will be seen that

it can achieve significant gains over the conventional cyclic detection in the

presence of CFOs and SCOs. The CFO and SCO with the model will now be

analysed followed by simulations to verify the analysis.

5.1 System Model with Receiver Constraints

This model integrates the effects of both the SCO and CFO and how to reduce

them utilizing the previous model described in section (4.1) where the non-

conjugate and conjugate Test Statistics T S1 and T S2 without any constraints

were derived and given as in (4.7) and (4.8). The received wideband signal is

down-converted to baseband and sampled at Nyquist rate to produce complex

samples. Let us assume that U Primary Users’ (PUs) signals could occupy
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the wideband channel with time variable t ∈ [0,Tacq] and be represented as

xu(t ) ∀u ∈ [1, ...,U]. Therefore the received signal can be discretely expressed

under signal plus noise H1 condition and in the presence of SCO δ and CFO

∆α as,

s[n|δ,∆α] =
U∑

u=1
xu[n|δ,∆α] (5.2)

where from ( 4.3 )

xu[n|δ,∆α] =
∞∑

l=−∞
αu (lTu) pu (nTs(1+δ)− l Tu)e j 2π fc u (1+∆α)nTs (1+δ) +ηu[n]. (5.3)

The noise only condition H0 is given as,

xu[n|δ,∆α] = ηu[n] (5.4)

where αu (lTu) and pu(nTs(1+δ)) are the transmitted information symbols and

the pulse shaping filter of the uth transmitted signal respectively while ηu[n]

is the complex AWGN in the band occupied by the uth transmitted signal.

Let the transmitted information symbols with unit average power σ2
α, a pulse

shape filter pu(nTs(1+δ)) of unit energy, Signal to Noise Ratio (SNR) = σ2
α/σ2

η =

1/σ2
η where σ2

η is the noise variance in the channel occupied by the PU signal

xu(nTs(1+δ)).

5.2 Effects of Sampling Clock Offset on the Test

Statistic

Although the received signal may contain noise but since noise is not affected

by sampling clock offset (SCO) due to its stationary statistical characteristic

and eventual flat Spectral Correlation density, it may be ignored at this stage

in the analysis. Therefore, we first consider the effect of SCO on the proposed

model in noiseless conditions assuming a zero CFO. SCO can then be stated

as,

T̂s = (1+δ)×Ts (5.5)

where T̂s is the actual sampling period used at the receiver, Ts is the ideal

sampling period with good knowledge of the symbol rate at the transmitter and
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δ is the SCO. In order to adequately represent a signal, the sampling rate is in

multiples of the symbol rate 1/T , where T is the symbol period. The objective

of the model is to remedy these effects so as to improve the possibility of

detection through a statistical model using the SCF and FFT-based slot in a

wideband scenario [27]. Once we select the sensing period for the wideband

channel Tacq and the sampling frequency fs or sampling period Ts , the total

samples for the wideband channel is given as,

NB = Tacq

T̂s
(5.6)

where T̂s is the actual sampling period used at the receiver as given in (5.5)

and substituting it in (5.6) we can express NB as,

NB = Tacq

Ts(1+δ)
. (5.7)

If δ = 0, then NB is unchanged and if δ 6= 0, NB is affected. The denominator

T (1+δ) should also be an integer for us to have an integer number of samples.

Otherwise, we have a non-integer NB which is an indication of time offset or

drift. It is well known that as the number of samples are increased, a sam-

pling clock offset will result in progressive drift in the real positions of sample

points or the number of samples (NB ) within a sensing time Tacq. From the

time shifting property of the Fourier Transform (FT), this drift in time produces

phase offset in the frequency domain and consequently affects the positions

of the cyclic features such as the cyclic frequency α in the SCF. A time shifted

received wideband signal x(t ) can be represented as

x̄(t ) = x(t − ts) (5.8)

where ts is the time shift in the time domain and varies as the number of sam-

ples increases. It can be expressed in terms of sampling clock offset δ and for

all the time samples in the p th slot of size N as,

tp = Nδp. (5.9)

It results in a phase offset e− j 2παtp for the p th slot and is accumulated over all

the slots in the wideband channel. Therefore, SCF estimate for the p th slot
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that is affected by the SCO after substituting for tp is given as,

S̄αx (k, p|δ) = 1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
×X ∗

L,p

(
n,k − α

2

)
e− j 2παNδp . (5.10)

Consider a total P number of slots, the total phase offset is given as,

φ=
P∑

p=1
e− j 2παNδp (5.11)

where e− j 2παNδp is the phase offset for the p th slot as explained above. It can

be shown as used in [137] that the analysis of φ in ( 5.11) is,

P∑
p=1

e− j 2παNδp = sin(παPNδ)

sin(παNδ)
e− jπαNδ(P−1). (5.12)

More details of the analysis of the phase offset φ can be found in Appendix D.

The non-conjugate Test Statistic TS1 derived in (4.7) of section 4.1 in chapter

4 is a function of the slots and FFTs. The SCF estimates for the p th slot

given in (5.10) are non-coherently added and the resulted test statistic has the

attenuated feature, see [137]. This can be represented by substituting the total

phase offset φ given in (5.11) into the non-conjugate SCF for the wideband

channel (4.7) giving a non-conjugate Test Statistic under SCO only as,

R
{
S̄αx (k|δ)

}=ℜ
{

1

P

P∑
p=1

(
1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
X ∗

L,p

(
n,k − α

2

)) P∑
p=1

e− j 2παNδp

}
(5.13)

and can be further expressed as,

R
{
S̄αx (k|δ)

}=R{
1

P

P∑
p=1

Sαx (k, p)
P∑

p=1
e− j 2παNδp

}
(5.14)

where Sαx (k, p) = 1
N

∑N−1
n=0

1
L XL,p

(
n,k + α

2

)× X ∗
L,p

(
n,k − α

2

)
as derived in (4.6) of

section 4.1 in chapter 4. Note that S̄αx (k|δ) represented in (5.13) is a represen-

tation of the sum of the effects of the phase offset for the total wideband of P

slots. After substituting (5.12) into (5.14 ), see Appendix D, the Test Statistic

with SCO effect only is given as,

R
{
S̄αx (k|δ)

}=R{
1

P

P∑
p=1

Sαx (k, p)
sin(παPNδ)

sin(παNδ)
e− jπαNδ(P−1)

}
. (5.15)
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Note that if P = 1 (no multi-slot) with zero SCO , (5.15)is equivalent to the

conventional SCF as given in (3.17). If P ≥ 1 and αNδ is an integer, then

looking at the pure real (fraction) in (5.15) we can observe that numerator and

denominator are zero for any integral value of αNδ. Consequently, the SCO

will have no effect on the TS1. It follows also, that for any non-integral value of

αNδ , the TS1 will be affected. Usually, in practice under the prersence of SCO

αNδ is non-integral.

5.3 Combined Effects of Sampling clock and Cyclic

Frequency Offsets in noiseless condition

The effects of both the SCO and CFO will now be considered. Since noise is

not affected by CFO due to it’s stationary property, the CFO will be analysed in

a noiseless condition. Let the CFO be represented by ∆α. Given that,

α′ =α× (1+∆α) (5.16)

where α′ and α are the actual and ideal cyclic frequencies (CF) at the receiver

and transmitter respectively. The CFO will also be represented exponentially

by substituting α′ in the offset summation (right) of (5.14 without affecting the

previous analysis of SCO. We then have the non-conjugate Test Statistic with

the receiver constraints, SCO and CFO analysed as,

R
{
S̄αx (k|δ,∆α)

}=R{
1

P

P∑
p=1

S̄αx (k, p)
P∑

p=1
e− j 2πNδα(1+∆α)p

}

=R
{

1

P

P∑
p=1

S̄αx (k, p)
sin(πNδPα(1+∆α))

sin(πNδα(1+∆α))
e− jπNδα(1+∆α)(P−1)

} (5.17)

where S̄αs (k, p) is the spectral correlation for the p th slot for signal only as

derived in (4.6). It can be observed that when both SCO and CFO are zero,

we are left with the summation on the left which is the test statistic without

offsets derived in ( 4.7) and if either of them is non-zero, the Test statistic is

constrained. Also, the highest achievable gain using the multi-slot test statistic

under receiver constraints (5.17) is whenever N is chosen such that Nαδ is an
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integer. The non-conjugate and conjugate test statistics with both SCO and

CFO are expressed from (5.17) as,

T S1|δ,∆α =R{
S̄αx (k|δ,∆α)

}
=R

{
1

P

P∑
p=1

S̄αx (k, p)
sin(πNδPα(1+∆α))

sin(πNδα(1+∆α))
e− jπNδα(1+∆α)(P−1)

} (5.18)

and

T S2|δ,∆α =R{
S̄αx∗(k|δ,∆α)

}
=R

{
1

P

P∑
p=1

S̄αx∗(k, p)
sin(πNδPα(1+∆α))

sin(πNδα(1+∆α))
e− jπNδα(1+∆α)(P−1)

}
(5.19)

respectively. It follows that the second order moments of the non-conjugate

and conjugate Test Statistics with both SCO and CFO are given as,

E
[(

T S1|δ,∆α
)2

]
= E[

R
{
S̄αx (k|δ,∆α)2}]

= E
[
R

{(
1

P

P∑
p=1

S̄αx (k, p)
sin(πNδPα(1+∆α))

sin(πNδα(1+∆α))
e− jπNδα(1+∆α)(P−1)

)2}]

(5.20)

and

E
[(

T S2|δ,∆α
)2

]
= E[

R
{
S̄αx∗(k|δ,∆α)2}]

= E
[
R

{(
1

P

P∑
p=1

S̄αx∗(k, p)
sin(πNδPα(1+∆α))

sin(πNδα(1+∆α))
e− jπNδα(1+∆α)(P−1)

)2}]

(5.21)

respectively. They will be used to determine the probability of detection shortly.

Since the cyclic frequency α is a function of symbol rate 1/T and signal fre-

quency f , the resolution of the cyclic frequency ∆α is determined by the FFT

size and in a multi-slot wideband by the combination of slot size N and number

of slots P .
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5.4 Threshold, Detection and Probabilities of False

Alarm and Detection

A binary decision rule of two hypotheses will be adopted after the spectral

correlation of the baseband signal in order to detect the absence or presence

of the signals.

• Null Hypothesis, H0 for noise only,

H0 : s(t ) = η(t );

• Alternative Hypothesis, H1 for signal plus noise,

H1 : s(t ) = x(t )+η(t );

where η(t ) is Additive White Gaussian Noise (AWGN) and x(t ) is the received

signal without noise. The detection threshold λ that is approximately at the

level of the test statistic magnitude at H0 and gives a Constant False Alarm

Rate (CFAR) during the detection. The non-conjugate Test Statistic with the

constraints (5.18) will then be compared against the detection threshold to

determine the probability of false alarm and probability of detection of the signal

during the 103 Monte Carlo iterations to give,

Pfa|δ,∆α = Prob
{
T S1|δ,∆α >λ | H0

}
, for when the signal is absent, H0; (5.22)

and

Pd|δ,∆α = Pr ob
{
T S1|δ,∆α >λ | H1

}
, for when the signal is present,H1. (5.23)

5.4.1 Pd and P f a under Receiver Constraints

In order to calculate analytically the probability of false alarm P f a and proba-

bility of detection Pd , the mean µ and variance σ2 at both H0 and H1 under

receiver constraints will be derived. The mean noise only H0 and signal H1

under CFO and SCO are expressed from (5.17) as,

µ0|δ,∆α =R
{

S̄αη (k|δ,∆α)
}

. (5.24)
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and similarly, the mean for H1 is,

µ1|δ,∆α =R{
S̄αx (k|δ,∆α)

}
(5.25)

It can be shown similar in (4.23) and (4.24) that the variances for Ho and signal

H1 under receiver constraints can be expressed as,

σ2
0|δ,∆α = E

[
R

{{
Sαη (k, p|δ,∆α)

}2
}]

−
{
E
[
R

{
S̄αη (k|δ,∆α)

]}}2
(5.26)

and

σ2
1|δ,∆α = E

[
R

{{
Sαx (k, p|δ,∆α)

}2
}]

−{
E
[
R

{
S̄αx (k|δ,∆α)

}]}2 (5.27)

respectively.

Recall, as stated in section 4.1.3 that the SCF has non-zero mean at H0,

the TS1 and is Ricean distributed over an AWGN channel as was used in [81].

From the derivations of the probability of false alarm Pfa and the probability of

detection Pd in section 4.1.3, the Pfa at the detection threshold λ under SCO

and CFO is given by,

Pfa|δ,∆α =Q
(
µ0|δ,∆α

σ0|δ,∆α
,

λ

σ0|δ,∆α

)
(5.28)

where Q(.), σ2
0|δ,∆α and µ0|δ,∆α are the generalized Marcum-Q function, noise

deviation and the mean of the test statistic under noise. Similarly, from section

4.1.3 we can express the Ricean parameters under constraints for H1 as,

µ1|δ,∆α =
√
µ2

s|δ,∆α+µ2
0|δ,∆α

=
√{

E
[
R

{
S̄αs (k|δ,∆α)

}]}2 +{
E
[
R

{
S̄αη (k|δ,∆α)

}]}2
(5.29)

and

σ2
1|δ,∆α =

σ2
s|δ,∆α

2
+
σ2

0|δ,∆α

2
. (5.30)

From where,

σ1|δ,∆α =
√
σ2

s|δ,∆α

2
+
σ2

0|δ,∆α

2
. (5.31)

Note that σ2
1|δ,∆α is from the conventional Ricean parameter 2σ2 as was dis-

cussed in [28, 149–152] for different test statistics. Therefore, the probability

of detection under SCO and CFO is given by,

Pd|δ,∆α =Q
(
µ1|δ,∆α

σ1|δ,∆α
,

λ

σ1|δ,∆α

)
(5.32)



5.5. Signal to Noise Ratio of the Test Statistics under CFO and SCO 106

where µ1|δ,∆α and σ1|δ,∆α are the mean and deviation of the non-conjugate test

statistic under the receiver constraints T S1|δ,∆α.

5.5 Signal to Noise Ratio of the Test Statistics un-

der CFO and SCO

In this section the Signal to Noise Ratio (SNR) of the Test Statistic under both

considered constraints will be derived and is useful as a performance metric in

maximising the detection performance. The SNR can be defined as the ratio of

test statistic power under the signal only condition at a given cyclic frequency

α, to that under noise only Ho for a given distribution of CFO and SCO. From

the derivations of the SNR without constraints given in section 4.2, the SNR

under SCO and CFO can be expressed as,

SNRTS|δ,∆α =
E
[
R

{{
S̄αx (k|δ,∆α)

}2
}]

E
[
R

{{
S̄αη (k|δ,∆α)

}2
}] . (5.33)

Note that if both SCO and CFO are zero, we are left with the SNR of the test

statistic without constraints SNRTS as derived in ( 4.32). For the SNRTS|δ,∆α, the

discrete variable x represents the signal only (signal without noise) condition.

5.6 Results and Discussion

5.6.1 Effects of FFT and Slot sizes with SCO and CFO under

signal with noise H1

The results were obtained analytically and through simulations using Monte

Carlo iterations, [157] in order to determine the sizes of FFT and slot that will

give efficient and low complexity detection under the combinations of SCO and

CFO. The simulations were based on the proposed non-conjugate multi-slot

test statistic with offsets T S1|δ,∆α in (5.18), discrete conventional SCF in (4.9),

energy detection test statistic in (2.2), while the analytical results were based
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on proposed non-conjugate multi-slot test statistic with constraints T S1|δ,∆α in

(5.18), probability of false alarm P f a |δ,∆α in (5.28) and probability of detection

Pd |δ,∆α in (5.32). It should be mentioned that all the plots involving the proba-

bility of detection in the results section asymptotically approach the maximum

detection mark of 1.

Some examples of CFO and SCO will be selected from the typically known

values as discussed in [48, 58, 165]. Under the presence of 0.09 SCO/CFO,

the non-conjugate Test Statistic with SCO and CF0, T S1|δ,∆α (5.18) was used

together with the detection algorithm in ( 4.1.1.1) where the spectral corre-

lation density (magnitude of the correlated spectral components) were com-

pared against the selected threshold λ. Fig. 5.3, shows that more samples are

needed for larger FFTs. The slot size N was reduced from 256 to 128 samples

Figure 5.3: Probability of detection using non-conjugate Test Statistic with con-

straints (simulation, see (5.18)) for QPSK Signal of -5 dB SNR, SCO/CFO =

0.09, slot size = 256 samples, number of slots = 8, frequency = 2.5 MHz and

fs = 10 MHz.

for 16 slots in Fig. 5.4. As expected according to the effect of slot size N dis-

cussed in section 4.3.1 reducing it from 256 to 128 samples improved the de-

tection performance of the FFTs even under the receiver constraints as shown

in Fig. 5.4. For instance, FFT size of 16 samples now require approximately

800 samples for maximum detection in Fig. 5.4 as against a little over 1000
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Figure 5.4: Probability of detection using T S1|δ,∆α (simulation, see (5.18)) for

Signal with -5 dB SNR, SCO/CFO = 0.09, multi-FFTs, slot size = 128 samples,

number of slots = 16, frequency = 2.5 MHz and fs = 10 MHz.

samples in Fig. 5.3. Further comparison of the probability of detection across

different slot sizes at 0.1 SCO and CFO is shown in Fig. 5.5. As expected, the

smaller N quickly attains the maximum level of probability of detection.

Figure 5.5: Probability of detection of 3.5MHz QPSK signal for different slot

sizes using T S1|δ,∆α (simulation, see (5.18)), at -5dB noise, FFT size 16 , P =

12 samples and fs = 14 MHz.

For consistency a single combination of CFO and SCO was in Figures 5.3,

5.4 and 5.5. These figures show that in the presence of the constraints CFO
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and SCO, the smaller FFTs still asymptotically approach the perfect detection

of 1 with less number of samples than the larger ones. This was the same

behaviour in the previous chapter where there were no receiver constraints.

In order to understand the effects of different combinations of SCO and

CFO, further investigations were carried out with different values of both the

SCO and CFO using Pd|δ,∆α in (5.32) with any of the FFT sizes and in this case

FFT size 32 was used as in Fig. 5.6. It is shown that the Probability of detection

under the receiver offsets (5.32) reduced as the values of SCO and CFO were

increased. This can also be verified with another FFT size as in Fig. 5.7 where

Figure 5.6: Probability of detection (analytic, see (5.32)) for QPSK Signal of -

5dB SNR under multiple SCO/CFO with FFT/slot size = 32/256 samples, Num-

ber of slots = 8, frequency = 2.5 MHz, fs = 10 MHz.

FFT size 16 was used with N of 128 samples and P of 8 samples giving 1024

total samples. In Fig. 5.7 the larger the constraints (SCO & CFO), the more is

the number of samples required for detection. Also, due to reduced slot size

from 256 to 128 samples, the number of samples required for correlation and

detection is reduced. For instance in Fig. 5.7, approximately 700 samples

are required for maximum probability of detection at constraints of 0.1 while

approximately 1800 samples are required in Fig. 5.6 for the same constraints

of 0.1.

From Figures 5.6 and 5.7, it can be observed that higher values of SCO and
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Figure 5.7: Probability of detection (analytic, see (5.32)) for QPSK Signal of -

5dB SNR under multiple SCO/CFO with FFT/slot size = 16/128 samples, Num-

ber of slots = 8, frequency = 5 MHz, fs = 20 MHz.

CFO require more samples for detection. This is consistent with the require-

ment of cyclostationary feature detection where more samples are normally

required for correlation.

5.6.2 Comparison between with and without receiver con-

straints for multi-SNRs.

The detection performance of the Test Statistic under receiver constraints T S1|δ,∆α

(5.18) will now be computed with different FFT sizes and for different values

of the SNR. In consideration of the disparity in the performance of different

sizes of FFT and slots, it makes sense to compare their performances with

and without the receiver constraints starting from the larger ones. In Fig. 5.8,

a larger FFT of 128 samples was used to perform the spectral correlation of

the received QPSK signal under the conditions of with and without the receiver

offsets of SCO and CFO. The separation between the lines for the two condi-

tions of with and without is very significant. The closer the two lines are for a

specific SNR value, the smaller the error of detection between the conditions

of with and without the constraints. Therefore, it translates into differences in
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performance when comparing the results of the test statistic with no receiver

constraints against the results with receiver constraints. It should be noted that

this separation increases as the SNR is reduced down to -17 dB.

Figure 5.8: Probability of detection (analytic, see (5.32)) for QPSK Signal with

Noise at different SNRs, slot size/number = 256/8 samples, FFT size = 128

samples, SCO/CFO = 0.08, frequency = 2.5 MHz and fs = 10 MHz.

Another FFT size such as 32 samples can be used for the same number of

samples. As shown in Fig. 5.9, the gaps between the curves of no constraints

and with constraints get reduced implying a better detection when compared

against the previous results in Fig. 5.8.

When N is reduced to 64 samples and P increased to 32 for the same total

number of samples, detection using FFT size 32 shows improved performance

under SCO/CFO as can be seen in Fig. 5.10. Here, the gaps between the

curves with constraints are much more closed up against the curves without

the constraints. The plots representing the non-zero receiver offsets follow

approximately the same paths as the plots for the zero offsets. Note that the

closer the gap between the curves of with constraints and the one without

constraints for any SNR value, the better the effects of the constraints are

reduced. Figure 5.10 shows significant improvement when compared with the

results in Figs. 5.8 and 5.9 where larger FFT sizes of 128 and 64 samples

were used. Therefore, it demonstrates the robustness of the Test Statistic to
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Figure 5.9: Probability of detection (analytic, see (5.32)) for QPSK Signal with

Noise at different SNRs, slot size/number = 256/8 samples, FFT size = 64

samples, SCO/CFO = 0.08, frequency = 2.5 MHz and fs = 10 MHz.

both noise and receiver constraints which is improved further using smaller

FFT sizes and slot sizes.

Figure 5.10: Probability of detection (analytic, see (5.32)) for Signal with Noise

at different SNRs, slot size/number = 64/32 samples, FFT size = 16 samples,

SCO/CFO = 0.08, frequency = 2.5 MHz and fs = 10 MHz.
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5.6.3 Performance of the FFTs and slots under multi-SNR

conditions

The detection performance of the test statistic can be verified for different val-

ues of SNR by considering the Receiver Operating Characteristic (ROC) with

different FFT sizes such as 64, 32 and 16 as shown in Figs. 5.11, 5.12 and

5.13 respectively. It can be observed that the performance is progressive with

Figure 5.11: Receiver Operating Characteristic with (analytic, see (5.32, 5.28))

for multi-SNR values with 5 MHz QPSK signal, N = 256, P =16, NB = 4096

samples, FFT size 64, fs = 20 MHz and SCO/CFO = 0.09.

the relative higher detection achieved with the smaller FFTs. For instance at

-11 dB SNR, FFT size 64 achieves a P f a of 1 in Fig. 5.11 as against 0.9 and

0.5 for FFT sizes 32 and 16 as shown in Figs. 5.12 and 5.13 respectively.

5.6.4 Comparison with Energy Detection and SCF Conven-

tional Test Statistics

In the presence of noise and SCO/CFO of 0.02 for the proposed CFD test

statistic with offsets TS1|δ,∆α, the performance of this Test Statistic was com-

pared against the Test Statistic for Energy Detection (ED) given in [44,158] as

shown in Fig. 5.14. As expected, the proposed test statistic shows relatively

more robustness to signals of low SNR values down to -25 dB with perfect de-
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Figure 5.12: Receiver Operating Characteristic with (analytic, see (5.32, 5.28))

for multi-SNR values with 5 MHz QPSK signal using T S1|δ,∆α, N = 256, P =16,

NB = 4096 samples, FFT size 32, fs = 20 MHz and SCO/CFO = 0.09.

Figure 5.13: Receiver Operating Characteristic with (analytic, see (5.32, 5.28))

for multi-SNR values with 5 MHz QPSK signal using T S1|δ,∆α, N = 256, P =16,

NB = 4096 samples, FFT size 16, fs = 20 MHz and SCO/CFO = 0.09.

tection starting at -17 dB. Note that the ED simulation has a zero CFO since

ED is not affected by CFO.

The model T S1|δ,∆α can be compared against the discrete conventional SCF

(4.9) as in Fig. 6.18 at SCO/CFO value of 0.1 for different FFT sizes. It can

be observed that the model test statistic gives higher detection performance
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Figure 5.14: Performance of Test Statistic with Offset against Energy Detection

with (simulation, see (2.2, 5.18)) for FFT size = 16 samples, SCO/CFO = 0.02,

slot size/number = 256/16 samples, frequency = 5 MHz, fs = 20 MHz.

Figure 5.15: Comparison between the Conventional Test Statistic and model

non-conjugate test statistic with (simulation, see (4.9, 5.18)) for multi-SNR val-

ues with 2.5 MHz QPSK signal, N = 64, P =32, NB = 2048 samples, fs = 10

MHz, FFT sizes 8-64 and SCO/CFO = 0.1.

even at low values of SNR. Also, the smaller FFTs show higher probability of

detection at low SNR than the larger ones. There is a significant improvement

over the conventional SCF even in the presence of the receiver constraints.



5.7. Chapter Five Summary 116

5.6.5 Application of test statistic to real signal in wideband

channel

The application of the test statistic can be shown in a 2-dimensional plot of

the signal’s carrier frequency f and the cyclic frequency α. For clarity, the

contour plots will be shown. In Fig. 5.16 two signals at -5dB SNR of BPSK

modulation type are shown. When looking at the plot from the vertical axis, the

carrier frequency under consideration is seen to match the centre of the line

which represents the signal. Note that the cyclic frequency for BPSK signal as

previously stated is 2× f and shown on the x-axis. The wideband capability can

Figure 5.16: Contour plot with TS1|δ,∆α (simulation(5.18)) for 2 BPSK signals,

SCO/CFO = 0.05, with FFT size 16, f = 5,2.55 MHz, α = 2 f , N = 256, P = 16

and fs = 20 MHz.

be demonstrated by extending the number of channels as in Fig. 5.17 where

six channels are shown. Note that the frequency values are at the center of

the appropriate line when looking through the carrier frequency axis.

5.7 Chapter Five Summary

In this chapter the receiver offsets namely, SCO and CFO were integrated

into the analysis of the model. Simulations were carried out using the test
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Figure 5.17: Contour plot with TS1|δ,∆α (simulation(5.18 )) for BPSK signals,

SCO/CFO = 0.5, with FFT size 16, f = 2-12 MHz, α = 2 f , N = 256, P = 38 and

fs = 48 MHz.

statistics under receiver offsets. It was shown that the presence of receiver

offsets impact the level of probability of detection and requires more samples

to reduce the effects, which adds to the computational cost. It was also shown

that the smaller the FFT is in size, the more robust the model performs under

the receiver offsets. Simulations showed that for signals with low SNR, the

performance under the receiver offsets was improved with the use of small

fast Fourier Transform sizes. When compared against the Energy Detection

test statistic it showed significant improvement even in the presence of the

receiver offsets and low SNR conditions. The model test statistic was also

compared with the conventional spectral correlation function test statistic and

the multi-slot model showed improvement over the conventional one. This was

also made more significant at smaller FFT sizes. The detection of signals

with the test statistic under the receiver constraints was also shown in terms

of 2-D plot of the carrier and cyclic frequencies. It was also shown to have

wideband capability and was demonstrated with six QPSK signals of different

carrier frequencies.



Chapter 6

Algorithmic Optimization of

Cyclostationary Spectrum Sensing

under Receiver Constraints

In this chapter the term Optimization is used in the context of its meaning dis-

cussed in [27,81,166] as a process of maximizing or minimizing some function

relative to some set, often representing a range of choices available in a cer-

tain situation. In this research, the generic algorithm will adopt the method of

brute force search where the available variables will be processed with a view

of selecting the one that best meets the expected goal.

The generic algorithm for optimizing the different parameters such as slot

size N , number of slots P , fast Fourier transform (FFT) size L and number

of FFTs M needed to achieve efficient and low computational complexity is

described. This will be applied to the scenario when the receiver constraints

cyclic frequency offset (CFO) and sampling clock offset (SCO) are present in

the received signal. The optimized parameters of the model test statistic will

also be applied to a Ricean distribution communication Channel. The per-

formance will be verified under low RF signal levels while the computational

complexity will be compared against the conventional spectral correlation test

statistic.

118
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6.1 Computational Complexity

From section 2.5.7.2, Fast Fourier Transform (FFT) reduces the number of

computations involved in the application of the Discrete Fourier Transform (DFT)

from the order of N 2 to N logN . Recall, the DFT requires N 2 complex multipli-

cations and N (N −1) complex additions while the FFT requires a total of N /2

log N complex multiplications and N log N complex additions to compute N -

point DFT. It makes sense to use the complex additions to analyse the impact

on computational complexity since it is higher than the complex multiplications

for any FFT. It also follows that the proposed multi-slot model is based on win-

dowed FFT computation.

It is given that the total FFTs in a slot is,

M = N

L
, (6.1)

where L and M are the FFT and slot sizes in samples. The total complex

additions F F Tcx for 1 slot is in the order of,

O1(M ,L) = M(LlogL) (6.2)

where M is the total number of FFTs in a slot (6.1) and LLogL is the complex

additions for one conventional radix 2 FFT as discussed in section 2.5.7.2,

see [155, 156]. From (4.1), (6.1) and (6.2), we derive the total computational

complexity F F Ttc for the wideband channel of P the total number of slots,

OT (M ,L) = P ×M ×LlogL. (6.3)

See Appendices E and F for examples of the calculation of the FFT computa-

tional complexities and resolutions that were used in this chapter.

6.2 Optimizing the FFT Size L and Number M

We will obtain the optimum L and M from the first optimization problem in

(6.4) which will be used to further solve the second optimization (6.5) within
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the requirement of computational complex additions and the minimum number

of samples Lmi n required in a slot to represent the information in a channel.

FFT size should be chosen for maximum Pd , correct frequency resolution and

reduced complexity. The objective is to maximize Pd subject to the values of L

and M .

(L̄, M̄) = argmax
L,M

Pd

such that LM ≤ N ,

L ≥ Lmi n and

N ,P (fixed)

(6.4)

where L̄ and M̄ are the optimized L and M . From (4.1), (6.3) and we can verify

the effect of computational complexity or complex additions.

6.3 Optimizing the Slot Size N and Number P

According to (4.1), the number of slots P is affected by the total NB and slot

size N . Therefore, it makes sense to optimize N and P for maximum Pd for a

given number of samples for the wideband channel. N should be optimized so

that it covers the minimum samples Nmi n required for the information symbols

within the slot. The objective is to maximize Pd subject to the values of N and

P . The optimization problem can be formulated as,

(N̄ , P̄ ) = argmax
N ,P

Pd

such that N P = NB ,

N ≤ Nmi n and

L, M (fixed)

(6.5)

where N̄ and P̄ are the optimized N and P and Pd is the probability of detection.

There will be an increase in P for small N as in (4.1) which will subse-

quently produce an increase in the number of FFTs which could impact on the

computational complexity. In order to further solve the optimization problem
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in (6.5), consideration will be given to the overall computational complexity (in

terms of the complex additions) from combining multiple FFTs which is given

in (6.3). The choice of N and P should be made for maximum Pd and reduced

complexity.

6.4 Algorithm for Optimizing the FFT and slot sizes

and numbers

In this section, the generic algorithm will adopt the method of brute force search

where the different available parameters of L, M , N and P will be processed

with a view of selecting the optimized combination of them that best meets

the expected goal of producing an efficient and low computational complexity

wideband cyclostationary feature detection. The optimized combination set of

L, M , N and P will then be applied to sample sets for the detection of different

cyclostationary signals without repeating the search method.

The derivations of test statistics with and without receiver offsets T S1 ( 4.7)

and T S1|δ,∆α (5.18) respectively will be used. The threshold level λ that is ap-

proximately at the level of the test statistic magnitude at noise only condition

H0 obtained by simulation will be selected. The FFT and slot sizes will be se-

lected in terms of the following three metrics; probability of detection Pd against

total number of samples NB ; the clarity of the two dimensional simulations of

second moment of the test statistic E
[
(TS1)2

]
in cyclic frequency α and carrier

frequency fc and low computational complexity offered by the FFT size.
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Algorithm 2 Optimizing FFT Size and Number

1: Let i = 1:6, j = 1:4

2: Inputs: Total samples = NB , FFT sizes: L1 = 4, L2 = 8, L3 = 16, L4 = 32,

L5 = 64, L6 = 128, Slot sizes: N1 = 256, N2 = 128, N3 = 64, N4 = 32, Test

statistics T S1, T S1|δ,∆α and Threshold λ;

3: Outputs: |Si | = Magnitude of T S1ı, |Sδ,∆α|, i = Magnitude of T S1|δ,∆α, Proba-

bility of detection Pd , Optimized L = L̄, M = M̄ , N = N̄ , P = P̄ ,

4: Slot number P j = N j

Li
;

5: for j = 1:2 do

6: N = N j ; {N ≥ 2 ×Li to support correlation between at least 2 FFTs};

7: for i = 1:6 do

8: Run simulations of Pd against NB with the second moment of the test

statistic E
[
(TS1)2

]
and the parameters NB , N1, P j and Li , Mi ;

9: Then Pd = Pd |i {Probability of detection for the i th FFT.};

10: end for

11: Sort Pd |i in descending order;

12: A = Pd |i in descending order;

13: Select four FFT sizes (FFT1, FFT2, FFT3, FFT4) with high Pd |i and small

number of samples;

14: end for

15: FFT1, FFT2, FFT3, FFT4 have high Pd |i { first selection metric for L};

16: Use same N1 (step 5) and FFT1, FFT2, FFT3, FFT4 to run two-dimensional

(2-D) simulations of E
[
(TS1)2

]
in dimensions of cyclic frequency α and the

carrier frequency fc ;

17: Select two FFT sizes that have more distinguishable correlation peaks from

the 2D plots {second selection metric for FFT size};

18: Calculate the total complexity according to (6.3) and the frequency resolu-

tion (4.30) for each of the two FFTs with N j ; {Calculate with different slot

sizes, see Appendix F.1}.

19: Select the FFT with the lowest computational complexity {third metric};

20: L = L̄ {Optimized FFT size};

21: M̄ = N j /L̄ {Optimized M for N j }
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Algorithm 3 Optimizing Slot Size and Number

1: Let j = 1:4

2: Inputs: Total samples = NB , FFT size L1 = 4, Slot sizes: N1 = 256, N2 = 128,

N3 = 64, N4 = 32, Test statistics T S1, T S1|δ,∆α and Threshold λ;

3: Outputs: |Si | = Magnitude of T S1ı, |Sδ,∆α|, i = Magnitude of T S1|δ,∆α, Proba-

bility of detection Pd , Optimized N = N̄ , P = P̄ ,

4: Slot number P j = N j

Li
;

5: for j=1:4 do

6: N = N j ;

7: M j = N j /L̄ {Number of L̄ in N j };

8: P j = NB /N j ;

9: Run simulations of Pd against NB with E
[
(TS1)2

]
and the parameters NB ,

N j , P j and L̄, M j ;

10: Pd = Pd |i {Probability of detection for the j th N .};

11: end for

12: Sort Pd | j in descending order;

13: A = Pd | j in descending order;

14: Select N j with high Pd | j with small number of samples;

15: N j = N̄ ; { Optimized N }

16: P̄ =N̄B /N̄ ; {Optimized P fot total number of samples}

6.4.1 Flowcharts for optimizing FFT and slot sizes

For more clarity, the optimization algorithms 2, 3 can be represented with two

flowchart diagrams for the optimized FFT size L and N .
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Figure 6.1: Flowchart for optimizing FFT size.
(a) Optimizing FFT size part 1.
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(b) Optimizing FFT size continued.
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Figure 6.2: Flowchart for optimizing slot size.
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6.5 The optimized N , P , L and M for a given dis-

tribution of CFO and SCO

We will use the optimized values of N , P , L and M from section 6.4 obtained

with a zero CFO and SCO and apply the derivations of Pfa (5.28) and Pd (5.32)

from section 5.4.1 in order to optimize the values of N ,P,L and M over a Ricean

channel for a given distribution of CFO and SCO [28]. In order to model the

CFO and SCO , we adopt a zero mean Gaussian probability distribution func-

tion (pdf) as used in [167, 168] . Therefore, the pdf of the CFO and SCO will

be represented by,

P∆α = 1p
2πσ2

e− ∆2
α

2σ2 (6.6)

and

Pδ =
1p

2πσ2
e− δ2

2σ2 (6.7)

respectively. For simplicity of comparison, the ∆α
σ ratios of 1 or 0.1 will be used

to represent the CFO and SCO from a typical range of CFO and SCO values

[-0.1,0.1] as was used in [124,165].

6.6 Results and Discussion

In this section, for simplicity FFT sizes of 4, 8, 16, 32, 64 and 128 samples will

be referred to as FFT4, FFT8, FFT16, FFT32, FFT64 and FFT128. Also slot

sizes 64, 128 and 256 samples as slot64, slot128 and slot256. It should be

mentioned that all the plots involving the probability of detection in the results

section asymptotically approach the maximum detection mark of 1.

6.6.1 Optimizing L and M with the Optimization Algorithm

In this section the test statistic T S1 (4.7) will be used in the simulation. Dur-

ing the 103 Monte Carlo iterations, different combinations of L and M will be

processed while keeping the N and P constant with a view of selecting the
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Figure 6.3: Probability of detection of 5MHz QPSK signal for multi-FFTs with

Pd in (simulation, see(4.14)) at -5dB noise, N = 256 samples, P = 8 and fs =

20 MHz.

best combination of L and M that achieves maximum Pd with small number of

samples. References are made to the algorithms 2 and 3. In order to select

an FFT, consideration should be given to the total samples that will cover the

bandwidth to be sensed. Secondly, N shall be selected to cover the certain

minimum samples required by any L to effectively correlate as in step 6 of the

algorithm 2 and derived in (4.8). For instance FFT length 64 requires mini-

mum of 128 samples to properly correlate considering that FFTs are required

in pairs for correlation. Given a total number of samples NB and slot size N of

2048 and 256 samples respectively as in Fig. (6.3), P can be calculated from

step 4 of the algorithm (2) as derived in (4.1) as 2048/256 = 8 slots. From Fig.

6.3 FFT lengths 4, 8 and 16 use the smallest sample sizes to reach the peak

detection. Since we were interested in optimization, N was further reduced to

128 as in Fig. 6.4 where FFT of size 16 shows more clearly the effect of the

reduction in the number of samples required for correlation and detection. The

reduction of N from 256 to 128 samples results in the use of fewer samples

for correlation. For the same N of 128 samples and the total samples reduced

from 2048 to 1024 as in Fig. 6.5, it shows that the same numbers of samples

required to reach the detection peak for the FFTs were maintained. These



6.6. Results and Discussion 129

Figure 6.4: Probability of detection of 5MHz QPSK signal for for multi-FFTs

with Pd in (simulation, see(4.14)) at -5dB noise, N = 128 samples, P = 16, fs =

20 MHz.

Figure 6.5: Probability of detection of 2.5MHz QPSK signal for for multi-FFTs

with Pd in (simulation, see(4.14)) at -5dB noise, N = 128 samples, P = 8 and

fs = 10 MHz.

show that the FFT and slot sizes determine the number of samples required

for peak detection. According to step 13 of algorithm 2, from Figs. 6.3, 6.4, 6.5

the four FFTs with the highest level of Pd are FFT4, FFT8, FFT16 and FFT32.

Apart from the maximum Pd requirement in step 13 and according to step 16

of algorithm 2, the representation of the signal in 2-dimensions (2-D) of fc and



6.6. Results and Discussion 130

Figure 6.6: Detection in terms of real signal features using TS1 in (simulation,

see (4.7)) with FFT sizes 4, 8, 16, 32 f = 1 MHz, N = 256 samples, P = 16, fs =

4 MHz and NB = 4096 samples at SNR = -5dB.

α will also be considered in choosing an FFT size which is the second metric

of FFT selection. In Fig. 6.6, it can be observed that FFT sizes 16 and 32 have

more distinguishable correlation peaks of the 1 MHz BPSK carrier signal than

others. Therefore both FFT sizes 16 and 32 are selected according to step 17.

For the purpose of clarity both FFT sizes 16 and 32 are plotted as in Fig. 6.7

According to step 18, further investigation are carried out as shown in Fig.

6.8 in terms of complexity and frequency resolution of the FFTs ∆ f , fs/L de-

rived in (4.30), where fs is the sampling rate. We will use the FFT complex

additions in calculating the complexities, see section 2.5.7.2 and Appendices

E and F for more details. For the purpose of clarity we used a sensing time

Tacq of 1 second and different slot sizes of 64 to 512 samples with fs of 4× f to

calculate the ∆ f and complexity as stated in (4.30) and (6.3) respectively. More

details of the calculations of complexity and ∆ f can be found in Appendix F.

In Fig. 6.8, it can be observed that FFT sizes 16 and 32 compensate for both

Frequency resolution ∆ f and complexity when compared with others. Note

that similar results will be obtained with other fs . However, FFT size 16 gives

a lower complexity than FFT size 32. Since complexity is one of the key objec-
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Figure 6.7: Detection in terms of real signal features using TS1 in (simulation,

see (4.7)) with FFT sizes 16, 32 f = 1 MHz, N = 256 samples, P = 16, fs = 4

MHz and NB = 4096 samples at SNR = -5dB.

Figure 6.8: Comparison of FFT Frequency Resolution and Complexity (ana-

lytic, see Appendices E and F) for 1-4KHz BPSK signal for Slot Sizes of 64-512

samples, fs = 4× f .

tives of this research, the optimized FFT size will be 16 samples. This value

gives a trade-off between large and small FFTs. The number of optimized

FFTs can simply be derived by dividing N by the optimized L according to step

21 of the algorithm 2.
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6.6.2 Optimizing N and P with the Optimization Algorithm

According to step 9 of algorithm 3, simulations to get the probability of detection

Pd with different slot sizes are carried out. For a given total number of samples

NB of 4096 as in Fig. 6.9, using different N with FFT of length 16. In Fig. 6.9 it

shows that the smaller the size of the slot, the smaller the number of samples

required to get to the peak detection.

Figure 6.9: Probability of detection of 10MHz QPSK signal for different Slot

Sizes with Pd in (simulation, see(4.14)) at -5dB noise, FFT size 16, P = 16 and

fs = 40 MHz.

From step 6 of the algorithm 2, the choice of N is affected by the L. It should

be noted that the minimum N for FFT size 16 is 32 samples according to step

3 of the optimization section 6.4 due to the minimum N required for acceptable

correlation since the FFTs are required in pairs to effectively correlate as in

T S1 (4.7). In dimensioning the test statistic T S1 (4.7) the product of correlat-

ing the Fourier transform is L2 and gives the maximum computable slots P for

any L. Therefore, the maximum P for FFT length 16 is 256. According to the

optimization requirements in (6.5), we should minimize N to achieve a maxi-

mum Pd which in turn creates more P . However in order to achieve this we will

consider not exceeding the maximum computable slots P of L2 as previously

mentioned.

Consequently, another concern in selecting an N is to consider the total
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P that will cover the total samples NB while not exceeding the maximum of

L2. It can be reasoned that the selection be based on a slot size that is not

at the minimum of 32 samples but satisfies both the maximum Pd with small

number of samples and maximum computable slots which is the square of the

FFT size, i.e L2. Therefore, N of 64 samples will be selected as the optimized

value since it satisfies both requirements. Given the optimized value of N , the

optimized number of slots P depends on NB .

In summary, considering the simulation results in Figs. 6.3-6.8 and calcu-

lations from (4.1) and (6.1), given a bandwidth (BW) of total samples NB of

4096, the optimized values of L, N , P , M were found to be 16, 64, 64 and 4

(per slot) respectively giving 256 total FFTs. Therefore, with algorithms 2, 3,

the optimized values of M , N , P and L can be obtained. This can be applied to

other total sample sizes.

6.7 Effect of using FFT size 64 with signals of low

SNR

Before considering the effects of applying the small optimised L and N in the

next section 6.8, it makes sense to observe the effects of using a larger FFT

such as FFT64 using the Pd ( 5.32) and P f a (5.28) derived in section 5.4.1 of

chapter 5. This will be useful in making comparisons. In Fig. 6.10 the use of

FFT64 at SCO & CFO of 0.04 could not bridge the gap between the curves

of the results under SCO and CFO and those when there were no constraints.

This shows that the presence of the constraints will have more impact on the

accuracy of detecting the signals. The slot size was reduced from 256 to 128

samples in Fig. 6.11 and it shows no significant improvement in the detection.
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Figure 6.10: Probability of detection under multi-SNR values with 5 MHz QPSK

signal with Pd|δ,∆α in (analytic, see ( 5.32)) at fs = 20 MHz, N = 256, P = 8,

FFT64, SCO/CFO = 0.04.

Figure 6.11: Probability of detection under multi-SNR values with 2.5 MHz

QPSK signal with Pd|δ,∆α in (analytic, see ( 5.32)) at fs = 10 MHz, N = 128, P =

8, FFT64 and SCO/CFO = 0.04.

6.8 Applying the Optimized L and N under SCO

and CFO

In this section, the performance of the non-conjugate test statistic second mo-

ment E
[
{T S1}2

]
is being investigated for different FFTs and fixed combinations
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of SCO and CFO values. This will compare the performance of the model in

the presence of these constraints using the Pd in ( 5.32) and P f a in (5.28) with

receiver constraints in section 5.4.1 of chapter 5.

6.8.1 Optimized L under different values of SCO and CFO

As expected, in Fig. 6.12, the response of the model using FFT size 16 to

a distribution of the combinations of CFO and SCO shows that the lower the

SCO and CFO constraints the higher the detection probability. It shows it is

able to deal with different values of the constraints.

Figure 6.12: Probability of detection with multi-offsets for 2.5MHz QPSK signal

with Pd|δ,∆α in (analytic, see ( 5.32)) of -5dB noise at fs = 10 MHz, N = 128, P

= 8 and FFT 16.

6.8.2 Effect of the optimized L with signals of low SNR

The use of the optimized FFT16 in Fig. 6.13 at N of 256 samples improved the

detection significantly and especially at moderately low signals such as -4dB

and 1 dB. The gaps get narrower than the previous results in Fig. 6.11. The re-

duction of N to 128 samples for the same FFT16 as in Fig. 6.14 shows a signif-

icant closing of the gaps between the constrained and non-constrained curves

at lower signal levels. However, note that the slight reduction in the magnitude
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Figure 6.13: Probability of detection under multi-SNR values with 5 MHz QPSK

signal with Pd|δ,∆α in (analytic, see ( 5.32)) at fs = 20 MHz, N = 256, P = 8,

FFT16 and SCO/CFO = 0.04.

Figure 6.14: Probability of detection under multi-SNR values with 2.5 MHz

QPSK with Pd|δ,∆α in (analytic, see ( 5.32)) at fs = 10 MHz, N = 128, P = 8,

FFT16 and SCO/CFO = 0.04.

of detection is as a result of the reduced slot size to 128 samples which invari-

ably produces less number of FFTs for correlation. Further reduction of N to

64 samples 64 as in Fig. 6.15 for 32 slots to cover for the total samples for the

wideband channel showed significantly improved detection. The constrained

curves are closely matched by the unconstrained curves. This shows that the
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Figure 6.15: Performanace under SCO/CFO = 0.04 for P = 32, multi-SNR

values with 5 MHz QPSK signal with Pd|δ,∆α in (analytic, see ( 5.32)) at fs = 20

MHz, N = 64, NB = 2048 samples and FFT16.

effect of the SCO and CFO have been significantly reduced by using the opti-

mized values of L and N . Therefore this combination of FFT size 16, slot size

64 and slot number 32 is optimized for the total samples. This approach can

also be applied to other sample sets.

For instance, the reduction of the impact of SCO and CFO is shown in Fig.

6.16 with the optimized L, N , M and P for NB of 4096 samples. Here, the gaps

between the curves of with and without the constraints of SCO and CFO are

quite closely matched indicating a similar performance when the optimized L,

M , N and P are applied with or without the constraints. It reduces the concern

that a large number of samples are needed for the Cyclostationary Feature

Detection under receiver constraints.

The performance can be further investigated by considering the receiver

operating characteristic for a fixed constraints value of 0.1 for 2048 total sam-

ples using the optimized L and N as shown in Fig. 6.17 The model can detect

signals significantly down to -11 dB SNR.
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Figure 6.16: Performanace under SCO/CFO = 0.04 for P = 64, multi-SNR

values with 10 MHz QPSK signal with Pd|δ,∆α in (analytic, see ( 5.32)) at fs =

40 MHz, N = 64, NB = 4096 samples and FFT16.

Figure 6.17: Receiver Operating Characteristic for multi-SNR values with 10

MHz QPSK signal with (analytic, see (5.32, 5.28)), N = 64, P =32, NB = 2048

samples, FFT16 and SCO/CFO = 0.1.

6.8.3 Comparison with Conventional test statistic

The model test statistic T S1|δ,∆α can be compared against the conventional

SCF without slots (4.9) with FFT16 and slot size of 64 samples as shown in

Fig. 6.18 at SCO/CFO value of 0.1. It shows significant improvement over the

conventional SCF even in the presence of receiver constraints.
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Figure 6.18: Comparison between Model and Conventional TS in (simulation,

see (4.9, 5.18)) for multi-SNR values with 5 MHz QPSK signal at fs = 20 MHz,

N = 64, P =32, NB = 2048 samples, FFT16 and SCO/CFO = 0.1.

6.8.4 Performance in 2-dimensions of carrier frequency f

and cyclic frequency α

The performance of the second moment of the test statistic can be investi-

gated in terms of the cyclic features of the signal such as carrier and cyclic

frequencies. The optimized slot size 64 and FFT size 16 were used for five

different BPSK signals at a combination of SCO and CFO value of 0.2 in a

2-dimensional contour plot shown in Fig. 6.19. Note that the carrier frequency

is read off the centre of each legend line that represents it.
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Figure 6.19: Contour plot with (simulation (5.18)) for BPSK signals, SCO/CFO

= 0.2, with FFT size 16, f = 1-10 MHz, α = 2 f , N = 64, P = 64 and fs = 40

MHz.

6.8.5 The Impact of FFT Complexities

There is an associate increase in the number of overall FFTs when small FFTs

and small slot sizes are used to cover a wideband channel. Next the opti-

mized FFT size 16 will be investigated in the form of comparisons with other

larger FFTs in terms of slot size and number. The FFT complexities due to the

multi-slot approach will be compared against the conventional SCF using the

calculations derived in (4.1), (6.2), (6.3). Note that the FFT complexity in this

research is expressed in terms of the FFT complex multiplications, see section

2.5.7.2 and Appendix E.

The comparison of the complexities between the different sizes of FFTs and

slot sizes are shown in Fig. 6.20. For smaller slot sizes N , the lower the com-

plexity with fixed FFT size 16. This shows lower complexity for the wideband

F F Ttc (6.3) even as the slot size N is increased. The lower complexity perfor-

mance using FFT size 16 is also supported in Fig. 6.21 at N of 256 samples

even as the number of slots is increased. As previously mentioned, for details

of the calculations of the FFT complexities, refer to Table E.2 of Appendix E.

In Fig. 6.22, although more FFTs are involved using FFT size 16 for the same
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Figure 6.20: Complexity for different slot sizes and FFTs Table E.1 of Appendix

E.

Figure 6.21: Complexity for different slot numbers and FFTs Table E.2 of Ap-

pendix E.

slot size as other FFTs, the complexity is still lower in comparison to the cases

with larger FFTs. Therefore, from Figs 6.20, 6.21 and 6.22, it is shown that

the use of small FFTs and slot sizes for the correlation does not impact the

model in terms of computational complexity. As previously mentioned, it is un-

derstood that using FFTs of smaller sizes results in an increased number of

FFTs M for any given bandwidth. Although there is an increased number of

FFTs using the smaller FFTs, the total computational complexity due to a small
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Figure 6.22: Complexity for increasing number of FFTs Table E.2 of Appendix

E.

FFT is lower, compared with the cases when larger FFTs are used. Applying

this to the optimization problem in (6.4), means that the increase in M is not

a disadvantage as long as L is small. Therefore, the use of small N and L

satisfies the optimization requirements in (6.4) and (6.5).

The validity of the research approach in terms of small complexity can also

be compared against the conventional SCF. The gain in complexity of the Test

Statistic over the conventional SCF increases more with small size FFTs as in

Fig. 6.23. The smaller the FFT size the more the difference in the complexities

between the conventional SCF and the Test Statistic. It offers lower complex-

ity,and as a result faster speed and improved accuracy for low SNRs in the

presence of receiver constraints due to the small size FFT and slot. It shows

significant complexity gain.
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Figure 6.23: Comparison between Model Statistic and Conventional SCF Com-

plexities Table E.1 of Appendix E.

6.9 Chapter Six Summary

In this chapter, the procedures for the optimization of the parameters of the

multi-slot wideband cyclostationary feature detection were given and demon-

strated through simulations. The optimized values of the Fast Fourier Trans-

form and slot sizes in samples were obtained taking into consideration the

trade-off in frequency and temporal resolutions. These values were applied

for use with the test statistic under sampling clock and cyclic frequency offset

receiver constraints. It was shown that the effects of these offsets were re-

duced in comparison to the case of when just the conventional statistics of the

spectral correlation density function were applied.

The performance of the test statistic under low signal-to-noise ratio has

shown significant improvement over the conventional statistic. It was also

shown that the use of small fast Fourier transform sizes together with the use

of multiple slots which are features of the multi-slot model test statistics do not

result in an increase in the computational complexity when compared with the

use of the conventional spectral correlation function.

The use of 2-dimensional plots of carrier and cyclic frequencies showed the
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precision of detecting the presence of different signals in a wideband channel

which is prevalent in real communication environments. It should also be men-

tioned that this algorithm and associated procedures can be applied to other

sample sets to achieve similar outcomes.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In spectrum sensing, it has been a research challenge to have the technique

that can combine robustness to noise with low complexity, cost and efficiency.

Conventional cyclostationary spectrum sensing is robust to noise but at the

cost of a large number of samples which result in high complexity, cost and

efficiency. In this research, multi-slot wideband cyclostationary spectrum sens-

ing models have been deployed in the frequency domain using test statistics.

These models will serve as guides to the hardware or physical implementation

of wideband cyclostationary spectrum sensing models.

The test statistic was statistically analysed and investigated with different

sizes of fast Fourier transforms in combination with different slot sizes. Differ-

ent plots were produced which included the probability of detection, receiver

operating characteristics using the linearly modulated signals such as Quadra-

ture Phase Shift Keying and Binary Phase Shift Keying signals without receiver

constraints. The combinations that produced high detection levels with small

numbers of samples were selected for other tests. Such combinations will

produce lower computational complexities in terms of complex additions asso-

ciated with the computation of the fast Fourier transform. These combination

were also used to observe the performance of the cyclostationary feature de-

tection with signals under low values of signal-to-noise ratios in order to test its
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robustness to noise. The results were obtained analytically or by applying the

test statistic in simulations.

It has been shown that smaller fast Fourier transforms give better detection

using reduced sample size than the larger ones. Also, the smaller slot size

is of advantage depending on the fast Fourier transform size that is adopted.

Additionally, the smaller slot and fast Fourier transform sizes will enable the

correlation of spectral components at shorter time and eventual shorter detec-

tion time which will compensate in terms of temporal resolution.

From the calculations of computational complexity, it was shown that the

use of small sizes of FFTs and slots will result in low complexity, cost and

efficiency in terms of the number of samples that will be used for processing

the signals. This is in line with the objectives of the research. It was also shown

that the benefits of cyclostationary features which are robust to signals with low

signal-to-noise ratios were achieved using these models and fulfilling one of the

research objectives. The model was compared against the energy detection

and conventional cyclostationary feature detection that uses the conventional

discrete spectral correlation function. It showed significant benefits over them.

The detection performance of the model in terms of real value signal features

such as signal frequency and cyclic frequency with specific location detection

showed that the model can be applied to real communications settings.

One of the important drawbacks of cyclostationary spectrum sensing is

the issue of receiver constraints. We investigated the reduction of these con-

straints using these models to obtain the optimum sizes of FFTs and slots for

better signal detection. The test statistic was analysed for signals with receiver

constraints such as cyclic frequency offset and sampling clock offset. Different

combinations of the fast Fourier transform and slots were used in investigating

the test statistic in the presence of the receiver constraints. The combinations

that produce higher levels of probability of detection with small number of sam-

ples were similar to the combinations obtained previously for the conditions of

no receiver constraints.

This shows that even in the presence of receiver constraints of cyclic fre-
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quency offset and sampling clock offset the same computational complexity of

the fast Fourier transform will be produced which makes the models applicable

in both circumstances of receiver constraints and no receiver constraints and

fulfilling one of the research objectives. The model was compared against the

conventional cyclostationary feature detection under receiver constraints and

showed significant benefits over it.

The detection of signals with the test statistic under the receiver constraints

was also shown in terms of 2-dimensional plot of the carrier and cyclic frequen-

cies. It was also shown to have wideband capability and was demonstrated

with six QPSK signals of different carrier frequencies fulfilling one of the objec-

tives.

Generic algorithms that can be applied for the detection and optimization

of the use of this test statistic were developed. These algorithms can be ap-

plied to any number of total samples for the desired wideband channel in order

to obtain the optimized combination of FFTs and slots. Generic algorithms

were developed in order for the detection procedures already discussed to be

applicable to different sample sets that represent different signal types and

frequencies.

Optimization problems were formulated considering the constraints of cyclic

frequency offset and sampling clock offset. The objective of the optimization

problem was to produce high probability of detection with small number of sam-

ples. This was investigated with the test statistic under the receiver constraints

and the method of brute force search was applied. The specific combination of

sizes and numbers of fast Fourier transform and slots was obtained. This par-

ticular combination was tested with different sample sets and the performance

under the receiver constraints were significant. The algorithms provided early

exit points if signal is detected. This was made possible by detection with small

number of samples. Therefore, the entire wideband need not be processed re-

sulting in faster detection which satisfies one of the objectives.

The performance of the test statistic with the optimized sizes and numbers

of fast Fourier transform and slot in the presence of the receiver constraints
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and under low signal-to-noise ratio has shown significant improvement over

the conventional statistic. It was also shown that with the optimized small sizes

of fast Fourier transform and slots together with the use of multiple slots which

are features of the multi-slot model test statistics do not result in an increase in

the computational complexity when compared with the use of the conventional

spectral correlation function.

7.2 Future Work

This research adopted the principle that cyclostationary spectrum sensing re-

quires prior knowledge of some of the signals’ features for effective detection.

An extension of this work can be done by carrying out the analysis of the con-

ventional spectral correlation function using other signal types such as orthog-

onal frequency division multiplexing. this will follow similar approach adopted

in this research but emphasis will be put on the multiple carriers which is syn-

onymous of orthogonal frequency division multiplexing. This will involve carrier

frequency offset as an additional receiver offset because of the multiple carri-

ers associated with this type of modulation.

Another extension could be to study a blind cyclostationary feature detec-

tion when the signal parameters such as modulation type, carrier frequency

are not known. This will involve the estimation of these parameters. The anal-

ysis can also be done using the idea of small sizes of fast Fourier transform

and slots. This is expected to reduce the uncertainty of estimation which will

be large if correlation is wholly applied on large number of sample sets. Such

a model can also be compared with the non-blind approach adopted in this

research.

A hybrid spectrum sensing method can be investigated by combining the

non-blind cyclostationary feature detection and the energy detection method.

Such a model will benefit from one of the characteristics of energy detection

which is not having prior knowledge of the signal parameters such as modula-

tion type. It will also exhibit robustness to noise associated with cyclostationary
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spectrum sensing. The hybrid model can be compared with the model in this

research for conditions under receiver constraints and for computational com-

plexity.

Further extension of this work could be to study compressive sensing under

no prior knowledge of the signal’s features. It can then be evaluated to observe

how effective the detection and complexity could be using appropriate sizes of

FFTs and slots for cases of known and unknown signal features could also be

done.
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Appendix A

Derivation of Cyclic

Autocorrelation Function

Let us consider a signal x(t ) with a fundamental period T and mean mx ,

x(t ) = x(t +T ) (A.1)

mx(t +T ) = mx(t ). (A.2)

As discussed in [91], periodic signals can be represented using Fourier series

coefficients as

x(t ) =
∞∑

k=−∞
ak e j kw0t , (A.3)

where

w0 = 2π

T0
, (A.4)

is the fundamental frequency and Fourier coefficient ak , given as,

ak = 1

T

∫
T

x(t )e− j kw0t d t . (A.5)

According to [5,91], the autocorrelation function (AF) is periodic in t with period

T and expressed as,

Rx (t ,τ) = Rx (t +T,τ)

= Rx

(
t + τ

2
, t − τ

2

) (A.6)

and can further be expressed as,

Rx

(
t + τ

2
, t − τ

2

)
= E

[
x

(
t + τ

2

)
x∗

(
t − τ

2

)]
(A.7)
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where E is the Expectation. The AF is time-based and periodic function of the

variable t . That is, equation (A.7) is periodic in t with period T and can also be

represented by Fourier series as,

Rx

(
t + τ

2
, t − τ

2

)
=∑

α

Rα
x (τ)e− j 2παt (A.8)

for α over all integer multiples m of the fundamental frequency of periodicity 1
T

i.e. α= m
T where α is the Fourier or cyclic frequency, T is the period and Rα

x (τ)

is the Fourier-series coefficient as discussed in [4],

Rα
x (τ) = 1

T

∫ ∞

−∞
Rx (t ,τ)e− j 2παt d t (A.9)

and it is the Cyclic Autocorrelation Function (CAF). From (A.1) the CAF can be

expressed as,

Rα
x (τ) = lim

T→∞
1

T

∫
T

Rx

(
t + τ

2
, t − τ

2

)
e− j 2παt d t . (A.10)

Also, substituting (A.7) into (A.10),

Rα
x (τ) = lim

T→∞
1

T

∫
T
E
[

x
(
t + τ

2

)
x∗

(
t − τ

2

)]
e− j 2παt d t (A.11)

where (*) represents a conjugation and as previously mentioned E is the ex-

pected value of the autocorrelation. The CAF depends on the time-difference

or lag τ. Therefore, the generalised non-conjugate CAF can simply be written

as,

Rα
x (τ) = lim

T→∞
1

T

∫
T

x
(
t + τ

2

)
x∗

(
t − τ

2

)
e− j 2παt d t . (A.12)

The expression of non-conjugate refers to the term on the left of equation A.12.

Similarly, the conjugate CAF is expressed as,

Rα
x∗ (τ) = lim

T→∞
1

T

∫
T

x
(
t + τ

2

)
x

(
t − τ

2

)
e− j 2παt d t (A.13)

and notice that none of the factors is conjugated as discussed in [55,95] except

the term on the left of equation A.13. The conjugation is to accommodate

complex-valued signals.



Appendix B

Derivation of Spectral Correlation

Function

The generalised CAF in equation (A.12) can be expressed as the conventional

cross-correlation of the two complex-valued frequency-shifted versions of x(t ).

Recall that multiplying a signal by e± jπαt shifts the spectral content of the signal

by ±α/2, see [55]. This can be illustrated as,

u(t ) = x(t )e− jπαt

and

v(t ) = x(t )e jπαt

(B.1)

and the generalised cross-correlation for u(t ) and v(t ) is given as

Ruv (τ) = lim
T→∞

1

T

∫ T /2

−T /2
u

(
t + τ

2

)
v∗

(
t − τ

2

)
d t (B.2)

where v∗(t ) is the complex conjugate of v(t ) [95]. This reverses the sign of the

imaginary part of v(t ) as in v∗(t ) = x(t )e− jπαt . When (B.1) is substituted into

(B.2),

Ruv (τ) = lim
T→∞

1

T

∫ T /2

−T /2
x

(
t + τ

2

)
e− jπα(t+τ/2)x∗

(
t − τ

2

)
e− jπα(t−τ/2)d t

= lim
T→∞

1

T

∫ T /2

−T /2
x

(
t + τ

2

)
x∗

(
t − τ

2

)
d t

= Rα
x (τ) .

(B.3)

This shows that CAF can be described as time-averaged cross-correlation be-

tween two frequency-shifted versions of the process x(t ). The time-based
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CAF is expressed in equations (A.12) and (B.3) and can be represented in

an equivalent frequency domain by taking the Fourier Transform of (B.3). This

expresses the Cyclic Wiener relation [55,91] as,

Sαx ( f ) = F T
{
Rα

x (τ)
}= ∫ ∞

−∞
Rα

x (τ)e− j 2π f τdτ. (B.4)

where F T is the Fourier Transform. It is called the Cyclic Spectrum, spectral

correlation Function (SCF) or Spectral Correlation Density Function (SCDF) for

a given cyclic frequency α. In [4,5], it is shown that (B.4) is obtainable from the

operations in (B.5),

Sαx ( f ) = lim
1/T ′→0

lim
T→∞

1

T ′

∫ T ′/2

−T ′/2

1

T
XT

(
t , f + α

2

)
X ∗

T

(
t , f − α

2

)
dt (B.5)

where XT
(
t , f

)
is the short time Fourier transform or complex envelope of the

narrow-band spectral component of x(t ) with centre frequency f , bandwidth on

the order of 1
T with T as the period for the observation time T ′. The complex

envelope is expressed as,

XT (t , f ) =
∫ t+T /2

t−T /2
x(t )e− j 2π f t d t . (B.6)

The generalised non-conjugate Spectral Correlation Function (SCF) (B.5) shows

the limit as spectral resolution becomes infinitesimal (1/T → ∞) of the limit

(T →∞) temporal correlation of the two spectral components of x(t ) with fre-

quencies f +α/2 and f −α/2. Similarly, from (B.5), the conjugate SCF is given

as,

Sαx∗( f ) = lim
1/T ′→0

lim
T→∞

1

T ′

∫ T ′/2

−T ′/2

1

T
XT

(
t , f + α

2

)
XT

(
t , f − α

2

)
dt . (B.7)



Appendix C

Spectral Correlation Function OF

M-ary PSK Signals

Phase-Shift Keying

A Phase-Shift Keying (PSK) signal x)t ) is a Phase-Modulated (PM) in which

the phase time series is a digital Pulse Amplitude Modulated (PAM) signal φ(t )

and expressed as,

x(t ) = cos(2π fc t +φ(t )) (C.1)

and

φ(t ) =
∞∑

n=−∞
an g (t −nT − t0) (C.2)

where g (.) is the shaping pulse, an is the pulse amplitude, t0 is the timing

parameter for the phase keying. Also, fc and T are the carrier frequency and

period respectively. It can be shown that,

x(t ) = 1

2
e j 2π fc t+ jφ+ 1

2
e− j 2π fc t− jφ. (C.3)

After Substituting (C.3) in (16) and applying Fouriet transform as discussed

in [4, 5, 55, 98, 169] , it can be shown that the spectral correlation function for
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BPSK signal is given by,

Sαx ( f ) = 1

4T

{[
G

(
f + fc + α

2

)
G

(
f + fc − α

2

)
+G

(
f − fc + α

2

)
G

(
f − fc − α

2

)]
e− j 2παt0

+G
(

f + α

2
+ fc

)
G

(
f − α

2
− fc

)
e[− j(2π[α+2 fc ]t0−2φ0)]

+G
(

f + α

2
− fc

)
G∗

(
f − α

2
+ fc

)
e[− j(2π[α−2 fc ]t0−2φ0)]

}
(C.4)

for all integers k, α= k
T , where the rectangular pulse is given by,

G( f ) = sin(π f T )

π f
. (C.5)

G( f ), 1/T and φ0 are the Fourier Transform of the shaping pulse g (t ) given

in (C.2), the symbol rate and carrier phase respectively. PSK signal is also

described as a binary Amplitude-Shift Keying (ASK) signal for M-ary (M) = 2

and for M > 2, it is called a Quadrature Amplitude Modulation (QAM).

x(t ) = c(t )cos(2π fc t +φ0) = s(t )sin(2π fc t +φ0) (C.6)

where c(t ) and s(t ) are the time-aligned in-phase and quadrature binary digital

PAM signals respectively. Similarly, as discussed in [4, 98, 169] , it can be

shown that the spectral correlation function for QPSK signal is given as,

Sαx ( f ) = 1

2T

[
G

(
f + α

2
+ fc

)
G

(
f − α

2
+ fc

)
Sαc ( f + fc )

+G
(

f + α

2
− fc

)
G

(
f − α

2
− fc

)]
e− j 2παt0 (C.7)

for all integers of k, α= k
T0

. For more details of the derivations, see [4,5,55,98,

169].



Appendix D

Derivation of the Effect of Phase

Offset on the Test Statistic.

A time shifted received wideband signal x(t ) can be represented as

x̄(t ) = x(t − ts) (D.1)

where ts is the time shift in the time domain and varies as the number of sam-

ples increases. It can be expressed in terms of sampling clock offset δ and for

all the time samples in the p th slot of size N as,

tp = Nδp. (D.2)

It results in a phase offset e− j 2παNδp for the p th slot and is accumulated over

all the slots in the wideband channel. Therefore, SCF estimate for the p th slot

that is affected by the SCO after substituting for tp is given as,

S̄αx (k, p|δ) = 1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
×X ∗

L,p

(
n,k − α

2

)
e− j 2παNδp . (D.3)

Consider a total P number of slots, the total phase offset is given as,

φ=
P−1∑
p=0

e− j 2παNδp (D.4)

where e− j 2παNδp is the phase offset for the p th slot as explained above. The

non-conjugate Test Statistic TS1 derived in (4.7) of section 4.1 in chapter 4 is a

function of the slots and FFTs. The SCF estimates for the p th slot given in (D.3)
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are non-coherently added and the resulted test statistic has the attenuated

feature, see [137]. This can be represented by substituting the total phase

offset φ given in (D.4) into the non-conjugate SCF for the wideband channel

(4.7) giving a non-conjugate Test Statistic under SCO only as,

S̄αx (k|δ) = 1

P

P∑
p=1

(
1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
×X ∗

L,p

(
n,k − α

2

))P−1∑
p=0

e− j 2παNδp (D.5)

and can be further expressed as,

S̄αx (k|δ) = 1

P

P∑
p=1

Sαx (k, p)
P−1∑
p=0

e− j 2παNδp (D.6)

where

Sαx (k, p) = 1

N

N−1∑
n=0

1

L
XL,p

(
n,k + α

2

)
×X ∗

L,p

(
n,k − α

2

)
(D.7)

represents the non-conjugate SCF without phase shifts for the p th slot as de-

rived in (4.6). As was used in [137], it can be shown that the analysis of φ in (

D.4) is,
P−1∑
p=0

e− j 2παNδp = sin(παPNδ)

sin(παNδ)
e− jπαNδP−1. (D.8)

We can adopt the geometric series discussed in [170], [171] and stated in

(D.9), to analyse the phase offset φ ( D.4) which is same as the summation

part (right) in (D.6), i.e, using,
N−1∑
n=0

e j nx = 1−e j N x

1−e j x
. (D.9)

Therefore applying the geometric series rule expressed in (D.9) the phase off-

set φ (D.4) becomes,

φ=
P−1∑
p=0

e− j 2παNδp

= 1−e− j 2πα(P Nδ)

1−e− j 2πα(Nδ)

= −e− jπα(P Nδ)
(
e jπα(P Nδ) −e− jπα(P Nδ)

)
−e− jπα(Nδ)

(
e jπα(Nδ) −e− jπα(Nδ)

)
= sin(παPNδ)

sin(παNδ)
e− jπαNδ(P−1).

(D.10)

Substituting (D.10) in (D.6) the test statistic with SCO effect becomes,

S̄αx (k|,δ) = 1

P

P∑
p=1

Sαx (k, p)
sin(παPNδ)

sin(παNδ)
e− jπαNδ(P−1). (D.11)
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Note that if P = 1 (no multi-slot) with zero SCO , (D.11)is equivalent to the

conventional SCF as given in (3.17). If P ≥ 1 and αN∆s is an integer, then

looking at the pure real (fraction) in (D.11) we can observe that numerator and

denominator are zero for any integral value of αN∆s . Consequently, the SCO

will have no effect on the TS1. It follows also, that for any non-integral value of

αN∆s , the TS1 will be constrained. Usually, in practice under the prersence of

SCO αNδ is non-integral.



Appendix E

Calculations of the FFT

Complexities

The following tables were based on the formula of the complex additions in

section 2.5.7.2 and the following equations (4.1), (6.2), (6.3) to calculate the

complexities of the FFTs.

Given the following,

Total number of FFTs
N P

L

Complex Additions per FFT

N logN

Model Complexity (with slots)
N P

L × N logN

Conventional Complexity (without slots)

N ×P log N ×P
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Table E.1: Calculations of the FFT Complexities with different slot sizes, P =

16 and f = 5 MHz

Slot Size

N

FFT Size L Total

Number of

FFTs

Complex

Additions

per FFT

Model

Complex-

ity (6.3)

Convent.

Complex-

ity

512 16 512 64 32768 106496

256 16 256 64 16384 49152

128 16 128 64 8192 22528

64 16 64 64 4096 10240

512 32 256 160 40960 106496

256 32 128 160 20480 49152

128 32 64 160 10240 22528

64 32 32 160 5120 10240

512 64 128 384 49152 106496

256 64 64 2384 24576 49152

128 64 32 384 12288 22528

64 64 16 384 6144 10240
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Table E.2: Calculations of the FFT Complexities with fixed slot size N = 256

samples, fs = 4 × f , Tacq = 0.15 millisecond.

Number of

slots P

FFT Size L Total

Number of

FFTs

Complex

Additions

Model

Complex-

ity (6.3)

Convent.

Complex-

ity

24 16 384 64 24576 77322

12 16 192 64 12288 35589

6 16 96 64 6144 16258

3 16 48 64 3072 7361

2 16 32 64 2048 4608

24 32 192 160 30720 77322

12 32 96 160 15360 35589

6 32 48 160 7680 16258

3 32 24 160 3840 7361

2 32 16 160 2560 4608

24 64 96 384 36864 77322

12 64 48 384 18432 35589

6 64 24 384 9216 16258

3 64 12 384 4608 7361

2 64 8 384 3072 4608



Appendix F

FFT Resolutions and Complexities

The objective is to establish the trade-off between the effects of spectral spread-

ing and spectral leakage caused by the use of window and FFT as discussed

in section 2.6.1 and frequency resolutions in section 4.1.4. The total complex-

ity is based on the FFT complex multiplications only. The following parameters

and equations were used to calculate the total FFT complxities and frequency

resolutions in Table F. The number of slots P = 16, sensing time Tacq = 1 sec-

ond, frequency f = 1, 2, 3 and 4 KHz, sampling frequency fs = 4 ×( f ) and eqs.

6.4, 6.5, 6.2, 6.1, 6.3 and 4.30.
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Table F.1: FFT Resolutions and Complexities.

Slot Size

N

Sampling

Fre-

quency

FFT Siz L Total

Number

of FFTs

Total

Com-

plexity

Frequency

Resolu-

tion

512 4000 4 2048 16384 1000

256 8000 4 1024 8192 2000

128 12000 4 512 4096 3000

64 16000 4 256 2048 4000

512 4000 8 1024 24576 500

256 8000 8 512 12288 1000

128 12000 8 256 6144 1500

64 16000 8 128 3072 2000

512 4000 16 512 32768 250

256 8000 16 256 16384 500

128 12000 16 128 8192 750

64 16000 16 64 4096 1000

512 4000 32 256 40960 125

256 8000 32 128 20480 250

128 12000 32 64 10240 375

64 16000 32 32 5120 500

512 4000 64 128 49152 62.5

256 8000 64 64 24576 125

128 12000 64 32 12288 187.5

64 16000 64 16 6144 250



Appendix G

Time domain Window Functions

Comparisons

For more details on the window functions, see [86,87,89].

Table G.1: Comparison of Window Functions

Window Best for

these signal

types

Frequency

Resolution

Spectral

Leakage

Amplitude

Accuracy

Barlett Random Good Fair Fair

Blackman Random or

mixed

Poor Best Good

Flat top Sinusoids Poor Good Best

Hanning Random Good Good Fair

Hamming Random Good Fair Fair

Kaiser-Bessel Random Fair Good Good

None(boxcar) Transient and

Synchronous

Sampling

Best Poor Poor

Tukey Random Good Poor Poor

Welch Random Good Good Fair
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