172 research outputs found

    Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    Get PDF

    Reconfigurable Data Planes for Scalable Network Virtualization

    Get PDF
    Abstract—Network virtualization presents a powerful approach to share physical network infrastructure among multiple virtual networks. Recent advances in network virtualization advocate the use of field-programmable gate arrays (FPGAs) as flexible high performance alternatives to conventional host virtualization techniques. However, the limited on-chip logic and memory resources in FPGAs severely restrict the scalability of the virtualization platform and necessitate the implementation of efficient forwarding structures in hardware. The research described in this manuscript explores the implementation of a scalable heterogeneous network virtualization platform which integrates virtual data planes implemented in FPGAs with software data planes created using host virtualization techniques. The system exploits data plane heterogeneity to cater to the dynamic service requirements of virtual networks by migrating networks between software and hardware data planes. We demonstrate data plane migration as an effective technique to limit the impact of traffic on unmodified data planes during FPGA reconfiguration. Our system implements forwarding tables in a shared fashion using inexpensive off-chip memories and supports both Internet Protocol (IP) and non-IP based data planes. Experimental results show that FPGA-based data planes can offer two orders of magnitude better throughput than their software counterparts and FPGA reconfiguration can facilitate data plane customization within 12 seconds. An integrated system that supports up to 15 virtual networks has been validated on the NetFPGA platform

    Mémoires associatives algorithmiques pou l'opération de recherche du plus long préfixe sur FPGA

    Get PDF
    RÉSUMÉ Les réseaux prédiffusés programmables — en anglais Field Programmable Gate Arrays (FPGAs)— sont omniprésents dans les centres de données, pour accélérer des tâches d’indexations et d’apprentissage machine, mais aussi plus récemment, pour accélérer des opérations réseaux. Dans cette thèse, nous nous intéressons à l’opération de recherche du plus long préfixe en anglais Longest Prefix Match (LPM) — sur FPGA. Cette opération est utilisée soit pour router des paquets, soit comme un bloc de base dans un plan de données programmable. Bien que l’opération LPM soit primordiale dans un réseau, celle-ci souffre d’inefficacité sur FPGA. Dans cette thèse, nous démontrons que la performance de l’opération LPM sur FPGA peut être substantiellement améliorée en utilisant une approche algorithmique, où l’opération LPM est implémentée à l’aide d’une structure de données. Par ailleurs, les résultats présentés permettent de réfléchir à une question plus large : est-ce que l’architecture des FPGA devrait être spécialisée pour les applications réseaux ? Premièrement, pour l’application de routage IPv6 dans le réseau Internet, nous présentons SHIP. Cette solution exploite les caractéristiques des préfixes pour construire une structure de données compacte, pouvant être implémentée de manière efficace sur FPGA. SHIP utilise l’approche ńdiviser pour régnerż pour séparer les préfixes en groupes de faible cardinalité et ayant des caractéristiques similaires. Les préfixes contenus dans chaque groupe sont en-suite encodés dans une structure de données hybride, où l’encodage des préfixes est adapté suivant leurs caractéristiques. Sur FPGA, SHIP augmente l’efficacité de l’opération LPM comparativement à l’état de l’art, tout en supportant un débit supérieur à 100 Gb/s. Deuxièment, nous présentons comment implémenter efficacement l’opération LPM pour un plan de données programmable sur FPGA. Dans ce cas, contrairement au routage de pa-quets, aucune connaissance à priori des préfixes ne peut être utilisée. Par conséquent, nous présentons un cadre de travail comprenant une structure de données efficace, indépendam-ment des caractéristiques des préfixes contenus, et des méthodes permettant d’implémenter efficacement la structure de données sur FPGA. Un arbre B, étendu pour l’opération LPM, est utilisé en raison de sa faible complexité algorithmique. Nous présentons une méthode pour allouer à la compilation le minimum de ressources requis par l’abre B pour encoder un ensemble de préfixes, indépendamment de leurs caractéristiques. Plusieurs méthodes sont ensuite présentées pour augmenter l’efficacité mémoire après implémentation de la structure de données sur FPGA. Évaluée sur plusieurs scénarios, cette solution est capable de traiter plus de 100 Gb/s, tout en améliorant la performance par rapport à l’état de l’art.----------ABSTRACT FPGAs are becoming ubiquitous in data centers. First introduced to accelerate indexing services and machine learning tasks, FPGAs are now also used to accelerate networking operations, including the LPM operation. This operation is used for packet routing and as a building block in programmable data planes. However, for the two uses cases considered, the LPM operation is inefficiently implemented in FPGAs. In this thesis, we demonstrate that the performance of LPM operation can be significantly improved using an algorithmic approach, where the LPM operation is implemented using a data structure. In addition, using the results presented in this thesis, we can answer a broader question: Should the FPGA architecture be specialized for networking? First, we present the SHIP data structure that is tailored to routing IPv6 packets in the Internet network. SHIP exploits the prefix characteristics to build a compact data structure that can be efficiently mapped to FPGAs. First, SHIP uses a "divide and conquer" approach to bin prefixes in groups with a small cardinality and sharing similar characteristics. Second, a hybrid-trie-tree data structure is used to encode the prefixes held in each group. The hybrid data structure adapts the prefix encoding method to their characteristics. Then, we demonstrated that SHIP can be efficiently implemented in FPGAs. Implemented on FPGAs, the proposed solution improves the memory efficiency over the state of the art solutions, while supporting a packet throughput greater than 100 Gbps.While the prefixes and their characteristics are known when routing packets in the Internet network, this is not true for programmable data planes. Hence, the second solution, designed for programmable data planes, does not exploit any prior knowledge of the prefix stored. We present a framework comprising an efficient data structure to encode the prefixes and methods to map the data structure efficiently to FPGAs. First, the framework leverages a B-tree, extended to support the LPM operation, for its low algorithmic complexity. Second, we present a method to allocate at compile time the minimum amount of resources that can be used by the B-tree. Third, our framework selects the B-tree parameters to increase the post-implementation memory efficiency and generates the corresponding hardware architecture. Implemented on FPGAs, this solution supports packet throughput greater than 100 Gbps, while improving the performance over the state of the art

    Data Structures and Algorithms for Scalable NDN Forwarding

    Get PDF
    Named Data Networking (NDN) is a recently proposed general-purpose network architecture that aims to address the limitations of the Internet Protocol (IP), while maintaining its strengths. NDN takes an information-centric approach, focusing on named data rather than computer addresses. In NDN, the content is identified by its name, and each NDN packet has a name that specifies the content it is fetching or delivering. Since there are no source and destination addresses in an NDN packet, it is forwarded based on a lookup of its name in the forwarding plane, which consists of the Forwarding Information Base (FIB), Pending Interest Table (PIT), and Content Store (CS). In addition, as an in-network caching element, a scalable Repository (Repo) design is needed to provide large-scale long-term content storage in NDN networks. Scalable NDN forwarding is a challenge. Compared to the well-understood approaches to IP forwarding, NDN forwarding performs lookups on packet names, which have variable and unbounded lengths, increasing the lookup complexity. The lookup tables are larger than in IP, requiring more memory space. Moreover, NDN forwarding has a read-write data plane, requiring per-packet updates at line rates. Designing and evaluating a scalable NDN forwarding node architecture is a major effort within the overall NDN research agenda. The goal of this dissertation is to demonstrate that scalable NDN forwarding is feasible with the proposed data structures and algorithms. First, we propose a FIB lookup design based on the binary search of hash tables that provides a reliable longest name prefix lookup performance baseline for future NDN research. We have demonstrated 10 Gbps forwarding throughput with 256-byte packets and one billion synthetic forwarding rules, each containing up to seven name components. Second, we explore data structures and algorithms to optimize the FIB design based on the specific characteristics of real-world forwarding datasets. Third, we propose a fingerprint-only PIT design that reduces the memory requirements in the core routers. Lastly, we discuss the Content Store design issues and demonstrate that the NDN Repo implementation can leverage many of the existing databases and storage systems to improve performance

    Doctor of Philosophy

    Get PDF
    dissertationAs the base of the software stack, system-level software is expected to provide ecient and scalable storage, communication, security and resource management functionalities. However, there are many computationally expensive functionalities at the system level, such as encryption, packet inspection, and error correction. All of these require substantial computing power. What's more, today's application workloads have entered gigabyte and terabyte scales, which demand even more computing power. To solve the rapidly increased computing power demand at the system level, this dissertation proposes using parallel graphics pro- cessing units (GPUs) in system software. GPUs excel at parallel computing, and also have a much faster development trend in parallel performance than central processing units (CPUs). However, system-level software has been originally designed to be latency-oriented. GPUs are designed for long-running computation and large-scale data processing, which are throughput-oriented. Such mismatch makes it dicult to t the system-level software with the GPUs. This dissertation presents generic principles of system-level GPU computing developed during the process of creating our two general frameworks for integrating GPU computing in storage and network packet processing. The principles are generic design techniques and abstractions to deal with common system-level GPU computing challenges. Those principles have been evaluated in concrete cases including storage and network packet processing applications that have been augmented with GPU computing. The signicant performance improvement found in the evaluation shows the eectiveness and eciency of the proposed techniques and abstractions. This dissertation also presents a literature survey of the relatively young system-level GPU computing area, to introduce the state of the art in both applications and techniques, and also their future potentials

    High-Performance Packet Processing Engines Using Set-Associative Memory Architectures

    Get PDF
    The emergence of new optical transmission technologies has led to ultra-high Giga bits per second (Gbps) link speeds. In addition, the switch from 32-bit long IPv4 addresses to the 128-bit long IPv6 addresses is currently progressing. Both factors make it hard for new Internet routers and firewalls to keep up with wire-speed packet-processing. By packet-processing we mean three applications: packet forwarding, packet classification and deep packet inspection. In packet forwarding (PF), the router has to match the incoming packet's IP address against the forwarding table. It then directs each packet to its next hop toward its final destination. A packet classification (PC) engine examines a packet header by matching it against a database of rules, or filters, to obtain the best matching rule. Rules are associated with either an ``action'' (e.g., firewall) or a ``flow ID'' (e.g., quality of service or QoS). The last application is deep packet inspection (DPI) where the firewall has to inspect the actual packet payload for malware or network attacks. In this case, the payload is scanned against a database of rules, where each rule is either a plain text string or a regular expression. In this thesis, we introduce a family of hardware solutions that combine the above requirements. These solutions rely on a set-associative memory architecture that is called CA-RAM (Content Addressable-Random Access Memory). CA-RAM is a hardware implementation of hash tables with the property that each bucket of a hash table can be searched in one memory cycle. However, the classic hashing downsides have to be dealt with, such as collisions that lead to overflow and worst-case memory access time. The two standard solutions to the overflow problem are either to use some predefined probing (e.g., linear or quadratic) or to use multiple hash functions. We present new hash schemes that extend both aforementioned solutions to tackle the overflow problem efficiently. We show by experimenting with real IP lookup tables, synthetic packet classification rule sets and real DPI databases that our schemes outperform other previously proposed schemes
    corecore