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Abstract—Network virtualization presents a powerful approach to share physical network infrastructure among multiple virtual
networks. Recent advances in network virtualization advocate the use of field-programmable gate arrays (FPGAs) as flexible high
performance alternatives to conventional host virtualization techniques. However, the limited on-chip logic and memory resources in
FPGAs severely restrict the scalability of the virtualization platform and necessitate the implementation of efficient forwarding structures
in hardware. The research described in this manuscript explores the implementation of a scalable heterogeneous network virtualization
platform which integrates virtual data planes implemented in FPGAs with software data planes created using host virtualization
techniques. The system exploits data plane heterogeneity to cater to the dynamic service requirements of virtual networks by migrating
networks between software and hardware data planes. We demonstrate data plane migration as an effective technique to limit the
impact of traffic on unmodified data planes during FPGA reconfiguration. Our system implements forwarding tables in a shared fashion
using inexpensive off-chip memories and supports both Internet Protocol (IP) and non-IP based data planes. Experimental results
show that FPGA-based data planes can offer two orders of magnitude better throughput than their software counterparts and FPGA
reconfiguration can facilitate data plane customization within 12 seconds. An integrated system that supports up to 15 virtual networks
has been validated on the NetFPGA platform.
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1 INTRODUCTION

THe Internet provides a critical infrastructure for a
wide variety of end user services. These services,

which range from gaming and social networking to
high-end business applications, require widely varying
quality-of-service, robustness, and performance parame-
ters [1]. It is infeasible to support distinct networking
resources for each service due to practical and eco-
nomic constraints. Instead, it is desirable to share the
physical network infrastructure and allocate resources
according to individual service requirements. As the
demand for new services and higher performance grows,
the network core must fundamentally adapt to support
emerging protocols and architectures. Unfortunately, the
architecture and scale of the modern Internet continues
to threaten its evolution.

Network virtualization addresses the adaptability is-
sue by allowing multiple virtual networks to operate
over a shared physical infrastructure. Each virtual net-
work can run custom routing protocols and support
diverse data plane architectures, facilitating incremental
deployment of novel networking techniques on legacy
architectures. In addition, infrastructure providers can
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• J. Crenne is with Université de Bretagne Sud, Lorient 56100 France

take advantage of the shared approach to improve net-
work utilization and boost revenues.

Flexibility, high performance and ease-of-use are crit-
ical to the wide-scale deployment of network virtual-
ization systems. To date, most network virtualization
research has focused on optimized software-only ap-
proaches. Software techniques use host or container vir-
tualization to create virtual routing instances [2] [3]. De-
spite being flexible and easy to deploy, such approaches
only offer limited network throughput and suffer from
increased packet latencies due to the sequential nature
and limited memory bandwidth of off-the-shelf micro-
processors. This constraint naturally motivates the need
for a hardware-based solution.

Recent FPGA-based implementations of virtual net-
work data planes [4] [5] show improved performance.
However, the limited logic and memory resources of FP-
GAs severely constrain the number of data planes sup-
ported by the system. The implementation of forward-
ing structures, such as forwarding tables using on-chip
memory, in these approaches create scalability issues.
Once programmed, FPGA-based data plane behavior is
largely fixed, even though the SRAM-based FPGA could
be reconfigured to support changing virtual network
needs. FPGA reconfiguration, however, can affect traffic
in virtual data planes which do not require updates, as
all or portions of the FPGA device may be unavailable
for a period of time while reconfiguration is performed.
In many cases, existing host virtualization techniques
running in software can be sufficient to implement af-
fected virtual networks while reconfiguration occurs.
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The limitations of FPGA and software-only netwok
virtualization approaches motivate us to consider a het-
erogeneous and adaptive approach to assigning virtual
networks to hardware and software resources based on
service requirements.

A major research contribution of this work is a new
network virtualization platform that addresses previous
scalability and performance issues. The system integrates
multiple virtual data planes implemented in FPGA hard-
ware with additional software data planes hosted by
a PC kernel. Virtual networks with the most stringent
performance requirements are assigned to data planes
implemented in FPGA hardware while lower perfor-
mance networks are assigned to virtual data planes
in host software. The hardware data planes use an
optimized hardware architecture that stores forwarding
tables from multiple virtual data planes in a shared
fashion using off-chip SRAM memories. When virtual
network performance requirements change, the system
adapts itself by dynamically swapping virtual networks
between software and hardware virtual data planes. We
use FPGA reconfiguration to aid virtual data plane mi-
gration. During dynamic FPGA reconfiguration, virtual
data planes implemented in hardware can continue to
transmit packets via virtual data planes in software.
The same networking protocols and data plane isolation
approaches can be applied to both platforms in a fashion
which is hidden from the system user.

We evaluate the throughput and latency of the net-
work virtualization platform using a NetFPGA card [6].
Our approach has been validated using IP-based (IPv4
router) and non-IP based data planes (Routing on Flat
Labels (ROFL) [7] router). The hardware-based IPv4 data
plane uses longest prefix matching tables implemented
in external SRAM memories to forward packets. These
forwarding tables can support up to 512K entries by
sharing 4.5 MBytes (MB) of off-FPGA SRAM memory.
We implement the hardware data planes in the Virtex
II FPGA located on the NetFPGA card and evaluate
them at line rates. Software data planes are integrated
into the OpenVZ virtualization environment [8] running
on an off-the-shelf personal computer (PC). The system
supports virtual network migration between hardware
and software data planes within 12 seconds. The Virtex
II FPGA supports a total of five concurrent virtual data
planes. Each of these data planes support line rate
throughput (1 Gbps).

2 BACKGROUND

Figure 1 shows the structure of a physical router in a
virtualization substrate, which is partitioned into mul-
tiple virtual routers. A virtual router consists of two
major parts: a control plane, where the routing processes
exchange and maintain routing information; and a data
plane, where the forwarding table stores the routing
entries and performs packet forwarding. The virtual
routers are independent of each other and can run
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Fig. 1. Virtual router architecture. Each data plane con-
tains a forwarding information base (FIB).

different routing, addressing and forwarding schemes. A
physical link is multiplexed into virtual links, which con-
nect the relevant virtual routers into virtual networks.
Any virtual router joining the virtual network is marked
with a color (e.g. red or blue) and data packets belonging
to each virtual network are colored in a similar fashion.
The physical router provides DEMUX and MUX circuitry
for the hosted virtual routers. After exiting a physical
link, a colored packet will be delivered by the DEMUX
to the virtual router with the same color. When packets
are emitted from a virtual router, they are colored with
the router’s color at the MUX before they enter the
physical link. Because of this packet-level separation, a
virtual router can only communicate with virtual routers
of the same color. As a result, a network infrastructure
can run multiple virtual networks in parallel and each
virtual network can run any addressing, routing and
forwarding scheme without interfering with a different
virtual network.

Flexibility is a key requirement of any virtual network-
ing substrate. Specifically, a virtual network must offer
maximum control over its data and control planes. For
example, the deployment of new addressing schemes
(e.g. ROFL [7] [9]) requires customization of nearly all
aspects of the network core, such as the routing proto-
col and the address lookup algorithm. Other examples
include quality of service (QoS) schemes that require
certain queuing and scheduling approaches and secu-
rity mechanisms such as network anonymity and onion
routing [10] [11]. To attract existing applications whose
performance requirements may scale over time, superior
data plane performance is of utmost importance. In addi-
tion, the virtualization platform must also scale to sup-
port hundreds of simultaneous virtual networks while
catering to their dynamic performance requirements.

The customization of existing proprietary network
devices to support virtual networking is challenging,
if not impossible. Contemporary network devices typ-
ically do not provide the interfaces necessary to enable
programmability. Most existing network systems em-
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ploy application-specific integrated circuits (ASICs) [12].
Although ASICs typically achieve high performance,
they do not have the necessary flexibility needed for
service customization. For example, the Supercharging
PlanetLab platform [13] only provides a customizable
forwarding table interface, which makes it hard to sup-
port innovations such as network anonymity, onion rout-
ing and QoS schemes. Additionally, ASICs incur long
design cycles and mask costs, making them prohibitively
expensive to prototype new architectures.

Several network virtualization systems that use host
virtualization techniques have been proposed [3] [14]
[15] [16] [17]. A comprehensive survey of virtual network
implementations using software techniques can be found
in [18]. In general, software-based data plane imple-
mentations demonstrate a higher degree of flexibility
than ASICs. However, they suffer from lower operating
throughput and higher statistical variations in observed
network parameters due to jitter and resource contention
[2].

The evaluation of network virtualization using FPGAs
is much more limited than previous software efforts.
Anwer et al. [4] [19] demonstrate the implementation of
up to 8 virtual data planes in a single Virtex II Pro on a
NetFPGA board. Although this setup has been shown to
provide twice as much throughput as a software kernel
router, a number of limitations exist. For example, the
logic resources of the FPGA impose a hard cap on the
number of supported virtual networks. The hardware
data planes further use FPGA on-chip memories that can
only store a limited number of forwarding table entries,
limiting the scalability of the overall system. In addition,
the dynamic reconfiguration abilities of the FPGA could
be used to customize data planes according to changing
virtual network needs.

CAFE [5] implements a similar platform that supports
distinct virtual data planes on the NetFPGA. A salient
feature of the CAFE architecture is the presence of user
configuration registers that allow real-time updates to
virtual routing table protocols. However, like previous
approaches, CAFE presents scalability issues and offers
limited ways to customize the properties of the virtual
data planes.

The architecture of forwarding tables is another impor-
tant design consideration for FPGA-based virtual data
planes. Typical forwarding tables need to store hundreds
of thousands of entries and consume significant memory
resources within the FPGA. Although the design of
efficient forwarding tables for general-purpose (e.g. non-
virtualized) routers has been well researched in the past
[20] [21], recent advances in network virtualization have
inspired researchers to revisit this problem in the context
of network virtualization. Specifically, the virtualization
platform must efficiently store forwarding entries from
multiple virtual routers in a shared fashion using in-
expensive off-chip memories. Fu et al. [22] and Song
et al. [23] describe approaches to compact virtual for-
warding tables into a single data structure based on bi-

nary tries. Although trie-based approaches are attractive
for software-based forwarding table implementations,
practical hardware designs require heavily pipelining to
achieve high packet forwarding throughput. Addition-
ally, the hardware cost of trie-based techniques exponen-
tially grows with longer prefix lengths. In contrast, we
adopt an approach that enables hardware data planes
to store forwarding table entries in inexpensive off-
chip SRAMs without the need for heavy pipelining in
hardware.

3 SYSTEM DESIGN

Our system makes three specific contributions to existing
network virtualization platforms:

1) We present a heterogeneous virtualization platform
that combines fast hardware data planes imple-
mented in FPGAs with slower software data planes
implemented using host virtualization techniques.
The heterogeneity in virtualization resources is
used to scale the number of data planes beyond the
logic capacity of pure FPGA-based virtualization
platforms. We validate this system using both IP
and non-IP based data planes.

2) The system adapts to cater to the changing virtual
network service requirements by dynamically mi-
grating active virtual networks between hardware
and software data planes. FPGA reconfiguration is
used to aid data plane migration. During FPGA
reconfiguration, unmodified hardware data planes
can be temporarily migrated to software so that
they can continue to transmit traffic.

3) To promote scalability, the system implements
an optimized hardware data plane architecture
that stores forwarding tables from multiple virtual
routers in a shared fashion using inexpensive off-
chip SRAM memories. The architecture obviates
the need for heavy pipelining in hardware.

In the following subsections, we present the major
design goals, an overview of the architecture, details of
the hardware and software data planes and strategies to
scale the data planes.

3.1 System Overview

Our design decisions are driven by two design goals. The
primary design goal of the system is to improve the scal-
ability of existing homogeneous FPGA-based network
virtualization platforms. The scalability limitations in ex-
isting FPGA-based platforms originate from two factors.
First, the limited logic resources (slices, flip flops etc.)
constrain the number of simultaneous data planes that
can operate on the device. Simply increasing the FPGA
size to scale the number of data planes is cost-inefficient
since FPGA cost generally does not scale linearly with
device capacity. Second, individual hardware data planes
use separate on-chip memory resources, such as block
RAMs (BRAMs) and TCAMs, to store forwarding tables.
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Such an implementation does not scale well with larger
forwarding tables or a greater number of data planes.
It is therefore important to scale both the number of
data planes and the size of forwarding tables to build
a practical network virtualization platform.

The secondary design goal of the architecture is to
improve the design flexibility of hardware data planes
through FPGA reconfiguration. Although FPGAs offer
high data plane design flexibility by virtue of their
reconfiguration properties, customization of individual
hardware data planes in the same FPGA through static
reconfiguration additionally requires that traffic in active
virtual networks, other than the one being customized,
be stopped during the reconfiguration procedure. It
is therefore necessary for the architecture to support
hardware data plane customization with minimal traffic
disruption for unmodified hardware data planes.

Our architecture includes hardware and software tech-
niques to address these design goals. Specifically, we
implement additional virtual data planes in host soft-
ware using container virtualization techniques to scale
the number of data planes beyond the logic capacity
of the FPGA (Section 4). We address the limitations in
memory scalability by implementing forwarding tables
from multiple hardware data planes in a shared fash-
ion using inexpensive external SRAM memories located
outside the FPGA (Section 5). The architecture enables
customization of hardware data planes using virtual
network migration between hardware and software when
virtual networking requirements change.

The high-level architecture of our system built on
the NetFPGA [24] platform is shown in Figure 2. In
this system, virtual data planes that require the highest
throughput and lowest latency are implemented on a
Virtex II-Pro 50 FPGA on the NetFPGA while additional
software virtual data planes are implemented in OpenVZ
containers running on the PC. The reference NetFPGA
platform consists of four 1 Gbps Ethernet interfaces, a
33 MHz PCI interface, 64 MB of DDR2 DRAM and two
18-Mbit SRAMs. The hardware data path, implemented
within the FPGA, is organized as a pipeline of fully
customizable modules. The forwarding tables of the
hardware virtual data planes can either be implemented
using BRAM and SRL16E blocks within the FPGA or
using the 36-Mbit SRAM located external to the FPGA.
In either case, forwarding tables can be updated from
software through the PCI interface. This interface facili-
tates flexible control plane implementations in software.

In addition to the NetFPGA board, our system in-
cludes a PC server to host the software virtual data
planes. The PC server is sliced into virtual machines
using OpenVZ. The OpenVZ framework is a lightweight
virtualization approach used in several network virtu-
alization systems [15] [25] and it is included in major
Linux distributions. The OpenVZ kernel allows multiple
isolated user-space instances, which are called virtual
machines or containers. Data planes can be spawned
in host software when an FPGA can no longer accom-
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Fig. 2. High level architecture

modate new data planes. Since software virtual data
planes must be effectively isolated from each other, they
are hosted in isolated OpenVZ containers. The OpenVZ
virtual environment guarantees that the each container
gets a fair share of CPU cycles and physical memory.
Each instance of the OpenVZ container executes a user
mode Click modular router [26] to process the packets.
The forwarding functions of Click can be customized
according to the virtual network creator’s preferences.

Packet forwarding operates as follows. When a packet
arrives at an Ethernet interface (PHY), the destination
address in the packet header is used to determine the
location of its data plane. If the packet is associated with
a virtual network hosted in the FPGA, it is processed
by the corresponding hardware data plane. Otherwise,
it is transmitted to the host software via the PCI bus.
A software bridge provides a mux/demux interface
between the PCI bus and multiple OpenVZ-based data
planes. Periodically, the virtual network administrator
can reconfigure virtual networks in the FPGA to take
changes in bandwidth demands and routing characteris-
tics into account. While the FPGA is being reconfigured,
all traffic is routed by the host software.

Next, we describe the detailed architecture of FPGA-
based and software-based data planes.

3.2 Hardware Data Planes

The hardware data planes of our virtualization platform
are constructed by customizing NetFPGA’s modular dat-
apath [6], as shown in Figure 3. We retain the basic
components of the datapath including input queues,
input arbiter and output queues. Besides these standard
components, the system includes two additional hard-
ware modules. The dynamic design select module provides
the demux interface to virtual data planes in hardware
for packets arriving at the physical network interfaces.
The CPU transceiver module facilitates transmission of
packets to virtual data planes in host software.
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When a packet enters the system, it is automatically
classified by the dynamic design select module based
on the virtual destination address in the packet header.
Packets belonging to virtual networks can be classified
based on virtual IP addresses or virtual MAC addresses
in packet headers. The mapping from virtual networks to
virtual data planes can be programmed into the dynamic
design select table using NetFPGA’s register interfaces
by a person administering virtual networks (hereafter
referred to as the operator). The CPU transceiver module
provides an interface to transmit and receive packets
from virtual data planes in host software. More details
regarding the operation of the CPU transceiver module
are provided in Section 4.

We implement the forwarding logic of hardware data
planes by customizing instances of the output port
lookup module [6], which encapsulates the forwarding
logic of the NetFPGA reference router. Each virtual data
plane has its own unique set of forwarding table control
registers. This architecture offers two advantages. First, it
ensures close to line rate data plane throughput for each
virtual data plane. Second, by reserving independent
hardware resources such as logic slices, registers and
memory bits for each virtual router, the architecture
eliminates the need for resource sharing, facilitating
strong isolation.1

Forwarding tables of individual data planes are im-
plemented using TCAM or BRAM resources within the
FPGA or using SRAM memories located outside the
FPGA. When forwarding tables are implemented using
on-chip memory, the forwarding logic integrates TCAMs
that support IP and Address Resolution Protocol (ARP)
lookup mechanisms. Section 5 describes the implementa-

1. The placement of data plane logic is not spatially constrained
within the FPGA. Although routing wires may overlap between the
data planes, the data planes do not contend for routing resources.
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Fig. 4. Packet format for layer 3 virtualization

tion of forwarding tables using external SRAMs. When
forwarding tables are stored in external SRAMs, input
and output queues must be implemented using the
DDR2 DRAM memory. We implement the control planes
for the virtual networks hosted in the FPGA in host
software using the Linux operating system. The control
planes currently support a modified OSPF (PW-OSPF)
routing protocol.

Figure 3 shows the architecture of a virtualization plat-
form which supports four hardware virtual data planes
and an interface to additional software data planes. The
hardware data planes in this example support both IP
and non-IP based forwarding techniques. The IP-based
data planes support source-based, destination-based and
source-and-destination-based routing approaches. The
non-IP data plane forwards packets based on ROFL [7],
a flat label lookup. We present the details of these data
planes next.

3.2.1 IPv4
The IPv4 data plane design example uses layer 3 vir-
tualization based on IPIP tunneling. Tunneling trans-
forms data packets into formats that enable them to be
transmitted on networks that have incompatible address
spaces and protocols. In this tunneling approach, the
network operator assigns a virtual IP address from a
private address space to each node in a virtual network.
To transmit a packet to another virtual node in the
private address space, the source node encapsulates the
packet data in a virtual IPv4 wrapper and tunnels it
through intermediate routers. When the packet reaches
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a virtual node, the data plane uses an inner virtual IP
address to identify the next virtual hop. The packet
is then tunneled to its final destination. Tunnel-based
layer 3 virtualization is a popular virtualization strategy
that has been deployed in many software virtualization
systems such as VINI [2].

The dynamic design select module uses the destina-
tion virtual IP address (DST VIP in Figure 4) as an index
into the design select table to determine the associated
data plane. If a match to a virtual network in the FPGA
is found, the dynamic design select module sends the
packet to the hardware plane. The forwarding engine
maps the virtual destination IP address to the next hop
virtual destination IP address and rewrites the source
and destination IP addresses (SRC IP and DST IP in
Figure 4) of the packet before forwarding the processed
packet through output queues.

3.2.2 ROFL
ROFL [7] uses direct host identifiers instead of hierar-
chical prefixes to route packets using a greedy source-
based policy. When a packet is received, the data plane
compares the packet’s destination host identifier (ID)
with IDs of nodes that are available in the forwarding
table and in a database of recently cached source routes
(pointer cache). The packet is forwarded to the closest
of the matched entries.

In our system, the ROFL data plane stores IDs in
sorted order within a TCAM-based forwarding table.
We modified the TCAM lookup algorithm to return the
shortest ID match instead of the longest prefix match as
in IPv4. A second TCAM implemented within the FPGA
is used as a routing cache. When packets arrive at the
data plane, the forwarding logic extracts the destination
host ID from the packet header. The ID is then used for
simultaneous searches in the forwarding table and the
routing cache. The data plane uses the lowest ID among
the search results to forward the packet.

3.3 Software Data Planes
Software data planes provide low throughput extensions
to the data planes implemented in the FPGA. Addi-
tionally, they usefully enhance the isolation properties
of the virtualization platform by forwarding packets
during FPGA downtime that would ordinarily be for-
warded from hardware data planes. We use container
virtualization techniques to implement the software data
planes. Container virtualization techniques are popular
because of their strong isolation properties and ease of
deployment.

We virtualize the Linux server attached to the NetF-
PGA card using OpenVZ, which virtualizes a physical
server at the operating system level. Each virtual ma-
chine performs and executes like a stand-alone server.
The OpenVZ kernel provides the resource management
mechanisms needed to allocate resources such as CPU
cycles and disk storage space to the virtual machines.

Compared with other virtualization approaches, such
as full virtualization and paravirtualization [27], OS-
level virtualization provides the best tradeoff between
performance, isolation and ease of deployment. The
performance difference between a virtual machine in
OpenVZ and a standalone server is almost negligible
[28]. Each OpenVZ container has a set of virtual Ethernet
interfaces. A software bridge on the PC performs the
mapping between the virtual Ethernet interfaces and the
physical Ethernet interfaces located in the PC.

The OpenVZ containers run Click as a user-mode
program to execute virtual data planes. Click allows data
plane features to be easily customized. Although Click
offers the best packet forwarding performance when
executed in the kernel space [14], we choose to execute
Click as a user-mode program by virtue of its ability to
be easily deployed and administered.

4 DATA PLANE SCALING

We consider two separate approaches to scale the num-
ber of data planes beyond the logic capacity of the
FPGA. In the first approach, all packets initially enter
the NetFPGA card. The CPU transceiver module within
the FPGA forwards packets targeted for virtual networks
implemented in software to the host PC via the PCI bus.
Click routers running in OpenVZ containers process the
packets and return them back to the NetFPGA card.
Processed packets are transmitted through NetFPGA’s
physical interfaces. We subsequently refer this approach
as the single receiver approach. In the second multi-
receiver approach, the NetFPGA card only receives
packets targeted for hardware data planes. A separate
PC network interface card (Figure 3) receives and trans-
mits packets destined for software virtual data planes.
We describe the details of each approach below.

Single-receiver approach: If an incoming packet does
not have a match for a hardware virtual data plane in
the dynamic design select table on the FPGA, the packet
is sent to the CPU transceiver module shown in Figure 3.
The CPU transceiver examines the source of the packet
and places the packet in one of the CPU DMA queues
(CPU TX Q) interfaced to the host system through the
PCI interface. The system exposes CPU DMA queues
as virtual Ethernet interfaces to the host OS. The CPU
transceiver modules modifies the layer 2 address of
the packet to match the address of the virtual Ethernet
interfaces of the target software data plane. The kernel
software bridge forwards the Ethernet packet to its re-
spective OpenVZ container based on its destination layer
2 address (DST MAC for IPv4 in Figure 4). The Click
modular router within the OpenVZ container processes
the packet by modifying the same three packet fields
as the hardware router (DST VIP, SRC IP, and DST IP
for the IPv4 data plane). The software bridge then sends
the packet to a CPU RX Q on the NetFPGA board via
the PCI bus. After input arbitration, the dynamic design
select module sends the processed packet to the CPU
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Fig. 5. Multi-receiver setup for scalable virtual networking
including dynamic FPGA reconfiguration

transceiver. The CPU transceiver module extracts the
source and exit queue information from the processed
packet and places it in the output MAC queue interface
(MAC TX Q) for transmission.

The software interface enables on-the-fly migration of
virtual networks from software to hardware and vice
versa. The virtual network operator can dynamically
migrate a virtual network from hardware to software
in three steps. In the first step, the operator initiates an
OpenVZ virtual environment that runs the Click router
inside the host operating system. Next, the operator
copies all the hardware forwarding table entries to the
forwarding table of the host virtual environment. In
the final step, the operator writes an entry into the
dynamic design select table indicating the association of
the virtual IP with a software data plane. Our current
implementation imposes certain restrictions on virtual
network migration from software to hardware. If the
software virtual data plane has a forwarding mechanism
that is unavailable in any of the hardware virtual data
planes, network migration to hardware requires recon-
figuration of the FPGA, as described in Section 4.1.

Multi-receiver approach: In this approach, the NetF-
PGA card receives packets destined for all FPGA-based
data planes while a separate NIC attached to the host
PC receives all traffic destined for software data planes.
This approach relies on network switches to forward
packets to software or hardware data planes, as shown
in Figure 5. We use layer 2 addressing to direct each
packet to the appropriate destination (NetFPGA card or
PC NIC). When deployed in the Internet, we assume
that the sender is capable of classifying each packet as
targeted to either the NetFPGA card or PC NIC based
on the virtual layer 3 address. This approach requires
the use of external hardware (switches) but simplifies
the FPGA hardware design since all packets arriving at
the NetFPGA card are processed locally on the card and
CPU RX Q and CPU TX Q ports are unused.

4.1 Virtual Network Migration

Although virtual networks may be statically assigned to
either software or hardware data planes during network
allocation, several practical reasons require networks to
be dynamically migrated between the two platforms
during operation. First, from a service provider’s stand-
point, the initial virtual network allocation may not
be sufficient to support the dynamic QoS requirements

of virtual networks during operation. Second, from
an infrastructure provider’s standpoint, shifting lower-
throughput networks to software and higher-throughput
networks to hardware can improve the overall utiliza-
tion of the virtualization platform. Additionally, net-
work migration can reduce the impact of data plane
customization on virtual networks in shared hardware.
For example, the virtual network operator can migrate
unmodified virtual networks in an FPGA to software
data planes, reconfigure the FPGA with data plane
changes and migrate the networks back to the FPGA
to resume operation at full throughput. All unmodified
virtual networks can continue their operation at lower
throughput using software data planes during FPGA
reconfiguration.

We illustrate data plane migration by considering an
example where the FPGA is shared by multiple IPv4-
based virtual networks for the multi-receiver approach.

1) Before migration, the operator creates Click in-
stances of all active hardware virtual data planes
using the OpenVZ virtual environment.

2) The Linux kernel sends messages to all nodes at-
tached to the network interface requesting a remap
of layer 3 addresses targeted at the NetFPGA board
to layer 2 addresses of the PC NIC. Each virtual
network includes a mechanism to map between
layer 2 and layer 3 addresses. When a virtual
network uses IP, ARP is used to do the mapping
between layer 2 and layer 3 addresses. In our
prototype, where IP is used in the data plane, the
ARPFaker element [26] implemented in Click is
used to generate ARP reply messages to change the
mapping between layer 2 and layer 3 addresses.

3) Once addresses are remapped, all network traffic is
directed to the PC through the PC NIC (Figure 5)
for forwarding with software virtual data planes.

4) The operator now reprograms the FPGA with
a new bitstream that incorporates changes in
network characteristics. We used a collection of
previously-compiled FPGA bitstreams in our im-
plementation.

5) Following FPGA reconfiguration, the operator
writes routing tables back to the hardware.

6) In a final step, the Linux kernel sends messages
to all nodes attached to the network interface re-
questing a remap of layer 3 addresses for hardware
virtual data planes back to the NetFPGA interface.
Virtual networks then resume operation in the
hardware data planes for the instantiated hardware
routers. We quantify the overhead of this dynamic
reconfiguration approach in Section 7.

All virtual networks remain fully active in software
during the reconfiguration. We use ARP as a mechanism
to map virtual IP addresses to virtual MAC addresses.
Non-IP data planes can use a similar scheme by incorpo-
rating a mechanism to map the non-IP virtual addresses
(such as flat labels) to the physical (MAC) addresses.
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Fig. 6. Architecture of SRAM-based IPv4 forwarding
tables

Custom elements written using Click can be used to
perform such mapping. ARP remapping is carried out
only for those data planes that are executed in hardware.
Data planes that are originally executed in software
can continue to forward packets in software without
requiring ARP address remapping.

Network service requirements and the availability
of virtualization resources are also subject to real-time
variations. It is therefore important to cleanly sepa-
rate service requirements from virtualization resources.
This separation can be achieved using a scheduling
interface that maps service requirements to virtualiza-
tion resources while maximizing the overall utilization
(bandwidth, latency, etc.) of the virtualization platform.
Our system implements a simple greedy scheduling
technique to assign virtual networks to hardware or
software data planes so that the overall bandwidth of
the virtualization platform is maximized while aggregate
bandwidth and capacity limitations in both platforms are
respected. The scheduler attempts to greedily pack low-
throughput virtual networks into OpenVZ containers. If
a network cannot be executed in a software plane due
to bandwidth limitations, it is assigned to a hardware
plane. The scheduler recomputes virtual network assign-
ments whenever a virtual network is removed from the
platform or when service requirements change during
operation. The output of the scheduler can be used by
the operator to perform virtual network migrations.

5 FORWARDING TABLE SCALING
Realistic forwarding table implementations that store
hundreds of thousands of forwarding entries necessitate
the use of inexpensive off-chip memory chips, including
SRAMs. However, the design of SRAM-based forward-
ing tables is not straightforward, particularly for IP-
based data planes, because SRAMs lack the parallel
search mechanisms that are found in single cycle lookup
TCAMs. Additionally, when virtual network operators
who share the hardware virtualization platform inde-
pendently choose prefix address spaces, the overlapped
address spaces can lead to contentions in SRAM memory
locations (prefix conflicts).

We present the details of external SRAM-based for-
warding table architectures for IP (IPv4) and non-IP
based (ROFL) data planes below.

5.1 IPv4
The forwarding table architecture for IPv4 (Figure 6)
extends the popular DIR-24-8-BASIC technique [21] used
for high speed SRAM-based prefix lookups. The DIR-
24-8-BASIC technique exploits the bias towards certain
prefix lengths in typical backbone routers. For example,
99.93% of IPv4 prefixes have length 24 bits or less [21].
By expanding all prefixes of length 24 bits or less and
relocating these prefixes to SRAM locations that can be
accessed with single memory access, the average prefix
lookup time can be minimized.

Each virtual forwarding table in hardware is identi-
fied by a unique identifier (VID). The 36-Mbit SRAM
located external to the FPGA is organized as two 18-
Mbit memory banks. Each memory bank consists of 219

(512K) entries, where an entry is 36 bits wide. The first
bank (L1 in Figure 6) stores all prefixes whose lengths
are less than 19 bits. The second bank (L2 in Figure 6) is
divided into multiple sets with each set consisting of 213

entries. The second bank stores prefixes whose lengths
are greater than 19 bits.

Updates: When a virtual prefix of length l ≤ 19 bits
needs to be stored, the control plane software writes 219-l

entries into L1. Each entry is 36-bit wide and consists of a
1-bit flag, 3-bit output port and 32-bit next hop address.
The flag bit is set to 0 for prefixes of length l ≤ 19 bits.
For prefixes of length l > 19 bits, an entry indexed by
the most significant 19 bits of the prefix is written. The
flag bit of this entry is set and the remaining bits point
to an index location in L2. L2 reserves a set of 213 entries
for each prefix of length l > 19 bits. Each entry in the set
corresponds to one of the longer 213 prefixes indexed by
the shared entry in L1. The entries in L2 store the 3-bit
output port information followed by the 32-bit next hop
entry. This approach can be scaled to cover 99% of all
IPv4 prefixes with a 72-MByte SRAM.

The SRAM can be conveniently shared between mul-
tiple virtual routers when prefixes do not conflict with
each other. However, when virtual prefixes from multi-
ple virtual routers index to one or more exact locations in
SRAM, conflicts exist. To resolve each conflict, the control
plane software first calculates an indirect index in SRAM
to which a conflicting prefix can be relocated. The control
plane software then writes the next hop and output
port information into the SRAM locations addressed by
the indirect index. The indirect index is determined by
the control plane on a first-fit basis from the available
pool of SRAM locations. The control plane additionally
writes the virtual router ID (VID), original prefix and the
indirect address into a TCAM implemented in the FPGA
(Conflict CAM). The Conflict CAM is used to detect prefix
overlaps during lookups with a single cycle overhead.

Lookups: The data plane extracts the destination
virtual IP address and constructs a lookup address by
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prepending the virtual IP address with the VID infor-
mation obtained from the dynamic design select module.
The forwarding logic searches for this lookup address in
the Conflict CAM. If a match is found, the indirect index
obtained from the Conflict CAM is used to index L1.
Otherwise, the data plane uses the virtual IP address to
directly index into the L1 table. If the most significant
bit (MSB) of the L1 table entry is set, the L1 entry
is combined with least significant 13 bits of the prefix
to obtain an index into L2. Otherwise, the next hop
information can be directly obtained from L1.

5.2 ROFL
Each ROFL virtual data plane uses a forwarding table
to store ordered resident host IDs and a pointer cache
to cache recent source routes. We implement the for-
warding table in external SRAM since it is likely to
use more memory resources than the pointer cache. The
pointer cache is implemented using the TCAM memory
within the FPGA. The control plane maps the circular
namespace of each virtual router onto a continuous block
of SRAM locations. This mapping is achieved by using a
hash of the virtual router ID and the namespace base ad-
dress. Several virtual routing tables can share the SRAM
by partitioning the SRAM into multiple namespaces,
each belonging to a virtual router. Each SRAM location
corresponds to a label in the namespace. The forwarding
table only stores a limited set of labels (valid labels). The
SRAM locations corresponding to these labels store the
egress port information for these labels. All other labels
(invalid labels) store the egress port information of the
closest label in the namespace.

Updates: To store a new label within a namespace,
the control plane software updates the corresponding
location in SRAM with the egress port information of
the new label. Additionally, the egress port information
of all previous invalid labels are set to the new egress
port information.

Lookups: The data plane hashes the virtual router ID
and destination ID extracted from the packet header into
an SRAM location corresponding to the namespace label.
Simultaneously, the FPGA forwarding logic searches for
the label in the data plane’s local pointer cache. The
egress port information from the SRAM namespace is
compared with the results from the pointer cache and the
lowest of the two entries is used to forward the packet.

6 EXPERIMENTAL APPROACH

To measure the performance of hardware virtual data
planes, we use the network configuration shown in
Figure 5. Our experiments explore the performance of
FPGA-based and OpenVZ-based virtual data planes and
the scalability of the integrated system. Performance is
determined in terms of network latency and observed
throughput. We use the NetFPGA hardware packet gen-
erator and packet capture tool [29] to generate packets at
line rate and measure network latency and throughput.

In general, software data planes cannot handle line rate
traffic. We compare the hardware data plane implemen-
tations against the Click modular router running on a
Linux box which includes a 3 GHz AMD X2 6000+
processor, 2 GB of RAM, and a dual-port Intel E1000
Gbit Ethernet NIC in the PCIe slot.

To measure the scalability of our system, we imple-
mented systems of between 1 and 15 virtual routers.
These systems implemented between one and four vir-
tual routers in the FPGA and the rest in host software.
While we separately assessed the performance of IPv4
and ROFL data planes, scalability experiments used IPv4
data planes. The Synopsys VCS simulator was used
for the functional verification of the hardware designs.
All hardware designs were successfully deployed on a
NetFPGA cube and executed on the Virtex II FPGA.

7 EXPERIMENTAL RESULTS

We report the performance and resource usage of virtual
data planes and analyze the scalability of the virtualiza-
tion platform in this section.

7.1 Performance

In an initial experiment, we compared the baseline
performance of a single hardware virtual data plane
running in the NetFPGA hardware and a Click software
virtual data plane running in the OpenVZ container. We
loaded the packet generator with PCAP files [29] whose
packet sizes ranged from 64 to 1024 bytes. These packets
were subsequently transmitted to the system at the line
rate of 1 Gbps.

We consider four specific system configurations:
1) Hardware data plane with TCAM routing tables

- The NetFPGA board receives and transmits all
packets. The forwarding tables are stored in a 32
entry TCAM located within the FPGA.

2) Hardware data plane with external SRAM routing
tables - The NetFPGA board receives and transmits
all packets. The forwarding tables are stored in a
4.5 Mbyte SRAM located external to the FPGA.

3) Click from NIC - The PC NIC (Figure 5) interfaces
receive network traffic and use Click data planes
executing in OpenVZ containers to forward pack-
ets.

4) Click from NetFPGA - The NetFPGA network in-
terfaces receive the traffic. Click data planes for-
ward the packets in OpenVZ containers. The PCI
bus transfers packets between the NetFPGA hard-
ware and the OpenVZ container.

7.1.1 Throughput

The throughputs of the four approaches for differing
packet sizes are shown in Figure 7. These values show
the maximum achievable throughput by each implemen-
tation for a packet drop rate of no more than 0.1% of
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transmitted packets. We measured the receiver through-
puts using hardware counters in the NetFPGA PktCap
capture tool.

The throughput of shorter packets drops considerably
in the software-based implementations. In contrast, the
single hardware virtual data plane consistently sustains
throughputs close to line rates for all packet sizes. The
hardware provides one to two orders of magnitude
better throughput than the OpenVZ Click router imple-
mentions due to inherent inefficiencies in the software
implementation. The OpenVZ running in user space
trades off throughput for flexibility and isolation. The
performance degradation in software implementations
results from frequent operating system interrupts and
system calls during packet transfers between user space
and kernel space. The hardware virtual data planes take
advantage of the parallelism and specialization of the
FPGA to overcome these issues.

7.1.2 Latency
We use the experimental setup shown in Figure 8 to
measure the latency of all four configurations mentioned
above. Unlike our previous work that used the ping
utility for latency measurements [30], the latency experi-
ments described here use the hardware-based NetFPGA
packet generator to accurately generate and capture
network traffic. While standard software utilities can
only measure network latencies on the order of several
milliseconds, the NetFPGA packet generator operating
at 125 MHz can report latencies with an accuracy of
±8 ns. In our test setup, we configured ports 0 and
1 of the packet generator in a loopback configuration
to provide a baseline measurement while ports 2 and
3 were attached to the experimental virtual router. We
simultaneously transmitted two packets of size 64 bytes
through ports 0 and 2 and later captured the forwarded
packets from ports 1 and 3. The difference in the ar-
rival timestamp values of the two packets indicate the
latency of the experimental data plane. We averaged the
observed latencies across ten repeats of the experiment.

Port 0

Port 1
NetFPGA

Packet

Generator
Port 2

Port 3

Port 0

Port 1
H/W

Virtual 

Router

Port 2

Port 3

Fig. 8. Experimental setup for measuring latency of
SRAM and TCAM forwarding tables

TABLE 1
Data plane latency for IPv4 and ROFL. Both long and

short prefixes are used

IPv4
Configuration Prefix

Type
Cycles/

Freq(Mhz)
Avg.

Latency
(ms)

Hardware data plane (TCAM) Short/
Long

1/62.5 3.01

Hardware data plane (SRAM)
Short 6/62.5 3.02
Long 21/62.5 3.17

Click from NIC Short/
Long

- 262.30

Click from NetFPGA Short/
Long

- 408.20

ROFL
Hardware data plane (TCAM) - 1/62.5 2.45
Hardware data plane (SRAM) - 4/62.5 2.40

Table 1 shows the latency of a single data plane
for all four configurations. For SRAM hardware data
planes, we separately evaluated the performance of short
(length ≤ 19 bits) and long prefixes (length > 19 bits)
to examine the overhead of two-level memory access
required for long prefix lookups in external SRAM. In
general, the hardware data planes incur one to two
orders of magnitude less latency than software data
plane implementations. Although the external SRAM-
based forwarding table requires 5 additional cycles for
each short prefix lookup than its TCAM counterpart,
the observed network latency increases by only 0.1
msec. The moderate increase is justifiable given the large
number of prefixes that can be stored in the external
SRAM. Longer prefixes incur an additional 15 cycles due
two memory accesses, resulting in a 5% increase in the
observed latency. The ROFL data plane uses 4 cycles for
each lookup.

The additional cycles consumed for SRAM-based IP
lookup and ROFL lookup does not necessarily limit the
packet forwarding performance. In fact, the impact of
higher latency on the overall throughput of the vir-
tualization platform can be hidden by exploiting the
pipelined nature of the design. We determined that
a 32x32 FIFO buffer inserted between the forwarding
logic and the dynamic design select module is sufficient
to sustain the line throughput (1 Gbps). The resultant
increase in the FPGA logic requirement was less than
1%.
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7.2 Network Scalability

Network scalability can be measured in terms of both
throughput and latency. For these experiments, we con-
figured the test topology as shown in Figure 5. Six spe-
cific system configurations were considered for systems
that consisted of 1 to 15 virtual networks. The software-
only Click from NIC and Click from NetFPGA cases are
the same as defined in Section 7.1.

Additional cases which combine NetFPGA and soft-
ware data planes include:

1) Hardware+Click from NIC (SRAM) - The PC NIC
receives and transmits all network traffic targeted
to OpenVZ-based virtual networks. The NetFPGA
physical interfaces receive and transmit all network
traffic targeted to FPGA-based virtual networks.
This case represents the multiple receiver approach
described in Section 4. The hardware virtual data
planes use external SRAM-based forwarding tables.

2) Hardware+Click from NIC (TCAM) - This ap-
proach is similar to case 1 except that hardware
virtual data planes use on-chip-TCAM based for-
warding tables.

3) Hardware+Click from NetFPGA (SRAM) - The
NetFPGA network interfaces receive and transmit
all network traffic. Hardware virtual data planes
perform some of the forwarding operations while
the rest are handled using Click data planes in
OpenVZ containers. For the latter cases, packets are
transferred between the NetFPGA hardware and
OpenVZ over the PCI bus. This case represents the
single receiver approach described in Section 4. The
hardware virtual routers use external SRAM-based
forwarding tables.

4) Hardware+Click from NIC (TCAM) - This ap-
proach is similar to case 3 except that hardware
virtual data planes use on-chip TCAM based for-
warding tables.

For cases 2 and 4, we implemented up to four virtual
data planes in the FPGA and the rest (up to 11) as Click

processes executing within OpenVZ containers. For cases
1 and 3, we deployed up to three virtual data planes
in the FPGA and remaining networks (up to 12) in
software. The setup to measure transmission latency for
the four cases is shown in Figure 8. As shown in Figure 9,
the average network latency of the Click OpenVZ virtual
router is approximately an order of magnitude greater
than that of the hardware implementation. The latency
of OpenVZ increases by approximately 15% from one
to fifteen virtual data planes. This effect is due to con-
text switching overhead and resource contention in the
operating system. Packets routed through OpenVZ via
the NetFPGA/PCI interface incur about 50% additional
latency overhead than when they are routed through
the NIC interfaces. The average latency of hardware
data planes remains constant for up to four data planes.
After this, every additional software router increases the
average latency by 2%.

To measure aggregate throughput when different
numbers of virtual data planes are hosted in our system,
we transmitted 64-byte packets with an equal bandwidth
allocated for all networks. Next, we incrementally in-
creased the bandwidth share of each virtual network
until the networks began to drop more than 0.1% of the
assigned traffic. A single OpenVZ software virtual data
plane can route packets through the PC NIC interface at
a bandwidth up to 11 Mbps. The throughput dropped by
27% when fourteen additional software data planes were
added. The software virtual data plane implementation
which routes packets from the NetFPGA card to the
OpenVZ containers can sustain only low throughput
(approximately 800 Kbps) with 64-byte packets and 5
Mbps with 1500 byte packets due to inefficiencies in the
NetFPGA PCI interface and driver. The FPGA sustains
close to line rate aggregate bandwidths for up to four
data planes. The average aggregate bandwidth drops
when software data planes are used in addition to FPGA-
based data planes.

The top two plots (HW+Click from NIC and HW+
Click from NetFPGA), which overlap in Figure 10, show
the average aggregate throughputs when software data
planes are used in conjunction with hardware data
planes. Since the hardware throughput dominates the
average throughput for these two software data plane
implementations, minor differences in bandwidth are
hidden. Further, the use of a log scale hides minor
differences in throughput between the two software
implementations.

Systems which contain more than the four virtual
data planes implemented in hardware exhibit an average
throughput reduction and latency increase as software
data planes are added. For systems that host a range of
virtual networks with varying latency and throughput
requirements, the highest performance networks could
be allocated to the FPGA while lower performing net-
works are implemented in software.
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7.3 Overhead of Dynamic Reconfiguration
To evaluate the cost and overhead of dynamic reconfigu-
ration, we initially programmed the target FPGA with a
bitstream that consisted of a single virtual data plane.
Next, we sent ping packets to the system at various
rates which were then forwarded using the NetFPGA
hardware plane. Next, we periodically migrated the
hardware plane to an OpenVZ container in host software
using the procedure described in Section 4.1. After FPGA
reconfiguration, we moved the data plane back to the
NetFPGA card. We determined that it takes approxi-
mately 12 seconds to migrate a hardware data plane to a
Click router implemented in OpenVZ. The FPGA recon-
figuration, including bitstream transfer over the PCI bus,
required about 5 seconds. Transferring the virtual router
from software back to hardware took around 3 seconds.
The relatively high hardware-to-software migration la-
tency was caused by the initialization of the virtual
environment and the address remapping via ARP mes-
sages. The software-to-hardware transfer only requires
writes to forwarding table entries over the PCI interface.
Our experiments show that if a source generates packets
at the maximum sustainable throughput of OpenVZ-
based data planes, our system can gracefully migrate the
virtual router between hardware and software without
any packet loss.

To examine the impact of frequent dynamic recon-
figuration on a data plane implemented in an FPGA,
we performed an analysis based on experimentally-
determined parameters. Consider a situation where a
hardware data plane is unchanged for an extended
period of time, but must be occasionally migrated from
hardware to software when a different hardware data
plane is updated or replaced. The overall bandwidth of
the unchanged data plane can be represented as:

Bavg =
Bsw ∗ treconfig +Bhw ∗ (T − treconfig)

T
(1)

where Bhw represents the aggregate bandwidth of FPGA

TABLE 2
Resource utilization of IPv4 and ROFL data planes

TCAM Lookup
ROFL IPv4

#Planes 1 1 2 3 4 5
Slices 10321 10068 12882 15696 18509 21322
Slice FF 9094 8964 11269 13574 15879 18184
LUTs 14787 15272 19744 24216 28689 33161
IO 437 437 437 437 437 437
BRAM 40 25 40 55 70 85

SRAM Lookup
ROFL IPv4

#Planes 1 1 2 3 4 5
Slices 16146 17867 20030 22202 - -
Slice FF 11338 12307 13869 15431 - -
LUTs 24023 26650 30260 34178 - -
IO 437 437 437 437 - -
BRAM 10 19 22 28 - -

TABLE 3
Percentage of prefixes which overlap

BGP Table Total Prefixes Prefix Overlap
rrc12 339K 13.0%
rrc13 346K 12.6%
rrc15 339K 15.0%
rrc16 345K 13.8%

data planes, Bsw represents the aggregate bandwidth
of software data planes, treconfig represents the time
required to update the FPGA including FPGA recon-
figuration time, and T represents the period of time
between FPGA reconfigurations. For our analysis, we
assume that four FPGA-based data planes with an in-
dividual throughput of 1 Gbps (Bhw = 1000 Mbps) are
reconfigured in 12 seconds (treconfig = 12 s), based on
our experimentally-collected results. During reconfigu-
ration, all active virtual networks are migrated to host
software using the procedure described in Section 4.1
and software data planes offer an aggregate throughput
of 11 Mbps with 64 byte packets (Bsw = 11 Mbps). Based
on (1), if reconfiguration is performed every 15 seconds,
the average throughput (Bavg) of unchanged hardware
datapaths drops from 1 Gbps to 200 Mbps. However,
if reconfiguration takes place once every 2 minutes, the
average throughput only drops 10% to about 900 Mbps.

7.4 Resource Usage

When internal forwarding tables are used, the Virtex
II Pro FPGA can accommodate a maximum of five
virtual data planes, each with a 32-entry TCAM-based
forwarding table. When the CPU transceiver module is
included, the FPGA can accommodate a maximum of
four virtual data planes. Each virtual data plane occupies
approximately 2000 slice registers and 3000 slice LUTs.
A fully-populated design uses approximately 90% of
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the slices and 40% of the BRAM. Table 2 shows the
resource utilization of up to five IPv4 virtual data planes
and a single ROFL data plane. All designs operate at
62.5 MHz. Synthesis results for the virtual router design
implemented on the largest Virtex 5 (5vlx330tff1738)
show that a much larger FPGA could support up to 32
IPv4 virtual data planes.

When external SRAM-based forwarding tables are
used, the FPGA can only store up to 3 virtual data
planes. We attribute the reduction in the number of
data planes to the additional overhead of DRAM arbitra-
tion logic used for implementing the input and output
queues. The DRAM arbitration logic alone consumes
about 15% of the overall FPGA resources. A hardware
virtual data plane that incorporates the DRAM and
SRAM arbitration controllers with a 32-entry Conflict
CAM consumes 66% of the total slices and 47% of the
total registers. However, we do not expect the logic cost
of the arbitration logic to scale with the number of virtual
data planes. Larger FPGAs in the Virtex 5 family are
able to amortize the additional cost with additional data
planes.

7.5 Size of the Conflict CAM

The size of the Conflict CAM is an important design
consideration for hardware IPv4 data planes since it uses
internal FPGA memory resources to store overlapped
prefixes. The size of the Conflict CAM heavily depends
on the amount of prefix overlaps between different
virtual data planes. Unfortunately, for experimental pur-
poses it is difficult to estimate the amount of prefix
overlaps due to the lack of availability of realistic virtual
router forwarding tables.

The RIS [31] project provides snapshots of Border
Gateway Protocol (BGP) routing tables collected from
Internet backbone routers. Although these sample rout-
ing tables contain large numbers of prefixes, they do not
necessarily represent realistic forwarding tables since the
prefixes generally tend to be highly similar across tables.
Song, et al. [23] observed that virtual routers in the future
Internet are unlikely to have similar prefixes. Existing
VPN services, for instance, largely use dissimilar prefixes
with different prefix aggregation schemes. Hence, for
our analysis, we construct synthetic forwarding tables by
partitioning four existing publicly-available BGP routing
tables, as shown in Table 3.

We uniformly distributed a set of 100K prefixes chosen
randomly from each BGP table between four virtual for-
warding tables. Next, we calculated prefix overlaps for
each virtual data plane and then averaged them across
all four virtual routers. In general, each forwarding table
exhibits 12-15% prefix overlap with prefixes found in
other tables. Each overlapped prefix in a system with
n virtual data planes needs log(n) bits for the virtual ID,
32 bits for the virtual prefix and 19 bits for the indirect
index. A system with 4 FPGA-based virtual data planes
that stores 100K prefixes with 13% prefix overlap will

need approximately 663 Kbits of on-chip memory for the
Conflict CAM. The on-chip resources of modern FPGAs,
such as those in the Virtex-5 family, are sufficient to
address this memory requirement.

8 CONCLUSIONS AND FUTURE WORK

We have presented a heterogeneous network virtualiza-
tion environment that uses host virtualization techniques
to scale existing FPGA-based virtualization platforms.
An important contribution of this work is the devel-
opment of a scalable virtual networking environment
that includes both hardware and software data plane
implementations. A full suite of architectural techniques
are used to support this scalable environment including
dynamic FPGA reconfiguration and a forwarding table
for the FPGA routers which is optimized for virtual rout-
ing. In the future, we plan to evaluate various techniques
to improve the programmability of our system.
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