4,375 research outputs found

    Human motion modeling and simulation by anatomical approach

    Get PDF
    To instantly generate desired infinite realistic human motion is still a great challenge in virtual human simulation. In this paper, the novel emotion effected motion classification and anatomical motion classification are presented, as well as motion capture and parameterization methods. The framework for a novel anatomical approach to model human motion in a HTR (Hierarchical Translations and Rotations) file format is also described. This novel anatomical approach in human motion modelling has the potential to generate desired infinite human motion from a compact motion database. An architecture for the real-time generation of new motions is also propose

    Example Based Caricature Synthesis

    Get PDF
    The likeness of a caricature to the original face image is an essential and often overlooked part of caricature production. In this paper we present an example based caricature synthesis technique, consisting of shape exaggeration, relationship exaggeration, and optimization for likeness. Rather than relying on a large training set of caricature face pairs, our shape exaggeration step is based on only one or a small number of examples of facial features. The relationship exaggeration step introduces two definitions which facilitate global facial feature synthesis. The first is the T-Shape rule, which describes the relative relationship between the facial elements in an intuitive manner. The second is the so called proportions, which characterizes the facial features in a proportion form. Finally we introduce a similarity metric as the likeness metric based on the Modified Hausdorff Distance (MHD) which allows us to optimize the configuration of facial elements, maximizing likeness while satisfying a number of constraints. The effectiveness of our algorithm is demonstrated with experimental results

    Senescence: An Aging based Character Simulation Framework

    Get PDF
    The \u27Senescence\u27 framework is a character simulation plug-in for Maya that can be used for rigging and skinning muscle deformer based humanoid characters with support for aging. The framework was developed using Python, Maya Embedded Language and PyQt. The main targeted users for this framework are the Character Technical Directors, Technical Artists, Riggers and Animators from the production pipeline of Visual Effects Studios. The characters that were simulated using \u27Senescence\u27 were studied using a survey to understand how well the intended age was perceived by the audience. The results of the survey could not reject one of our null hypotheses which means that the difference in the simulated age groups of the character is not perceived well by the participants. But, there is a difference in the perception of simulated age in the character between an Animator and a Non-Animator. Therefore, the difference in the simulated character\u27s age was perceived by an untrained audience, but the audience was unable to relate it to a specific age group

    CASA 2009:International Conference on Computer Animation and Social Agents

    Get PDF

    Final Report to NSF of the Standards for Facial Animation Workshop

    Get PDF
    The human face is an important and complex communication channel. It is a very familiar and sensitive object of human perception. The facial animation field has increased greatly in the past few years as fast computer graphics workstations have made the modeling and real-time animation of hundreds of thousands of polygons affordable and almost commonplace. Many applications have been developed such as teleconferencing, surgery, information assistance systems, games, and entertainment. To solve these different problems, different approaches for both animation control and modeling have been developed

    Physically-based forehead animation including wrinkles

    Get PDF
    Physically-based animation techniques enable more realistic and accurate animation to be created. We present a fully physically-based approach for efficiently producing realistic-looking animations of facial movement, including animation of expressive wrinkles. This involves simulation of detailed voxel-based models using a graphics processing unit-based total Lagrangian explicit dynamic finite element solver with an anatomical muscle contraction model, and advanced boundary conditions that can model the sliding of soft tissue over the skull. The flexibility of our approach enables detailed animations of gross and fine-scale soft-tissue movement to be easily produced with different muscle structures and material parameters, for example, to animate different aged skins. Although we focus on the forehead, our approach can be used to animate any multi-layered soft body
    • …
    corecore