130 research outputs found

    Neural-Integrated Meshfree (NIM) Method: A differentiable programming-based hybrid solver for computational mechanics

    Full text link
    We present the neural-integrated meshfree (NIM) method, a differentiable programming-based hybrid meshfree approach within the field of computational mechanics. NIM seamlessly integrates traditional physics-based meshfree discretization techniques with deep learning architectures. It employs a hybrid approximation scheme, NeuroPU, to effectively represent the solution by combining continuous DNN representations with partition of unity (PU) basis functions associated with the underlying spatial discretization. This neural-numerical hybridization not only enhances the solution representation through functional space decomposition but also reduces both the size of DNN model and the need for spatial gradient computations based on automatic differentiation, leading to a significant improvement in training efficiency. Under the NIM framework, we propose two truly meshfree solvers: the strong form-based NIM (S-NIM) and the local variational form-based NIM (V-NIM). In the S-NIM solver, the strong-form governing equation is directly considered in the loss function, while the V-NIM solver employs a local Petrov-Galerkin approach that allows the construction of variational residuals based on arbitrary overlapping subdomains. This ensures both the satisfaction of underlying physics and the preservation of meshfree property. We perform extensive numerical experiments on both stationary and transient benchmark problems to assess the effectiveness of the proposed NIM methods in terms of accuracy, scalability, generalizability, and convergence properties. Moreover, comparative analysis with other physics-informed machine learning methods demonstrates that NIM, especially V-NIM, significantly enhances both accuracy and efficiency in end-to-end predictive capabilities

    Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG

    Get PDF
    AbstractA meshless method based on the local Petrov–Galerkin approach is proposed, to solve initial-boundary value problems of magneto-electro-elastic solids with continuously varying material properties. Stationary and transient thermal problems are considered in this paper. The mechanical 2-D fields are described by the equations of motion with an inertial term. Nodal points are spread on the analyzed domain, and each node is surrounded by a small circle for simplicity. The spatial variation of displacements, electric and magnetic potentials is approximated by the moving least-squares (MLS) scheme. After performing the spatial integrations, one obtains a system of ordinary differential equations for certain nodal unknowns. That system is solved numerically by the Houbolt finite-difference scheme as a time stepping method

    A Streamline Upwind/ Petrov-Galerkin FEM based time-accurate solution of 3D time-domain Maxwell\u27s equations for dispersive materials

    Get PDF
    Although the simulation of most broadband frequency responses are made under the assumption of constant electromagnetic material parameters, this is not a valid assumption for many materials found in nature. In this dissertation the time-accurate solution of the 3D time-domain Maxwell’s equations for dispersive materials in a Streamline Upwind/Petrov-Galerkin framework is investigated. For this purpose the permittivity associated with a material is expressed as a matrix, enabling the solution of anisotropic material models with multiple poles. Here diagonally isotropic models with up to 2 poles are investigated. Near-field to far-field transformations are implemented to enable the solution of open boundary problems such as radiation patterns and radar cross sections. A unified perfectly matched layer absorbing boundary layer is implemented to efficiently terminate the computational region. Numerical simulations of these equations are tightly coupled together and compared against a loosely coupled approach to improve efficiency. An alternative diagonal stabilization matrix is proposed which is implemented and compared with a non-sparse stabilization matrix derived from the flux Jacobians. Along with this new stabilization parameter, scalability is improved by coupling the equations for the perfectly matched layer with those of Maxwell’s equations. Further efficiency gains are achieved by allowing for a variable number of equations to be solved throughout the domain
    • …
    corecore