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A meshless method based on the local Petrov–Galerkin approach is proposed, to solve initial-boundary
value problems of magneto-electro-elastic solids with continuously varying material properties. Station-
ary and transient thermal problems are considered in this paper. The mechanical 2-D fields are described
by the equations of motion with an inertial term. Nodal points are spread on the analyzed domain, and
each node is surrounded by a small circle for simplicity. The spatial variation of displacements, electric
and magnetic potentials is approximated by the moving least-squares (MLS) scheme. After performing
the spatial integrations, one obtains a system of ordinary differential equations for certain nodal
unknowns. That system is solved numerically by the Houbolt finite-difference scheme as a time stepping
method.
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1. Introduction

Magneto-electro-elastic materials have the ability of converting
the energy from one type to other (among magnetic, electric, and
mechanical) (Avellaneda and Harshe, 1994; Berlingcourt et al.,
1964; Landau and Lifshitz, 1984; Nan, 1994). This behaviour is
extensively utilized in construction of transducers, sensors and
actuators for smart structures. Earlier research activities were fo-
cused on modeling magneto-electro-elastic fields (Alshits et al.,
1992; Chung and Ting, 1995; Huang and Kuo, 1997; Li, 2000;
Pan, 2001; Liu et al., 2001; Wang and Shen, 2002). Unfortunately,
magneto-electro-elastic materials are brittle and they have a ten-
dency to develop cracks even in manufacture process. Therefore,
it is important to understand fracture of magneto-electro-elastic
materials (Beom and Atluri, 2003; Gao et al., 2003; Song and Sih,
2003; Zhou et al., 2004; Hu et al., 2006; Wang et al., 2006; Tian
and Gabbert, 2005; Tian and Rajapakse, 2005; Garcia-Sanchez et
al., 2007b; Wang and Mai, 2007). Applications are mostly made un-
der a static deformation assumption. Dynamic fracture analyses
are considered very seldom in the literature.

While the piezoelectric and piezomagnetic effects are due to
electro-elastic and magneto-elastic interactions, respectively, the
magnetoelectric effect is the induction of the electrical polarization
by magnetic field and the induction of magnetization by electric
ll rights reserved.
field via electro-magneto-elastic interactions. Magnetoelectric
coupling plays an important role in the dynamic behaviour of
certain materials, especially compounds which possess simulta-
neously ferroelectric and ferromagnetic phases (Eringen and
Maugin, 1990). The electric and magnetic symmetry groups for
certain crystals permit the piezoelectric and piezomagnetic as well
as magnetoelectric effects. In centrosymmetric crystals neither of
these effects exists. Some composite materials can provide supe-
rior properties compared to their constituents. The magneto-elec-
tro-mechanical coupling in some composites can be hundred times
higher than in single-phase materials (Nan, 1994; Feng and Su,
2006; Tong et al., 2008). Therefore, the multi-field coupling has
to be considered in mathematical modeling. If the volume fraction
of constituents is varying in a predominant direction, we are talk-
ing about functionally graded materials (FGMs). Originally these
materials have been introduced to benefit from the ideal perfor-
mance of its constituents, e.g. high heat and corrosion resistance
of ceramics on one side, and large mechanical strength and tough-
ness of metals on the other side. A review on various aspects of
FGMs can be found in the monograph of Suresh and Mortensen
(1998). Later, the demand for piezoelectric materials with high
strength, high toughness, low thermal expansion coefficient and
low dielectric constant encourages the study of functionally graded
piezoelectric materials (Zhu et al., 1995; Han et al., 2006). Accord-
ing to the best of authors’ knowledge there is only one paper
available (Feng and Su, 2006) with applications to continuously
nonhomogeneous magneto-electric materials.
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Certain piezoelectric and magneto-electro-elastic materials are
also temperature sensitive, i.e. an electric charge or voltage is gen-
erated when temperature variations are exposed. This effect is
called the pyroelectric effect. If a temperature load is considered
in a magneto-electro-elastic solid, it is needed to take into account
a coupling of magneto-electro-thermo-mechanical fields. The the-
ory of thermo-piezoelectricity was proposed for the first time by
Mindlin (1974). The physical laws for thermo-piezoelectric materi-
als have been explored by Nowacki (1978). Recently, the authors
have analyzed piezoelectric materials under a thermal load (Sladek
et al., 2007b).

The solution of general boundary value problems for continu-
ously nonhomogeneous magneto-electro-elastic solids requires
advanced numerical methods due to the high mathematical com-
plexity. Such a multi-field problem is described by a system of par-
tial differential equations because of the interactions among the
magnetic, electric and mechanical fields involved in the constitu-
tive equations. Therefore, the number of literature sources on the
problem is very limited. Drobenko et al. (2008) developed a math-
ematical model for coupled time-dependent electromagnetic, ther-
mal and mechanical processes, which occur in polarizable and
magnetizable electroconductive solids subjected to an electromag-
netic field. Zhu and Qin (2007) applied the hypersingular integral
equation method to crack problems in electro-magneto-thermo-
elastic multiphase composites. He and Li (2006) have solved elec-
tro-magneto-thermo-elastic problem for a half-space. In spite of
the great success of the finite element method (FEM) and boundary
element method (BEM) as effective numerical tools for the solution
of boundary value problems in mainly elastic solids, there is still a
growing interest in the development of new advanced numerical
methods. In recent years, meshless formulations are becoming
popular due to their high adaptability and low costs to prepare in-
put and output data in numerical analysis. The moving least-
squares (MLS) approximation is generally considered as one of
many schemes to interpolate discrete data with a reasonable accu-
racy. The order of continuity of the MLS approximation is given by
the minimum between the orders of continuity of the basis func-
tions and that of the weight function. So continuity can be tuned
to a desired value. In conventional discretization methods, the
interpolation functions usually result in a discontinuity of second-
ary fields (gradients of primary fields) on the interfaces of ele-
ments. For modeling of continuously nonhomogeneous solids the
approach based on piecewise continuous elements can bring some
inaccuracies. Therefore, modeling based on C1-continuity, such as
in meshless methods, is expected to be more accurate than con-
ventional discretization techniques. The meshless or generalized
FEM methods are also very convenient for modeling of cracks.
One can embed particular enrichment functions at the crack-tip
so the stress intensity factor can be predicted accurately (Fleming
et al., 1997).

A variety of meshless methods has been proposed so far, with
some of them being applied only to piezoelectric problems (Ohs
and Aluru, 2001; Liu et al., 2002). They can be derived from a
weak-form formulation either on the global domain or on a set
of local subdomains. In the global formulation, background cells
are required for the integration of the weak-form. In methods
based on local weak-form formulation, no background cells are re-
quired and therefore they are often referred to as truly meshless
methods. The meshless local Petrov–Galerkin (MLPG) method is a
fundamental base for the derivation of many meshless formula-
tions, since the trial and test functions can be chosen from different
functional spaces (Zhu et al., 1998; Atluri et al., 2000; Sladek et al.,
2000, 2001, 2003a,b; Sellountos et al., 2005). Recently, the MLPG
method with a Heaviside step function as the test functions (Atluri
et al., 2003; Sladek et al., 2004, 2006a) has been applied to solve
two-dimensional (2-D) homogeneous and continuously nonhomo-
geneous piezoelectric solids (Sladek et al., 2006b, 2007a,b). Present
authors have recently analyzed dynamic 3-D axisymmetric prob-
lems in continuously nonhomogeneous piezoelectric solids (Sladek
et al., 2008).

In this paper, the MLPG method is applied to 2-D continuously
nonhomogeneous magneto-electro-elastic solids subjected to
thermal loadings. Stationary and transient thermal loads are con-
sidered here. The coupled governing partial differential equations
are satisfied in a weak-form on small fictitious subdomains. Nodal
points are introduced and spread on the analyzed domain and
each node is surrounded by a small circle for simplicity, but
without loss of shape generality. For a simple shape of subdo-
mains, such as a circle used in this paper, numerical integrations
over them can be easily carried out. The integral equations have a
very simple nonsingular form. The spatial variations of the dis-
placements, electric and magnetic potentials are approximated
by the moving least-squares scheme (Belytschko et al., 1996;
Atluri, 2004). After performing the spatial integrations, one ob-
tains a system of ordinary differential equations for certain nodal
unknowns. That system is solved numerically by the Houbolt
finite-difference scheme (Houbolt, 1950) as a time stepping meth-
od. The accuracy and the efficiency of the proposed MLPG method
are verified by several numerical examples for central and edge
cracks.
2. Local boundary integral equations

The governing equations of the phenomenological theory of
magneto-electro-elastic materials under a thermal load consist of
Maxwell’s equations, the heat conduction equation and the bal-
ance of momentum. The governing equations, which are comple-
mented by the boundary and initial conditions, should be solved
for the unknown primary field variables such as the elastic
displacement vector field uiðx; sÞ, the electric potential wðx; sÞ (or
its gradient, called the electric vector field Eiðx; sÞÞ, the magnetic
potential lðx; sÞ (or its gradient, called the magnetic intensity field
Hiðx; sÞÞ, and temperature hðx; sÞ. The constitutive equations corre-
late the primary fields fui; Ei;Hi; hg with the secondary fields
frij;Di;Bi; qg, which are the stress tensor field, the electric displace-
ment vector field, the magnetic induction vector field, and the heat
flux, respectively. The governing equations give not only the
relationships between conjugated fields in each of the pairs
ðrij; eijÞ; ðDi; EiÞ; ðBi;HiÞ; ðh; qÞ but describe also the electro-mag-
neto-thermo-elastic interactions in the phenomenological theory
of continuous solids.

Taking into account the typical material coefficients, it can be
found that the characteristic frequencies for thermal, elastic and
electromagnetic processes are fth ¼ 10�3 Hz; f el ¼ 104 Hz and
f elm ¼ 107 Hz, respectively. Thus, if we consider such bodies under
transient loadings, with temporal changes corresponding to fth

and/or fel, the changes of the electromagnetic fields can be as-
sumed to be immediate, or in other words the electromagnetic
fields can be considered like quasi-static (Parton and Kudryavtsev,
1988). Then, the Maxwell equations are reduced to two scalar
equations

Dj;jðx; sÞ ¼ 0; ð1Þ
Bj;jðx; sÞ ¼ 0: ð2Þ

The rest of the vectorial Maxwell’s equations in quasi-static approx-
imation, r� E ¼ 0 and r�H ¼ 0, are satisfied identically by an
appropriate representation of the fields Eðx; sÞ and Hðx; sÞ as gradi-
ents of scalar electric and magnetic potentials wðx; sÞ and lðx; sÞ,
respectively,
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Ejðx; sÞ ¼ �w;jðx; sÞ; ð3Þ
Hjðx; sÞ ¼ �l;jðx; sÞ: ð4Þ

To complete the set of governing equations, Eqs. (1) and (2), one
needs to use the equations of motion and the heat conduction in
an elastic continuum

rij;jðx; sÞ þ Xiðx; sÞ ¼ q€uiðx; sÞ; ð5Þ

kijðxÞh;jðx; sÞ
� �

;i � qðxÞcðxÞ _hðx; sÞ ¼ 0; ð6Þ

where €ui; q and Xi denote the acceleration of displacements, the
mass density, and the body force vector, respectively. Also, kij and
c are the thermal conductivity tensor and specific heat, respectively.
A comma after a quantity represents the partial derivatives of the
quantity and a dot is used for the time derivative. Recall that the
acceleration term is usually omitted in a quasi-static approximation
when the transient thermal loadings change with a characteristic
frequency fth. Nevertheless, we consider this term in order to incor-
porate elastic waves into simulations of processes under thermal
shocks. On the other hand, the influence of the time derivatives of
the displacement and electro-magnetic fields on the heat conduc-
tion is neglected because of the significant differences in the char-
acteristic frequencies.

Finally, we assume the constitutive equations involving the
general electro-magneto-thermo-elastic interaction (Huang and
Kuo, 1997) for continuously non-homogeneous media with spa-
tially dependent material coefficients

rijðx; sÞ ¼ cijklðxÞeklðx; sÞ � ekijðxÞEkðx; sÞ � dkijðxÞHkðx; sÞ
� kijðxÞhðx; sÞ; ð7Þ

Djðx; sÞ ¼ ejklðxÞeklðx; sÞ þ hjkðxÞEkðx; sÞ þ ajkðxÞHkðx; sÞ
þ pjðxÞhðx; sÞ; ð8Þ

Bjðx; sÞ ¼ djklðxÞeklðx; sÞ þ akjðxÞEkðx; sÞ þ cjkðxÞHkðx; sÞ
þmjðxÞhðx; sÞ; ð9Þ

with the strain tensor eij being related to the displacements ui

by

eij ¼
1
2
ðui;j þ uj;iÞ: ð10Þ

Note that the constitutive relationship for the density of entropy is
omitted, since the influence of mechanical and electro-magnetic
fields is neglected and the thermal problem is considered as an
independent problem separately. The functional coefficients
cijklðxÞ; hjkðxÞ and cjkðxÞ are the elastic coefficients, dielectric permit-
tivities, and magnetic permeabilities, respectively; ekijðxÞ; dkijðxÞ;
ajkðxÞ; pjðxÞ and mjðxÞ are the piezoelectric, piezomagnetic, magne-
toelectric, pyroelectric and pyromagnetic coefficients, respectively.
The stress–temperature modulus kijðxÞ can be expressed through
the stiffness coefficients and the coefficients of linear thermal expan-
sion bkl

kij ¼ cijklbkl: ð11Þ

In the case of certain crystal symmetries, one can formulate also the
plane-deformation problems (Parton and Kudryavtsev, 1988). For
instance, in the crystals of hexagonal symmetry with x3 being the
six-order symmetry axis and assuming u2 ¼ 0 as well as the
independence on x2, i.e. ð�Þ;2 ¼ 0, we have e22 ¼ e23 ¼ e12 ¼ E2 ¼
H2 ¼ 0. Then, the constitutive equations (7)–(9) are reduced to the
following form:
r11

r33

r13

264
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0 0 c44

264
375 e11

e33

2e13

264
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0 e33
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where

k ¼
c11 c13 c12

c13 c33 c32

0 0 0

264
375 b11

b33

b22

264
375 ¼ k11

k33

0

264
375:

Recall that r22 does not influence the governing equations, although
it is not vanishing in general, since r22 ¼ c12e11 þ c23e33 � k22h with
k22 ¼ c12b11 þ c23b33 þ c22b22.

The following essential and natural boundary conditions are as-
sumed for the mechanical fields:

uiðx; sÞ ¼ ~uiðx; sÞ; on Cu;

tiðx; sÞ � rijnj ¼ ~tiðx; sÞ; on Ct ; C ¼ Cu [ Ct :

For the electrical fields, we assume

wðx; sÞ ¼ ~wðx; sÞ; on Cp;

Qðx; sÞ � Diðx; sÞniðxÞ ¼ eQ ðx; sÞ; on Cq; C ¼ Cp [ Cq;

for the magnetic fields

lðx; sÞ ¼ ~lðx; sÞ; on Ca;

Sðx; sÞ � Biðx; sÞniðxÞ ¼ eSðx; sÞ; on Cb; C ¼ Ca [ Cb;

and for the thermal fields

hðx; sÞ ¼ ~hðx; sÞ on Ce;

qðx; sÞ � kijh;jðx; sÞniðxÞ ¼ ~qðx; sÞ on Cf ; C ¼ Ce [ Cf ;

where Cu is the part of the global boundary C with prescribed dis-
placements, while on Ct ; Cp; Cq; Ca; Cb; Ce and Cf the traction
vector, the electric potential, the normal component of the electric
displacement vector, the magnetic potential and the magnetic flux,
the temperature and the heat flux are prescribed, respectively. Re-
call that eQ ðx; sÞ can be considered approximately as the surface
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density of free charge, provided that the permittivity of the solid is
much greater than that of the surrounding medium (vacuum).

The initial conditions for the mechanical displacements are as-
sumed as

uiðx; sÞjs¼0 ¼ uiðx;0Þ and _uiðx; sÞjs¼0 ¼ _uiðx;0Þ in X:

The local weak-form of the governing equation (5) can be written as
(Atluri, 2004)Z

Xs

rij;jðx; sÞ � q€uiðx; sÞ þ Xiðx; sÞ
� �

u�ikðxÞdX ¼ 0; ð15Þ

where u�ikðxÞ is a test function.
Applying the Gauss divergence theorem to the first integral one

obtainsZ
oXs

rijðx; tÞnjðxÞu�ikðxÞdC�
Z

Xs

rijðx; tÞu�ik;jðxÞdX

þ
Z

Xs

�q€uiðx; tÞ þ Xiðx; tÞ½ �u�ikðxÞdX ¼ 0; ð16Þ

where oXs is the boundary of the local subdomain which consists of
three parts oXs ¼ Ls [ Cst [ Csu (Atluri, 2004). Here, Ls is the local
boundary that is totally inside the global domain, Cst is the part of
the local boundary which coincides with the global traction bound-
ary, i.e., Cst ¼ oXs \ Ct , and similarly Csu is the part of the local
boundary that coincides with the global displacement boundary,
i.e., Csu ¼ oXs \ Cu.

By choosing a Heaviside step function as the test function u�ikðxÞ
in each subdomain

u�ikðxÞ ¼
dik at x 2 Xs;

0 at x R Xs;

�
the local weak-form (16) is converted into the following local
boundary-domain integral equations:Z

LsþCsu

tiðx;sÞdC�
Z

Xs

q€uiðx;sÞdX¼�
Z

Cst

~tiðx;sÞdC�
Z

Xs

Xiðx;sÞdX:

ð17Þ

Eq. (17) is recognized as the overall force equilibrium conditions on
the subdomain Xs. Note that the local integral equation (17) is valid
for both the homogeneous and nonhomogeneous solids. Nonhomo-
geneous material properties are included in Eq. (17) through the
elastic, piezoelectric, piezomagnetic and thermo-elastic coefficients
involved in the traction components

tiðx; sÞ ¼ cijklðxÞuk;lðx; sÞ þ ekijðxÞw;kðx; sÞ
�
þ dkijðxÞl;kðx; sÞ � kijðxÞhðx; sÞ

i
njðxÞ:

Similarly, the local weak-form of the governing equation (1) can be
written asZ

Xs

Dj;jðx; sÞv�ðxÞdX ¼ 0; ð18Þ

where v�ðxÞ is a test function.
Applying the Gauss divergence theorem to the local weak-form

(18) and choosing the Heaviside step function as the test function
v�ðxÞ, one can obtainZ

LsþCsp

Qðx; sÞdC ¼ �
Z

Csq

eQ ðx; sÞdC; ð19Þ

where

Qðx; sÞ ¼ Djðx; sÞnjðxÞ

¼ ejkluk;lðx; sÞ � hjkw;kðx; sÞ � ajkl;kðx; sÞ þ pjhðx; sÞ
h i

nj:
The local integral equation corresponding to the governing equation
(2) has the formZ

LsþCsa

Sðx; sÞdC ¼ �
Z

Csb

eSðx; sÞdC; ð20Þ

where the magnetic flux is given by

Sðx; sÞ ¼ Bjðx; sÞnjðxÞ

¼ djkluk;lðx; sÞ � akjw;kðx; sÞ � cjkl;kðx; sÞ þmjhðx; sÞ
h i

nj:

The local weak-form of the diffusion equation (6) can be written
asZ

Xs

kijðxÞh;jðx; sÞ
� �

;i � qðxÞcðxÞ _hðx; sÞ
n o

w�ðxÞdX ¼ 0; ð21Þ

where w�ðxÞ is a test function.
Applying the Gauss divergence theorem to the local weak-form

and considering the Heaviside step function for the test function
w�ðxÞ, one can obtainZ

LsþCse

qðx; sÞdC�
Z

Xs

qðxÞcðxÞ _hðx; sÞdX ¼ �
Z

Csf

~qðx; sÞdC: ð22Þ

In the MLPG method, the test and the trial functions are not neces-
sarily from the same functional spaces. For internal nodes, the test
function is chosen as a unit step function with its support on the lo-
cal subdomain. The trial functions, on the other hand, are chosen to
be the MLS-approximations by using a number of nodes spreading
over the domain of influence. According to the MLS (Belytschko et
al., 1996) method, the approximation of the displacement field
can be given as

uhðxÞ ¼
Xm

i¼1

piðxÞaiðxÞ ¼ pTðxÞaðxÞ;

where pTðxÞ ¼ p1ðxÞ;p2ðxÞ; . . . pmðxÞf g is a vector of complete basis
functions of order m and aðxÞ ¼ a1ðxÞ; a2ðxÞ; . . . amðxÞf g is a vector
of unknown parameters that depend on x. For example, in 2-D
problems

pTðxÞ ¼ f1; x1; x3g for m ¼ 3

and

pTðxÞ ¼ 1; x1; x3; x2
1; x1x3; x2

3

� �
for m ¼ 6

are linear and quadratic basis functions, respectively. The basis
functions are not necessary to be polynomials. It is convenient to
introduce r�1=2 – singularity for secondary fields at the crack-tip
vicinity for modelling of fracture problems (Fleming et al., 1997).
Then, the basis functions can be considered in the following
form:

pTðxÞ ¼ 1; x1; x3;
ffiffiffi
r
p

cosðh=2Þ;
ffiffiffi
r
p

sinðh=2Þ;
�

r sinðh=2Þ sin h;
ffiffiffi
r
p

cosðh=2Þ sin h
p �

for m ¼ 7;

where r and h are polar coordinates with the crack-tip as the origin.
The upper given enriched basic functions represent all occurring
terms in asymptotic expansion of displacements at the crack-tip
vicinity. Then, density of node distribution in such a case can be
lower than in the polynomial basis functions at the same accuracy
of results.

The approximated functions for the mechanical displacements,
the electric and magnetic potentials, and the temperature can be
written as (Atluri, 2004)
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uhðx; sÞ ¼ UTðxÞ � û ¼
Xn

a¼1

/aðxÞûaðsÞ;

whðx; sÞ ¼
Xn

a¼1

/aðxÞŵaðsÞ;

lhðx; sÞ ¼
Xn

a¼1

/aðxÞl̂aðsÞ;

hhðx; sÞ ¼
Xn

a¼1

/aðxÞĥaðsÞ;

ð23Þ

where the nodal values ûaðsÞ ¼ ûa
1ðsÞ; ûa

3ðsÞ

 �T

; ŵaðsÞ; l̂aðsÞ;
and ĥaðsÞ are fictitious parameters for the displacements, the elec-
tric and magnetic potentials and the temperature, respectively,
and /aðxÞ is the shape function associated with the node a. The
number of nodes n used for the approximation is determined by
the weight function waðxÞ. A fourth-order spline-type weight func-
tion is applied in the present work

waðxÞ ¼ 1� 6 da

ra

� 2
þ 8 da

ra

� 3
� 3 da

ra

� 4
; 0 6 da

6 ra;

0; da P ra;

8<: ð24Þ

where da ¼ x� xak k and ra is the size of the support domain. It is
seen that the C1-continuity is ensured over the entire domain, and
therefore the continuity conditions of the tractions, the electric
charge, the magnetic flux and the heat flux are satisfied. In the
MLS approximation, the rates of the convergence of the solution
may depend upon the nodal distance as well as the size of the
support domain (Wen and Aliabadi, 2007, 2008; Wen et al.,
2008). It should be noted that a smaller size of the subdomains
may induce larger oscillations in the nodal shape functions (Atluri,
2004). A necessary condition for a regular MLS approximation is
that at least m weight functions are non-zero (i.e. n P m) for each
sample point x 2 X. This condition determines the size of the sup-
port domain.

Then, the traction vector tiðx; sÞ at a boundary point x 2 oXs is
approximated in terms of the same nodal values ûaðsÞ as

thðx; sÞ ¼ NðxÞCðxÞ
Xn

a¼1

BaðxÞûaðsÞ þ NðxÞLðxÞ
Xn

a¼1

PaðxÞŵaðsÞ

þ NðxÞKðxÞ
Xn

a¼1

PaðxÞl̂aðsÞ �NðxÞkðxÞ
Xn

a¼1

uaðxÞĥaðsÞ;

ð25Þ

where the matrices CðxÞ; LðxÞ and KðxÞ are defined in Eq. (12), the
matrix N(x) is related to the normal vector n(x) on oXs by

NðxÞ ¼
n1 0 n3

0 n3 n1

� �
;

and finally, the matrices Ba and Pa are represented by the gradients
of the shape functions as

BaðxÞ ¼
/a
;1 0

0 /a
;3

/a
;3 /a

;1

264
375; PaðxÞ ¼

/a
;1

/a
;3

" #
:

Similarly the normal component of the electric displacement vector
Qðx; sÞ can be approximated by

Q hðx; sÞ ¼ N1ðxÞGðxÞ
Xn

a¼1

BaðxÞûaðsÞ �N1ðxÞHðxÞ
Xn

a¼1

PaðxÞŵaðsÞ

� N1ðxÞAðxÞ
Xn

a¼1

PaðxÞl̂aðsÞ þ N1ðxÞPðxÞ
Xn

a¼1

/aðxÞĥaðsÞ;

ð26Þ
where the matrices GðxÞ; HðxÞ; PðxÞ and AðxÞ are defined in Eq.
(13) and

N1ðxÞ ¼ n1 n3½ �:

Eventually, the magnetic flux Sðx; sÞ is approximated by

Shðx; sÞ ¼ N1ðxÞRðxÞ
Xn

a¼1

BaðxÞûaðsÞ �N1ðxÞAðxÞ

�
Xn

a¼1

PaðxÞŵaðsÞ � N1ðxÞFðxÞ
Xn

a¼1

PaðxÞl̂aðsÞ

þ N1ðxÞMðxÞ
Xn

a¼1

/aðxÞĥaðsÞ ð27Þ

with the matrices RðxÞ; FðxÞ and MðxÞ being defined in Eq. (14).
The heat flux qðx; sÞ is approximated by

qhðx; sÞ ¼ kijni

Xn

a¼1

/a
;jðxÞĥaðsÞ ¼ N1ðxÞHðxÞ

Xn

a¼1

PaðxÞĥaðsÞ; ð28Þ

where HðxÞ ¼ k11 k13

k13 k33

� �
.

Satisfying the essential boundary conditions and making use of
the approximation formulae (23), one obtains the discretized form
of these boundary conditions asXn

a¼1

/aðfÞûaðsÞ ¼ ~uðf; sÞ for f 2 Cu;

Xn

a¼1

/aðfÞŵaðsÞ ¼ ~wðf; sÞ for f 2 Cp;

Xn

a¼1

/aðfÞl̂aðsÞ ¼ ~lðf; sÞ for f 2 Ca;

Xn

a¼1

/aðfÞĥaðsÞ ¼ ~hðf; sÞ for f 2 Ce:

ð29Þ

Furthermore, in view of the MLS-approximations (25)–(28) for the
unknown quantities in the local boundary-domain integral equa-
tions (17), (19), (20) and (22), we obtain their discretized forms asXn

a¼1

Z
LsþCst

NðxÞCðxÞBaðxÞdC
� �

ûaðsÞ �
Z

Xs

qðxÞ/a dX
� �

€̂uaðsÞ
� �

þ
Xn

a¼1

Z
LsþCst

NðxÞLðxÞPaðxÞdC
� �

ŵaðsÞ

þ
Xn

a¼1

Z
LsþCst

NðxÞKðxÞPaðxÞdC
� �

l̂aðsÞ

�
Xn

a¼1

Z
LsþCst

NðxÞkðxÞ/aðxÞdC
� �

ĥaðsÞ

¼ �
Z

Cst

~tðx; sÞdC�
Z

Xs

Xðx; sÞdX;

ð30Þ

Xn

a¼1

Z
LsþCsq

N1ðxÞGðxÞBaðxÞdC

 !
ûaðsÞ

�
Xn

a¼1

Z
LsþCsq

N1ðxÞHðxÞPaðxÞdC

 !
ŵaðsÞ

�
Xn

a¼1

Z
LsþCsq

N1ðxÞAðxÞPaðxÞdC

 !
l̂aðsÞ

þ
Xn

a¼1

Z
LsþCsq

N1ðxÞPðxÞ/aðxÞdC

 !
ĥaðsÞ

¼ �
Z

Csq

eQ ðx; sÞdC; ð31Þ
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Xn

a¼1

Z
LsþCsb

N1ðxÞRðxÞBaðxÞdC

 !
ûaðsÞ

�
Xn

a¼1

Z
LsþCsb

N1ðxÞAðxÞPaðxÞdC

 !
ŵaðsÞ

�
Xn

a¼1

Z
LsþCsb

N1ðxÞFðxÞPaðxÞdC

 !
l̂aðsÞ

þ
Xn

a¼1

Z
LsþCsb

N1ðxÞMðxÞ/aðxÞdC

 !
ĥaðsÞ

¼ �
Z

Csb

eSðx; sÞdC; ð32Þ
x1

x2

T1

T2

2a

2w

h

Fig. 1. Central crack in a finite strip with prescribed temperatures on outer
boundary and crack surfaces.
Xn

a¼1

Z
LsþCsf

N1ðxÞHðxÞPaðxÞdC

 !
ĥaðsÞ

"

�
Z

Xs

qc/aðxÞdC
� �

_̂haðsÞ
�
¼ �

Z
Csf

~qðx; sÞdC; ð33Þ

which are considered on the sub-domains adjacent to the interior
nodes as well as to the boundary nodes on Cst ; Csq and Csb.

Collecting the discretized local boundary-domain integral equa-
tions together with the discretized boundary conditions for the dis-
placements, the electrical and magnetic potentials, and the
temperature results in a complete system of ordinary differential
equations and it can be rearranged in such a way that all known
quantities are on the right-hand side. Thus, in matrix form the sys-
tem becomes

A€xþ B _xþ Cx ¼ Y: ð34Þ

Recall that the system matrix has a block structure and the thermal
unknowns can be solved separately from the mechanical and elec-
tro-magnetic unknowns.

There are many time integration procedures for the solution of
this system of ordinary differential equations. In the present work,
the Houbolt method is applied. In the Houbolt finite-difference
scheme (Houbolt, 1950), the ‘‘acceleration” €u ¼ €xð Þ is expressed as

€xsþDs ¼
2xsþDs � 5xs þ 4xs�Ds � xs�2Ds

Ds2 ; ð35Þ

where Ds is the time step. The backward difference method is ap-
plied for the approximation of ‘‘velocities”

_xsþDs ¼
xsþDs � xs

Ds
: ð36Þ

Substituting Eqs. (35) and (36) into Eq. (34), we get the following
system of algebraic equations for the unknowns xsþDs:

2
Ds2 Aþ 1

Ds
Bþ C

� �
xsþDs ¼

1
Ds2 ð5Aþ BDsÞxs

þ A
1

Ds2 �4xs�Ds þ xs�2Dsf g þ Y: ð37Þ

The value of the time step has to be appropriately selected with re-
spect to material parameters (wave velocities) and time depen-
dence of the boundary conditions.
Fig. 2. Node distribution and boundary conditions.
3. Numerical examples

In all numerical examples presented in this section, imperme-
able crack-face boundary conditions for electrical and magnetic
fields are assumed.
3.1. A central crack in a finite homogeneous strip

In the first example, a straight central crack in a finite strip un-
der a thermal load is analyzed. The geometry of the strip is given in
Fig. 1 with the following values: a ¼ 0:5; a=w ¼ 0:4 and h=w ¼ 1:2.
On the outer boundary of the strip a thermal load T2 ¼ h0 ¼ 1� is
applied. On both crack surfaces vanishing value of temperature is
kept. The outer boundary is free of traction, electrical displacement
and magnetic induction.

Due to the symmetry of the problem with respect to both Carte-
sian coordinates, only a quarter of the strip is modeled. We have
used 930 (31 � 30) nodes equidistantly distributed for the MLS
approximation of the physical quantities (Fig. 2). The local subdo-
mains are considered to be circular with a radius rloc ¼ 0:025 m.
Homogeneous material properties are selected to test the present



Fig. 4. Variations of the electrical potential along the crack face.

Fig. 5. Variations of the magnetic potential along the crack face.
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computational method. The material coefficients for the BaTiO3–
CoFe2O4 composite are given by Ootao and Tanigawa (2005) as

c11 ¼ 22:6� 1010 N m�2; c13 ¼ 12:4� 1010 N m�2;

c33 ¼ 21:6� 1010 N m�2; c66 ¼ 4:4� 1010 N m�2;

e15 ¼ 5:8 C m�2; e31 ¼ �2:2 C m�2; e33 ¼ 9:3 C m�2;

h11 ¼ 5:64� 10�9 C2=N m2; h33 ¼ 6:35� 10�9 C2=N m2;

d15 ¼ 275:0 N=A m; d21 ¼ 290:2 N=A m; d22 ¼ 350:0 N=A m;

a11 ¼ 5:367� 10�12N s=V C; a33 ¼ 2737:5� 10�12N s=V C;

c11 ¼ 297:0� 10�6 N s2 C�2; c33 ¼ 83:5� 10�6 N s2 C�2;

q ¼ 5500 kg=m3;

k11 ¼ 50 W=K m; k33 ¼ 75 W=K m; b11 ¼ 0:88� 10�5 1=K;

b33 ¼ b22 ¼ 0:5� 10�5 1=K;

p1 ¼ 0; p3 ¼ �1� 10�4 C=K m2; c ¼ 420 W s kg�1 K�1;

m1 ¼ 0; m3 ¼ �1:1� 10�4 N=A m K:

The crack-opening-displacements, the electrical and magnetic
potentials for vanishing and finite values of pyroelectric and
pyromagnetic parameters are mutually compared in Figs. 3–5. The
considered finite values of the pyroelectric and pyromagnetic
parameters reduce the crack-opening-displacements. Oppositely,
the electrical potential is significantly increased if finite values of
pyroelectric and pyromagnetic parameters are considered (Fig. 4).
The magnetic potential is slightly reduced for finite values of the
pyroelectric and pyromagnetic parameters (Fig. 5).

For cracks in homogeneous and linear piezoelectric and piezo-
magnetic solids, the asymptotic behaviour of the field quantities
has been given by Wang and Mai (2003). In the crack-tip vicinity,
the displacements and potentials show the classical

ffiffiffi
r
p

asymptotic
behaviour. Hence, correspondingly, the stresses, electrical
displacement and magnetic induction exhibit 1=

ffiffiffi
r
p

behaviour,
where r is the radial polar coordinate with origin at the crack-tip.
Fig. 3. Variations of the crack-opening-displacement with the normalized coordi-
nate x1=2a.
Garcia-Sanchez et al. (2007a,b) extended the approach used in
piezoelectricity to magnetoelectroelasticity to obtain asymptotic
expressions of generalized intensity factors as

K II

K I

KE

KM

0BBB@
1CCCA ¼

ffiffiffiffiffi
p
2r

r
ReðBÞ�1
h i u1

u3

w

l

0BBB@
1CCCA; ð38Þ

where the matrix B is determined by the material properties (Gar-
cia-Sanchez et al., 2005, 2007b) and

K I ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

r33ðr; 0Þ;

K II ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

r13ðr; 0Þ;

KE ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

D3ðr;0Þ;

KM ¼ lim
r!0

ffiffiffiffiffiffiffiffiffi
2pr
p

B3ðr;0Þ;

are the stress intensity factors (SIFs) K I and K II, the electrical dis-
placement intensity factor (EDIF) KE, and is the magnetic induction
intensity factor (MIIF) KM, respectively.



Fig. 6. Edge crack in a finite strip under a thermal shock on the lateral side.
Fig. 8. Time evolution of the electrical potential at the crack-tip vicinity.
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The finite values of pyroelectric and pyromagnetic parameters
have vanishing influence on the stress intensity factor and its vale
is K I ¼ 4:48� 105 Pa m1=2. This value has been computed from Eq.
(38) by extrapolation to the crack-tip from quantities ðu1;u3;w;lÞ
at selected distances r from the crack-tip. Recently, Sladek et al.
(2007a) have showed that electrical potential w caused by a re-
mote pure mechanical load is identical to u3 caused by a remote
pure electric displacement loading as a consequence of the ex-
tended Betti’s reciprocal theorem in stationary piezoelasticity.
The Betti’s reciprocal theorem has to valid also in stationary elec-
tro-magneto-elasticity. It is interesting to note that for a pure
mechanical load, a finite values of the electrical and magnetic
potentials w, l on crack surfaces do not result in a finite value of
the EDIF, KE and the MIIF, KM. It means that the crack-opening-dis-
placement u3 and the potentials w, l are coupled, but the SIF, and
the EDIF and MIIF in this case are uncoupled.

3.2. Edge crack in a finite strip under a thermal shock

Next, an edge crack in a finite magneto-electro-elastic strip is
analyzed. On the left lateral side of the strip a cooling shock with
Heaviside time variation is applied. The right lateral side is kept
at vanishing temperature. The heat flux is vanishing on the top
Fig. 7. Time evolution of the crack displacement at the crack-tip vicinity.
of the strip. The geometry of the strip is given in Fig. 6 with the fol-
lowing values: a ¼ 0:5; a=w ¼ 0:4 and h=w ¼ 1:2. Due to the sym-
metry of the problem with respect to the x1-axis, only a half of the
strip is modeled. We have used 930 nodes equidistantly distrib-
uted for the MLS approximation of the physical quantities. The
material properties are the same as in the previous example.
Numerical calculations are carried out for a time step Ds ¼ 250 s.

The time evolutions of the displacement and the electrical po-
tential at a small distance e ¼ 0:04166 m from the crack-tip are
presented in Figs. 7 and 8, respectively. One can see that the con-
sidered electromagnetic and piezomagnetic parameters have only
small influence on the displacement and electrical potential. For
a piezoelectric material both electromagnetic and piezomagnetic
parameters are zero.

Variations of the displacement, electrical and magnetic poten-
tials along the crack face at the time instant s� ¼ 0:909 are pre-
sented in Fig. 9. These quantities are used for evaluation of the
intensity factors from Eq. (38). One can observe that the gradient
of the crack-opening-displacement along x1 is significantly larger
than in the previous central crack problem.

Numerical results for the normalized stress intensity factor
fI ¼ K I

ffiffiffiffiffiffi
pa
p

b11c11h0

 ��

are presented in Fig. 10. The time evolution
of the SIF is similar to the variation of displacements at the
Fig. 9. Variations of the displacement, electrical and magnetic potentials along the
crack face at s� ¼ 0:909.



Fig. 10. Time evolution of the normalized SIF in the cracked strip under a thermal
shock.
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crack-tip vicinity presented in Fig. 7. It means that displacements
have dominant influence on the value of the SIF for considered
material parameters. One can observe that for a large instant the
SIF is approaching the stationary value f stat

I ¼ 0:00002. Stationary
value of the SIF gives a test of accuracy, since this value should
be vanishing due to vanishing stresses ahead the crack-tip for con-
sidered boundary conditions. The EDIF for considered boundary va-
lue problem should be vanishing too (Fig. 11). The normalized EDIF
is defined as fIV ¼ KKE

ffiffiffiffiffiffi
pa
p

b11c11h0

 ��

, where K ¼ e33=h33. Due to
the extended Betti’s reciprocal theorem the potential w on the
crack caused by a remote pure mechanical load is identical to the
displacement u3 caused by a remote pure electric displacement
loading (Sladek et al., 2007b). Therefore, for a pure mechanical
loading, a finite value of the potential w on the crack does not re-
sult in a finite value of the EDIF KE. It means that the crack-open-
ing-displacement u3 and the potential are coupled, but the SIF and
the EDIF in this case are uncoupled.

The influence of the material gradation on the stress intensity
factor is analyzed too. The functionally graded material properties
in the x1-direction are considered. The gradation of material prop-
erties in the strip is illustrated in Fig. 12. An exponential variation
Fig. 11. Comparison of the normalized SIF and EDIF in the cracked strip under a
thermal shock.
of the elastic, piezoelectric, dielectric, paramagnetic, electromag-
netic and magnetic permeability coefficients is assumed as

fijðxÞ ¼ fij0 expðcf x1Þ; ð39Þ

where the symbol fij is commonly used for particular material coef-
ficients with fij0 corresponding to the material coefficients for the
BaTiO3–CoFe2O4. We have considered the same exponential grada-
tion for all coefficients with value c ¼ 1 in the numerical calcula-
tions. Then, all mechanical, electrical and magnetic parameters at
the crack-tip are e0:5 ¼ 1:649 times larger than that in the homoge-
neous material. The heat conduction and linear thermal expansion
coefficients have negative gradation coefficient c ¼ �1. It means
that both thermal coefficients are decreasing along x1. Pyroelectric
and pyromagnetic coefficients are assumed to be zero in our case.
Again the time step Ds ¼ 250 s is considered in numerical analysis.

Larger stiffness parameters have a tendency to decrease the
displacements. The equivalent thermal forces are the same for
the FGM and homogeneous material since increasing stiffness
and deceasing thermal expansion are mutually eliminated. If we
consider an imaginary homogeneous material characterized by
the material parameters corresponding to that of the FGM with
c ¼ 1 at the crack-tip x1 ¼ 0:5, the crack-opening-displacement
and potentials are significantly reduced in comparison with ones
corresponding to the real homogeneous material with parameters
fij0. However, the SIF is the same for both imaginary and real homo-
geneous materials. Due to lower stiffness parameters for x1 < 0:5
in the FGM, the crack-opening-displacements and potentials are
larger in FGM than in the imaginary homogeneous material. From
the numerical analyses it follows that the crack-opening-displace-
ment and potential values are similar in the real homogeneous and
continuously nonhomogeneous material for considered material
parameters. However, the elastic, piezoelectric, dielectric, para-
magnetic, electromagnetic and magnetic permeability coefficients
at the crack-tip are 1.649 times larger than that in the homoge-
neous case. Then, it follows from Eq. (38) that the SIF is larger for
FGM material under a thermal load than in the homogeneous one.

The time evolution of the SIF in the cracked strip under a cool-
ing shock is presented in Fig. 13. The normalized stationary SIF for
the considered load and geometry is equal to f stat

I ¼ 0:0176. One
can observe that SIF is approaching its stationary value at a large
time. Since the thermal conductivity is smaller than that in the
homogeneous case, the peak value of the SIF is reached at larger
time for FGM.
Fig. 12. An edge crack in a finite strip with graded material properties in x1.



Fig. 13. Time evolution of the SIF in the cracked FGM strip under a thermal shock.
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4. Conclusions

A meshless local Petrov–Galerkin method (MLPG) is presented
for 2-D crack problems in continuously nonhomogeneous mag-
neto-electro-thermo-elastic solids subjected to thermal loadings.
Stationary and transient thermal conditions are considered in the
heat conduction equation. Also the inertial term is considered in
the equations of motion. The coupled governing partial differential
equations are satisfied in a weak-form on small fictitious subdo-
mains. A unit step function is used as the test function in the local
weak-form of the governing partial differential equations on small
circular subdomains spread on the analyzed domain. The moving
least-squares (MLS) scheme is adopted for the approximation of
the physical field quantities. One obtains a system of ordinary dif-
ferential equations for certain nodal unknowns. That system is
solved numerically by the Houbolt finite-difference scheme. The
proposed method is a truly meshless method, which requires nei-
ther domain elements nor background cells in either the interpola-
tion or the integration.

The present method is an alternative numerical tool to many
existing computational methods such as the FEM or the BEM. The
main advantage of the present method is its simplicity. Compared
to the conventional BEM, the present method requires no funda-
mental solutions and all integrands in the present formulation are
regular. Thus, no special numerical techniques are required to eval-
uate the integrals. It should be noted here that the fundamental solu-
tions are not available for magneto-electro-elastic solids with
continuously varying material properties in general cases. The pres-
ent formulation also possesses the generality of the FEM. Therefore,
the method is promising for numerical analysis of multi-field prob-
lems like piezoelectric, electro-magnetic or thermoelastic problems,
which cannot be solved efficiently by the conventional BEM.
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