35,566 research outputs found

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    On fast planning of suboptimal paths amidst polygonal obstacles in plane

    Get PDF
    AbstractThe problem of planning a path for a point robot from a source point s to a destination point d so as to avoid a set of polygonal obstacles in plane is considered. Using well-known methods, a shortest path from s to d can be computed with a time complexity of O(n2) where n is the total number of obstacle vertices. The focus here is in 1.(a) planning paths faster at the expense of setting for suboptimal path lengths and2.(b) performance analysis of simple and/or well-known suboptimal methods. A method that enables a hierarchical implementation of any path planning algorithm with no increase in the worst-case time complexity, is presented; this implementation enables fast planning of simple paths. Then methods are presented based on the Voronoi diagrams, trapezoidal decomposition and triangulation, which compute (suboptimal) paths in O(n√log n) time with the preprocessing costs of O(n log n), O(n2) and O(n log n), respectively. Using existing navigational algorithms for unknown terrains, algorithms that run in O(n log n) time (after preprocessing) and yield suboptimal paths, are presented. For all these algorithms, upper bounds on the path lengths are estimated in terms of the shortest of the obstacles, etc

    Hierarchical Time-Dependent Oracles

    Get PDF
    We study networks obeying \emph{time-dependent} min-cost path metrics, and present novel oracles for them which \emph{provably} achieve two unique features: % (i) \emph{subquadratic} preprocessing time and space, \emph{independent} of the metric's amount of disconcavity; % (ii) \emph{sublinear} query time, in either the network size or the actual Dijkstra-Rank of the query at hand
    • …
    corecore