100 research outputs found

    Land subsidence over oilfields in the Yellow River Delta

    Get PDF
    Subsidence in river deltas is a complex process that has both natural and human causes. Increasing human activities like aquaculture and petroleum extraction are affecting the Yellow River delta, and one consequence is subsidence. The purpose of this study is to measure the surface displacements in the Yellow River delta region and to investigate the corresponding subsidence source. In this paper, the Stanford Method for Persistent Scatterers (StaMPS) package was employed to process Envisat ASAR images collected between 2007 and 2010. Consistent results between two descending tracks show subsidence with a mean rate up to 30 mm/yr in the radar line of sight direction in Gudao Town (oilfield), Gudong oilfield and Xianhe Town of the delta, each of which is within the delta, and also show that subsidence is not uniform across the delta. Field investigation shows a connection between areas of non-uniform subsidence and of petroleum extraction. In a 9 km2 area of the Gudao Oilfield, a poroelastic disk reservoir model is used to model the InSAR derived displacements. In general, good fits between InSAR observations and modeled displacements are seen. The subsidence observed in the vicinity of the oilfield is thus suggested to be caused by fluid extraction

    Passive Interfering Method for InSAR Based on Circularly Moving Strong Scatterers

    Get PDF
    A novel jamming method based on circularly moving strong scatterers is proposed. The jamming signal model is presented first, and the corresponding imaging results are derived through a range-Doppler algorithm. Detailed analysis shows that the proposed method can decrease the correlation, produce interferometric phase bias, result in failure of phase unwrapping, and reduce the accuracy of the digital elevation model. Simulation results are provided to verify the effectiveness of the proposed method

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques

    Variational Bayes Phase Tracking for Correlated Dual-Frequency Measurements with Slow Dynamics

    Get PDF
    We consider the problem of estimating the absolute phase of a noisy signal when this latter consists of correlated dual-frequency measurements. This scenario may arise in many application areas such as global navigation satellite system (GNSS). In this paper, we assume a slow varying phase and propose accordingly a Bayesian filtering technique that makes use of the frequency diversity. More specifically, the method results from a variational Bayes approximation and belongs to the class of nonlinear filters. Numerical simulations are performed to assess the performance of the tracking technique especially in terms of mean square error and cycle-slip rate. Comparison with a more conventional approach, namely a Gaussian sum estimator, shows substantial improvements when the signal-to-noise ratio and/or the correlation of the measurements are low

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    Ionospheric correction of interferometric SAR data with application to the cryospheric sciences

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2018The ionosphere has been identified as an important error source for spaceborne Synthetic Aperture Radar (SAR) data and SAR Interferometry (InSAR), especially for low frequency SAR missions, operating, e.g., at L-band or P-band. Developing effective algorithms for the correction of ionospheric effects is still a developing and active topic of remote sensing research. The focus of this thesis is to develop robust and accurate techniques for ionospheric correction of SAR and InSAR data and evaluate the benefit of these techniques for cryospheric research fields such as glacier ice velocity tracking and permafrost deformation monitoring. As both topics are mostly concerned with high latitude areas where the ionosphere is often active and characterized by turbulence, ionospheric correction is particularly relevant for these applications. After an introduction to the research topic in Chapter 1, Chapter 2 will discuss open issues in ionospheric correction including processing issues related to baseline-induced spectrum shifts. The effect of large baseline on split spectrum InSAR technique has been thoroughly evaluated and effective solutions for compensating this effect are proposed. In addition, a multiple sub-band approach is proposed for increasing the algorithm robustness and accuracy. Selected case studies are shown with the purpose of demonstrating the performance of the developed algorithm. In Chapter 3, the developed ionospheric correction technology is applied to optimize InSAR-based ice velocity measurements over the big ice sheets in Greenland and the Antarctic. Selected case studies are presented to demonstrate and validate the effectiveness of the proposed correction algorithms for ice velocity applications. It is shown that the ionosphere signal can be larger than the actual glacier motion signal in the interior of Greenland and Antarctic, emphasizing the necessity for operational ionospheric correction. The case studies also show that the accuracy of ice velocity estimates was significantly improved once the developed ionospheric correction techniques were integrated into the data processing flow. We demonstrate that the proposed ionosphere correction outperforms the traditionally-used approaches such as the averaging of multi-temporal data and the removal of obviously affected data sets. For instance, it is shown that about one hundred multi-temporal ice velocity estimates would need to be averaged to achieve the estimation accuracy of a single ionosphere-corrected measurement. In Chapter 4, we evaluate the necessity and benefit of ionospheric-correction for L-band InSAR-based permafrost research. In permafrost zones, InSAR-based surface deformation measurements are used together with geophysical models to estimate permafrost parameters such as active layer thickness, soil ice content, and permafrost degradation. Accurate error correction is needed to avoid biases in the estimated parameters and their co-variance properties. Through statistical analyses of a large number of L-band InSAR data sets over Alaska, we show that ionospheric signal distortions, at different levels of magnitude, are present in almost every InSAR dataset acquired in permafrost-affected regions. We analyze the ionospheric correction performance that can be achieved in permafrost zones by statistically analyzing correction results for large number of InSAR data. We also investigate the impact of ionospheric correction on the performance of the two main InSAR approaches that are used in permafrost zones: (1) we show the importance of ionospheric correction for permafrost deformation estimation from discrete InSAR observations; (2) we demonstrate that ionospheric correction leads to significant improvements in the accuracy of time-series InSAR-based permafrost products. Chapter 5 summarizes the work conducted in this dissertation and proposes next steps in this field of research

    Classification of rock glaciers in southern Colorado based on ice content using radar interferometry and thermal remote sensing

    Get PDF
    Remote sensing provides a means of assessing potential water resources stored in alpine ground ice; this study focuses on rock glaciers, in particular. A rock glacier is a landform composed of block of loose debris (talus) cemented with ice. There are many ways of classifying rock glaciers; categorizing them based on activity provides context on their movement and ice content. Active rock glaciers are able to flow due to their ice content, while inactive or relict rock glaciers are unable to flow due to lack of sufficient ice. This study uses satellite based radar interferometry to identify and quantify movement of 87 rock glaciers on seven peaks in Southern Colorado. Once the active flowing rock glaciers and inactive nonflowing rock glaciers had been identified, the thermal properties of each group were studied to determine if it was possible to classify rock glaciers based on activity using satellite based thermal imaging. This was accomplished by comparing the amplitude of variation in land surface temperature derived from Landsat 7 and Landsat 8 to daily NOAA weather observations over different periods. Active rock glaciers demonstrated less variation in temperature annually than inactive rock glaciers, likely due to the ice modulating surface temperatures from below. Because rock glacier ice content affects land surface temperature over a period of 1 year, the depth to the ice was estimated using a skin depth calculation to be between 4.8m and 6.9m. Active and inactive rock glaciers appear to have different thermal characteristics that can be identified in satellite based thermal infrared imagery. Identifying the difference between active and inactive rock glaciers could be important in identifying potential water resources in remote alpine ecosystems, and on Mars, as well as provide insight to the climatic history of the region
    corecore