4,460 research outputs found

    Learning spatiotemporal patterns for monitoring smart cities and infrastructure

    Get PDF
    Recent advances in the Internet of Things (IoT) have changed the way we interact with the world. The ability to monitor and manage objects in the physical world electronically makes it possible to bring data-driven decision making to new realms of city infrastructure and management. Large volumes of spatiotemporal data have been collected from pervasive sensors in both indoor and outdoor environments, and this data reveals dynamic patterns in cities, infrastructure, and public property. In light of the need for new approaches to analysing such data, in this thesis, we propose present relevant data mining techniques and machine learning approaches to extract knowledge from spatiotemporal data to solve real-world problems. Many challenges and problems are under-addressed in smart cities and infrastructure monitoring systems such as indoor person identification, evaluation of city regions segmentation with parking events, fine collection from cars in violations, parking occupancy prediction and airport aircraft path map reconstruction. All the above problems are associated with both spatial and temporal information and the accurate pattern recognition of these spatiotemporal data are essential for determining problem solutions. Therefore, how to incorporate spatiotemporal data mining techniques, artificial intelligence approaches and expert knowledge in each specific domain is a common challenge. In the indoor person identification area, identifying the person accessing a secured room without vision-based or device-based systems is very challenging. In particular, to distinguish time-series patterns on high-dimensional wireless signal channels caused by different activities and people, requires novel time-series data mining approaches. To solve this important problem, we established a device-free system and proposed a two-step solution to identify a person who has accessed a secure area such as an office. Establishing smart parking systems in cities is a key component of smart cities and infrastructure construction. Many sub-problems such as parking space arrangements, fine collection and parking occupancy prediction are urgent and important for city managers. Arranging parking spaces based on historical data can improve the utilisation rate of parking spaces. To arrange parking spaces based on collected spatiotemporal data requires reasonable region segmentation approaches. Moreover, evaluating parking space grouping results needs to consider the correlation between the spatial and temporal domains since these are heterogeneous. Therefore, we have designed a spatiotemporal data clustering evaluation approach, which exploits the correlation between the spatial domain and the temporal domain. It can evaluate the segmentation results of parking spaces in cities using historical data and similar clustering results that group data consisting of both spatial and temporal domains. For fine collection problem, using the sensor instrumentation installed in parking spaces to detect cars in violation and issue infringement notices in a short time-window to catch these cars in time is significantly difficult. This is because most cars in violation leave within a short period and multiple cars are in violation at the same time. Parking officers need to choose the best route to collect fines from these drivers in the shortest time. Therefore, we proposed a new optimisation problem called the Travelling Officer Problem and a general probability-based model. We succeeded in integrating temporal information and the traditional optimisation algorithm. This model can suggest to parking officers an optimised path that maximise the probability to catch the cars in violation in time. To solve this problem in real-time, we incorporated the model with deep learning methods. We proposed a theoretical approach to solving the traditional orienteering problem with deep learning networks. This approach could improve the efficiency of similar urban computing problems as well. For parking occupancy prediction, a key problem in parking space management is with providing a car parking availability prediction service that can inform car drivers of vacant parking lots before they start their journeys using prediction approaches. We proposed a deep learning-based model to solve this parking occupancy prediction problem using spatiotemporal data analysis techniques. This model can be generalised to other spatiotemporal data prediction problems also. In the airport aircraft management area, grouping similar spatiotemporal data is widely used in the real world. Determining key features and combining similar data are two key problems in this area. We presented a new framework to group similar spatiotemporal data and construct a road graph with GPS data. We evaluated our framework experimentally using a state-of-the-art test-bed technique and found that it could effectively and efficiently construct and update airport aircraft route map. In conclusion, the studies in this thesis aimed to discover intrinsic and dynamic patterns from spatiotemporal data and proposed corresponding solutions for real-world smart cities and infrastructures monitoring problems via spatiotemporal pattern analysis and machine learning approaches. We hope this research will inspire the research community to develop more robust and effective approaches to solve existing problems in this area in the future

    Exploiting Recurring Patterns to Improve Scalability of Parking Availability Prediction Systems

    Get PDF
    Parking Guidance and Information (PGI) systems aim at supporting drivers in finding suitable parking spaces, also by predicting the availability at driver’s Estimated Time of Arrival (ETA), leveraging information about the general parking availability situation. To do these predictions, most of the proposals in the literature dealing with on-street parking need to train a model for each road segment, with significant scalability issues when deploying a city-wide PGI. By investigating a real dataset we found that on-street parking dynamics show a high temporal auto-correlation. In this paper we present a new processing pipeline that exploits these recurring trends to improve the scalability. The proposal includes two steps to reduce both the number of required models and training examples. The effectiveness of the proposed pipeline has been empirically assessed on a real dataset of on-street parking availability from San Francisco (USA). Results show that the proposal is able to provide parking predictions whose accuracy is comparable to state-of-the-art solutions based on one model per road segment, while requiring only a fraction of training costs, thus being more likely scalable to city-wide scenarios

    Mobility mining for time-dependent urban network modeling

    Get PDF
    170 p.Mobility planning, monitoring and analysis in such a complex ecosystem as a city are very challenging.Our contributions are expected to be a small step forward towards a more integrated vision of mobilitymanagement. The main hypothesis behind this thesis is that the transportation offer and the mobilitydemand are greatly coupled, and thus, both need to be thoroughly and consistently represented in a digitalmanner so as to enable good quality data-driven advanced analysis. Data-driven analytics solutions relyon measurements. However, sensors do only provide a measure of movements that have already occurred(and associated magnitudes, such as vehicles per hour). For a movement to happen there are two mainrequirements: i) the demand (the need or interest) and ii) the offer (the feasibility and resources). Inaddition, for good measurement, the sensor needs to be located at an adequate location and be able tocollect data at the right moment. All this information needs to be digitalised accordingly in order to applyadvanced data analytic methods and take advantage of good digital transportation resource representation.Our main contributions, focused on mobility data mining over urban transportation networks, can besummarised in three groups. The first group consists of a comprehensive description of a digitalmultimodal transport infrastructure representation from global and local perspectives. The second groupis oriented towards matching diverse sensor data onto the transportation network representation,including a quantitative analysis of map-matching algorithms. The final group of contributions covers theprediction of short-term demand based on various measures of urban mobility

    Mobility mining for time-dependent urban network modeling

    Get PDF
    170 p.Mobility planning, monitoring and analysis in such a complex ecosystem as a city are very challenging.Our contributions are expected to be a small step forward towards a more integrated vision of mobilitymanagement. The main hypothesis behind this thesis is that the transportation offer and the mobilitydemand are greatly coupled, and thus, both need to be thoroughly and consistently represented in a digitalmanner so as to enable good quality data-driven advanced analysis. Data-driven analytics solutions relyon measurements. However, sensors do only provide a measure of movements that have already occurred(and associated magnitudes, such as vehicles per hour). For a movement to happen there are two mainrequirements: i) the demand (the need or interest) and ii) the offer (the feasibility and resources). Inaddition, for good measurement, the sensor needs to be located at an adequate location and be able tocollect data at the right moment. All this information needs to be digitalised accordingly in order to applyadvanced data analytic methods and take advantage of good digital transportation resource representation.Our main contributions, focused on mobility data mining over urban transportation networks, can besummarised in three groups. The first group consists of a comprehensive description of a digitalmultimodal transport infrastructure representation from global and local perspectives. The second groupis oriented towards matching diverse sensor data onto the transportation network representation,including a quantitative analysis of map-matching algorithms. The final group of contributions covers theprediction of short-term demand based on various measures of urban mobility

    Predicting Car Availability in Free Floating Car Sharing Systems: Leveraging Machine Learning in Challenging Contexts

    Get PDF
    5Free-Floating Car Sharing (FFCS) services are currently available in tens of cities and countries spread all over the worlds. Depending on citizens’ habits, service policies, and road conditions, car usage profiles are rather variable and often hardly predictable. Even within the same city, different usage trends emerge in different districts and in various time slots and weekdays. Therefore, modeling car availability in FFCS systems is particularly challenging. For these reasons, the research community has started to investigate the applicability of Machine Learning models to analyze FFCS usage data. This paper addresses the problem of predicting the short-term level of availability of the FFCS service in the short term. Specifically, it investigates the applicability of Machine Learning models to forecast the number of available car within a restricted urban area. It seeks the spatial and temporal contexts in which nonlinear ML models, trained on past usage data, are necessary to accurately predict car availability. Leveraging ML has shown to be particularly effective while considering highly dynamic urban contexts, where FFCS service usage is likely to suddenly and unexpectedly change. To tailor predictive models to the real FFCS data, we study also the influence of ML algorithm, prediction horizon, and characteristics of the neighborhood of the target area. The empirical outcomes allow us to provide system managers with practical guidelines to setup and tune ML models.openopenDaraio, Elena; Cagliero, Luca; Chiusano, Silvia; Garza, Paolo; Giordano, DaniloDaraio, Elena; Cagliero, Luca; Chiusano, Silvia; Garza, Paolo; Giordano, Danil

    Mapping similarities in temporal parking occupancy behavior based on city-wide parking meter data

    Get PDF
    The search for a parking space is a severe and stressful problem for drivers in many cities. The provision of maps with parking space occupancy information assists drivers in avoiding the most crowded roads at certain times. Since parking occupancy reveals a repetitive pattern per day and per week, typical parking occupancy patterns can be extracted from historical data. In this paper, we analyze city-wide parking meter data from Hannover, Germany, for a full year. We describe an approach of clustering these parking meters to reduce the complexity of this parking occupancy information and to reveal areas with similar parking behavior. The parking occupancy at every parking meter is derived from a timestamp of ticket payment and the validity period of the parking tickets. The similarity of the parking meters is computed as the mean-squared deviation of the average daily patterns in parking occupancy at the parking meters. Based on this similarity measure, a hierarchical clustering is applied. The number of clusters is determined with the Davies-Bouldin Index and the Silhouette Index. Results show that, after extensive data cleansing, the clustering leads to three clusters representing typical parking occupancy day patterns. Those clusters differ mainly in the hour of the maximum occupancy. In addition, the lo-cations of parking meter clusters, computed only based on temporal similarity, also show clear spatial distinctions from other clusters

    Predicting Demand for Smart Parking Systems

    Get PDF
    Kiire areng infotehnoloogias on võimaldanud inimestel, kes ei ole antud ala eksperdid, luua täpseid masinõppe mudeleid, mis suudavad õppida olemasolevatest andmetest. Selliste mudelite rakendamine linnaplaneerimisel esinevatele probleemidele võib aidata luua paremaid elamistingimusi suurlinnades. Antud töö keskendub tehisnärvivõrgule, mis suudaks ennustada parkimisala hõivatust. Töö käigus välja töötatud mudeli integreerimine süsteemi, mis suunab inimesi parkimiskohtadele võiks anda väärtusliku toote, mis vähendaks liiklusummikuid ja parkimiskoha otsimiseks kuluvat aega.The rapid development of information technologies has enabled to create accurate machine learning models that could learn from the existing data without the need of an expert in the field. Applying these models in the field of urban design problems could help to create better living conditions in large cities. This research focuses on creating a neural network that could predict parking area occupancy. Integrating the model to a parking guidance platform would produce a valuable product that could help to reduce the traffic congestions and the cruising time for a parking spot

    Forecasting Parking Lots Availability: Analysis from a Real-World Deployment

    Get PDF
    Smart parking technologies are rapidly being deployed in cities and public/private places around the world for the sake of enabling users to know in real time the occupancy of parking lots and offer applications and services on top of that information. In this work, we detail a real-world deployment of a full-stack smart parking system based on industrial-grade components. We also propose innovative forecasting models (based on CNN-LSTM) to analyze and predict parking occupancy ahead of time. Experimental results show that our model can predict the number of available parking lots in a ±3% range with about 80% accuracy over the next 1-8 hours. Finally, we describe novel applications and services that can be developed given such forecasts and associated analysis
    corecore