275 research outputs found

    Simple realizability of complete abstract topological graphs simplified

    Full text link
    An abstract topological graph (briefly an AT-graph) is a pair A=(G,X)A=(G,\mathcal{X}) where G=(V,E)G=(V,E) is a graph and X⊆(E2)\mathcal{X}\subseteq {E \choose 2} is a set of pairs of its edges. The AT-graph AA is simply realizable if GG can be drawn in the plane so that each pair of edges from X\mathcal{X} crosses exactly once and no other pair crosses. We show that simply realizable complete AT-graphs are characterized by a finite set of forbidden AT-subgraphs, each with at most six vertices. This implies a straightforward polynomial algorithm for testing simple realizability of complete AT-graphs, which simplifies a previous algorithm by the author. We also show an analogous result for independent Z2\mathbb{Z}_2-realizability, where only the parity of the number of crossings for each pair of independent edges is specified.Comment: 26 pages, 17 figures; major revision; original Section 5 removed and will be included in another pape

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Drawings of Complete Multipartite Graphs up to Triangle Flips

    Get PDF
    For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its incident edges, represented by the labels of their other endpoints. The extended rotation system (ERS) of the drawing is the collection of the rotations of all vertices and crossings. A drawing is simple if each pair of edges has at most one common point. Gioan's Theorem states that for any two simple drawings of the complete graph Kn with the same crossing edge pairs, one drawing can be transformed into the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3). This operation refers to the act of moving one edge of a triangular cell formed by three pairwise crossing edges over the opposite crossing of the cell, via a local transformation. We investigate to what extent Gioan-type theorems can be obtained for wider classes of graphs. A necessary (but in general not sufficient) condition for two drawings of a graph to be transformable into each other by a sequence of triangle flips is that they have the same ERS. As our main result, we show that for the large class of complete multipartite graphs, this necessary condition is in fact also sufficient. We present two different proofs of this result, one of which is shorter, while the other one yields a polynomial time algorithm for which the number of needed triangle flips for graphs on n vertices is bounded by O(n16). The latter proof uses a Carathéodory-type theorem for simple drawings of complete multipartite graphs, which we believe to be of independent interest. Moreover, we show that our Gioan-type theorem for complete multipartite graphs is essentially tight in the following sense: For the complete bipartite graph Km, n minus two edges and Km, n plus one edge for any m, n ≥ 4, as well as Kn minus a 4-cycle for any n ≥ 5, there exist two simple drawings with the same ERS that cannot be transformed into each other using triangle flips. So having the same ERS does not remain sufficient when removing or adding very few edges

    On the Maximum Crossing Number

    Full text link
    Research about crossings is typically about minimization. In this paper, we consider \emph{maximizing} the number of crossings over all possible ways to draw a given graph in the plane. Alpert et al. [Electron. J. Combin., 2009] conjectured that any graph has a \emph{convex} straight-line drawing, e.g., a drawing with vertices in convex position, that maximizes the number of edge crossings. We disprove this conjecture by constructing a planar graph on twelve vertices that allows a non-convex drawing with more crossings than any convex one. Bald et al. [Proc. COCOON, 2016] showed that it is NP-hard to compute the maximum number of crossings of a geometric graph and that the weighted geometric case is NP-hard to approximate. We strengthen these results by showing hardness of approximation even for the unweighted geometric case and prove that the unweighted topological case is NP-hard.Comment: 16 pages, 5 figure

    The Z2\mathbb{Z}_2-genus of Kuratowski minors

    Full text link
    A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2\mathbb{Z}_2-genus of a graph GG is the minimum gg such that GG has an independently even drawing on the orientable surface of genus gg. An unpublished result by Robertson and Seymour implies that for every tt, every graph of sufficiently large genus contains as a minor a projective tĂ—tt\times t grid or one of the following so-called tt-Kuratowski graphs: K3,tK_{3,t}, or tt copies of K5K_5 or K3,3K_{3,3} sharing at most 22 common vertices. We show that the Z2\mathbb{Z}_2-genus of graphs in these families is unbounded in tt; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2\mathbb{Z}_2-genus, solving a problem posed by Schaefer and \v{S}tefankovi\v{c}, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2\mathbb{Z}_2-genus of graphs.Comment: 23 pages, 7 figures; a few references added and correcte

    Two Results in Drawing Graphs on Surfaces

    Get PDF
    In this work we present results on crossing-critical graphs drawn on non-planar surfaces and results on edge-hamiltonicity of graphs on the Klein bottle. We first give an infinite family of graphs that are 2-crossing-critical on the projective plane. Using this result, we construct 2-crossing-critical graphs for each non-orientable surface. Next, we use 2-amalgamations to construct 2-crossing-critical graphs for each orientable surface other than the sphere. Finally, we contribute to the pursuit of characterizing 4-connected graphs that embed on the Klein bottle and fail to be edge-hamiltonian. We show that known 4-connected counterexamples to edge-hamiltonicity on the Klein bottle are hamiltonian and their structure allows restoration of edge-hamiltonicity with only a small change
    • …
    corecore