1,000 research outputs found

    Lagrangian Coordination for Enhancing the Convergence of Analytical Target Cascading

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76913/1/AIAA-15326-842.pd

    Analytical target cascading framework for engine calibration optimisation

    Get PDF
    YesThis paper presents the development and implementation of an Analytical Target Cascading (ATC) Multi-disciplinary Design Optimisation (MDO) framework for the steady state engine calibration optimisation problem. The case is made that the MDO / ATC offers a convenient framework for the engine calibration optimisation problem based on steady state engine test data collected at specified engine speed / load points, which is naturally structured on 2 hierarchical levels: the “Global” level, associated with performance over a drive cycle, and “Local” level, relating to engine operation at each speed / load point. The case study of a gasoline engine equipped with variable camshaft timing (VCT) was considered to study the application of the ATC framework to a calibration optimisation problem. The paper describes the analysis and mathematical formulation of the VCT calibration optimisation as an ATC framework, and its Matlab implementation with gradient based and evolutionary optimisation algorithms. The results and performance of the ATC are discussed comparatively with the conventional two-stage approach to steady state calibration optimisation. The main conclusion from this research is that ATC offers a powerful and efficient approach for engine calibration optimisation, delivering better solutions at both “Global” and “Local” levels. Further advantages of the ATC framework is that it is flexible and scalable to the complexity of the calibration problem, and enables calibrator preference to be incorporated a priori in the optimisation problem formulation, delivering important time saving for the overall calibration development process.The research work presented in this paper was funded by UK Technology Strategy Board (TSB) through the CREO (Carbon Reduction through Engine Optimisation) project

    Network Target Coordination for Design Optimization of Decomposed Systems

    Get PDF
    A complex engineered system is often decomposed into a number of different subsystems that interact on one another and together produce results not obtainable by the subsystems alone. Effective coordination of the interdependencies shared among these subsystems is critical to fulfill the stakeholder expectations and technical requirements of the original system. The past research has shown that various coordination methods obtain different solution accuracies and exhibit different computational efficiencies when solving a decomposed system. Addressing these coordination decisions may lead to improved complex system design. This dissertation studies coordination methods through two types of decomposition structures, hierarchical, and nonhierarchical. For coordinating hierarchically decomposed systems, linear and proximal cutting plane methods are applied based on augmented Lagrangian relaxation and analytical target cascading (ATC). Three nonconvex, nonlinear design problems are used to verify the numerical performance of the proposed coordination method and the obtained results are compared to traditional update schemes of subgradient-based algorithm. The results suggest that the cutting plane methods can significantly improve the solution accuracy and computational efficiency of the hierarchically decomposed systems. In addition, a biobjective optimization method is also used to capture optimality and feasibility. The numerical performance of the biobjective algorithm is verified by solving an analytical mass allocation problem. For coordinating nonhierarchically decomposed complex systems, network target coordination (NTC) is developed by modeling the distributed subsystems as different agents in a network. To realize parallel computing of the subsystems, NTC via a consensus alternating direction method of multipliers is applied to eliminate the use of the master problem, which is required by most distributed coordination methods. In NTC, the consensus is computed using a locally update scheme, providing the potential to realize an asynchronous solution process. The numerical performance of NTC is verified using a geometrical programming problem and two engineering problems

    Multi-Disciplinary Optimisation of Road Vehicle Chassis Subsystems

    Get PDF
    Two vehicle chassis design tasks were solved by decomposition-based multi-disciplinary optimisation (MDO) methods, namely collaborative optimisation (CO) and analytical target cascading (ATC). A passive suspension system was optimised by applying both CO and ATC. Multiple parameters of the spring and damper were selected as design variables. The discomfort, road holding, and total mass of the spring–damper combination were the objective functions. An electric vehicle (EV) powertrain design problem was considered as the second test case. Energy consumption and gradeability were optimised by including the design of the electric motor and the battery pack layout. The standard single-level all-in-one (AiO) multi-objective optimisation method was compared with ATC and CO methods. AiO methods showed some limitations in terms of efficiency and accuracy. ATC proved to be the best choice for the design problems presented in this paper, since it provided solutions with good accuracy in a very efficient way. The proposed investigation on MDO methods can be useful for designers, to choose the proper optimisation approach, while solving complex vehicle design problems

    Coupled Sequential Process-Performance Simulation and Multi-Attribute Optimization of Structural Components Considering Manufacturing Effects

    Get PDF
    Coupling of material, process, and performance models is an important step towards a fully integrated material-process-performance design of structural components. In this research, alternative approaches for introducing the effects of manufacturing and material microstructure in plasticity constitutive models are studied, and a cyberinfrastructure framework is developed for coupled process-performance simulation and optimization of energy absorbing components made of magnesium alloys. The resulting mixed boundary/initial value problem is solved using nonlinear finite element analysis whereas the optimization problem is decomposed into a hierarchical multilevel system and solved using the analytical target cascading methodology. The developed framework is demonstrated on process-performance optimization of a sheetormed, energy-absorbing component using both classical and microstructure-based plasticity models. Sheetorming responses such as springback, thinning, and rupture are modeled and used as manufacturing process attributes whereas weight, mean crush force, and maximum crush force are used as performance attributes. The simulation and optimization results show that the manufacturing effects can have a considerable impact on design of energy absorbing components as well as the optimum values of process and product design variables

    Coupled Sequential Process-Performance Simulation and Multi-Attribute Optimization of Structural Components Considering Manufacturing Effects

    Get PDF
    Coupling of material, process, and performance models is an important step towards a fully integrated material-process-performance design of structural components. In this research, alternative approaches for introducing the effects of manufacturing and material microstructure in plasticity constitutive models are studied, and a cyberinfrastructure framework is developed for coupled process-performance simulation and optimization of energy absorbing components made of magnesium alloys. The resulting mixed boundary/initial value problem is solved using nonlinear finite element analysis whereas the optimization problem is decomposed into a hierarchical multilevel system and solved using the analytical target cascading methodology. The developed framework is demonstrated on process-performance optimization of a sheetormed, energy-absorbing component using both classical and microstructure-based plasticity models. Sheetorming responses such as springback, thinning, and rupture are modeled and used as manufacturing process attributes whereas weight, mean crush force, and maximum crush force are used as performance attributes. The simulation and optimization results show that the manufacturing effects can have a considerable impact on design of energy absorbing components as well as the optimum values of process and product design variables

    Multi-objective optimization of the geometry of a double wishbone suspension system

    Get PDF
    The vehicle suspension system optimal design problem is multi-objective, has a hierarchical multi-level structure and presents couplings with the rest of the vehicle design. Moreover, many of the vehicle performances are dependent of the suspension system, specifically on its geometry. For this reason, it is desirable to develop a strategy in which the geometry of the suspension system is automatically generated with optimal characteristics. For this type of problems, the Analytical Target Cascading (ATC) brings a powerful optimization strategy that permits the management of a complex optimal design problem in a partitioned manner. This work proposes a new approach for the automatic optimal geometry generation of the suspension system of the vehicle, the development of the optimization problem in order to use the ATC optimization strategy and a case study in which a full-scale functional prototype is designed with the use of the developed tools

    Multi-level approaches for optimal system design in railway applications

    Get PDF
    Dans le contexte actuel de globalisation des marchés, le processus classique de conception par essais et erreurs n'est plus capable de répondre aux exigences de plus en plus accrues en termes de délais très courts, réduction des coûts de production, etc. L'outil d'optimisation propose une réponse à ces questions, en accompagnant les ingénieurs dans la tâche de conception optimale.L'objectif de cette thèse est centré sur la conception optimale des systèmes complexes. Deux approches sont abordées dans ce travail: l'optimisation par modèles de substitution et la conception optimale basée sur la décomposition des systèmes complexes.L'utilisation de la conception assistée par ordinateur (CAO) est devenue une pratique régulière dans l industrie. La démarche d'optimisation basée sur modèles de substitution est destinée à répondre à l'optimisation des dispositifs bénéficiant d une telle modélisation précise, mais couteuse en temps de calcul.Les chaînes de traction ferroviaire sont trop complexes pour être traités comme un tout. La décomposition de ces systèmes s impose en vue de simplifier le problème et de repartir la charge de calcul. Des stratégies appropries à la résolution de telles structures ont été analysées dans ce travail. Ces approches permettent à chaque équipe de spécialistes de travailler de façon autonome à l'objet de leur expertise.Les approches d'optimisation développées au sein de ce travail ont été appliquées pour résoudre plusieurs problèmes d'optimisation électromagnétiques, ainsi que la conception optimale d un système de traction ferroviaire de la Société AlstomWithin a globalized market context, the classical trial-and-error design process is no longer capable of answering to the ever-growing demands in terms of short deadlines, reduced production costs, etc. The optimization tool presents itself as an answer to these issues, accompanying the engineers in the optimal design task.The focus of this thesis is centered on the optimal design of complex systems. Two main optimization approaches are addressed within this work: the metamodel-based design optimization and the decomposition-based complex systems optimal design.The use of computer-aided design/engineering (CAD/CAE) software has become a regular practice in the engineering design process. The metamodel-based optimization approach is intended to address the optimization of devices represented by such accurate but computationally expensive simulation models, as the finite element analysis (FEA) in electromagnetics.Engineering systems such as railway traction systems are too complex to be addressed as a whole. The decomposition-based optimization strategies are intended to address the optimal design of such systems. The decomposition of such systems is required in order to simplify the problem and to distribute the computational burden across the decomposed structure. Appropriate multi-level strategies have been identified and analyzed within this work. Such approaches allow each team of specialists to work independently at the object of their expertise.The optimization approaches developed within this work are applied for solving several electromagnetic optimization problems and a railway traction system optimal design problem of the Alstom CompanyVILLENEUVE D'ASCQ-ECLI (590092307) / SudocSudocFranceF
    • …
    corecore