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Abstract

A complex engineered system is often decomposed into a number of different sub-

systems that interact on one another and together produce results not obtainable by the

subsystems alone. Effective coordination of the interdependencies shared among these

subsystems is critical to fulfill the stakeholder expectations and technical requirements

of the original system. The past research has shown that various coordination methods

obtain different solution accuracies and exhibit different computational efficiencies when

solving a decomposed system. Addressing these coordination decisions may lead to im-

proved complex system design. This dissertation studies coordination methods through

two types of decomposition structures, hierarchical, and nonhierarchical.

For coordinating hierarchically decomposed systems, linear and proximal cutting

plane methods are applied based on augmented Lagrangian relaxation and analytical

target cascading (ATC). Three nonconvex, nonlinear design problems are used to verify

the numerical performance of the proposed coordination method and the obtained results

are compared to traditional update schemes of subgradient-based algorithm. The results

suggest that the cutting plane methods can significantly improve the solution accuracy

and computational efficiency of the hierarchically decomposed systems. In addition, a

biobjective optimization method is also used to capture optimality and feasibility. The

numerical performance of the biobjective algorithm is verified by solving an analytical

mass allocation problem.

For coordinating nonhierarchically decomposed complex systems, network target

coordination (NTC) is developed by modeling the distributed subsystems as different

ii



agents in a network. To realize parallel computing of the subsystems, NTC via a con-

sensus alternating direction method of multipliers is applied to eliminate the use of the

master problem, which is required by most distributed coordination methods. In NTC,

the consensus is computed using a locally update scheme, providing the potential to re-

alize an asynchronous solution process. The numerical performance of NTC is verified

using a geometrical programming problem and two engineering problems.
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Chapter 1

Introduction

1.1 Optimization and Basic Definitions

Optimization1, alternatively, mathematical programming, is the science of the best

in the sense that it helps designers to make not only a reasonable decision but also the

best one subject to certain constraints describing its domain. A very common instance of

a constrained optimization problem involves finding the minimum weight of a structure

subjected to constraints on stress and deflection.

Mathematical programming models provide appropriate tools for addressing these

optimization decision variables in precisely and formally. A mathematical programming

problem is formulated as an objective f (x) to be minimized or maximized with respect

to a column vector of n real valued decision variables, x = [x1, x2, · · · , xn]T. The optimal

values of x are searched within the feasible region X, which is specified explicitly in terms

of equality hi(x), i = 1, · · · , m and inequality constraints gi(x), i = 1, · · · , l. The nonlinear

programming problem is represented by

min f (x)

s.t. hi(x) = 0, i = 1, · · · , m (1.1)

1This dissertation uses the term “optimization" to define the mathematical procedures as finding the
maximum or minimum of a function.
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1.1. OPTIMIZATION AND BASIC DEFINITIONS

gi(x) ≤ 0, i = 1, · · · , l

x ∈ X,

where f (x), hi(x), and gi(x) are functions of x ∈ X, and the feasible region X is a

nonempty open set in Rn. A vector x ∈ X satisfying all the constraints is called a feasi-

ble solution to the problem, with the collection of all such solutions forming the feasible

region. The purpose of solving the programming problem is to find an optimal point

x∗ ∈ X such that f (x) ≥ f (x∗) for each feasible point x. If x∗ is an optimal solution of

Problem (1.1), then it must satisfy optimality conditions.

The concept of optimality conditions is an important concept in the field of op-

timization. Typically, optimality conditions provide designers with much more than a

termination condition; they often provide insights into the problem frequently suggest-

ing algorithms for solving them. When a feasible solution does not satisfy the optimality

conditions, the conditions often suggest how to modify the current solution so that it be-

comes closer to an optimal one, as measured by a specific underlying metric. The results

reported here use the Karush-Kuhn-Tucker (KKT) optimality conditions (Bazaraa et al.,

2006). Under the assumption that f (x), hi(x) and gi(x) are continuously differentiable

with respect to the variables x ∈ R
n, the optimality conditions are specified using the

Lagrangian function by introducing a Lagrangian multiplier for each relaxed constraint.

The resulting Lagrangian function is given by

L = f (x) +
m

∑
i=1

λihi(x) +
l

∑
i=1

µigi(x), (1.2)

where the sets of Lagrangian multipliers λ = [λ1, · · · , λm] and µ = [µ1, · · · , µl ] are in-

troduced for relaxing the equality and inequality constraints, respectively. Assuming

regularity conditions for Problem (1.1), if x∗ is an optimal solution, then there exists a

2



1.1. OPTIMIZATION AND BASIC DEFINITIONS

vector [λ, µ] such that

∇ f (x∗) +
m

∑
i=1

λi∇hi(x
∗) +

l

∑
i=1

µi∇gi(x
∗) = 0,

µigi(x
∗) = 0, for i = 1, · · · , m, (1.3)

µi ≥ 0, for i = 1, · · · , m,

where again λi and µi are the Lagrangian multipliers associated with the constraints

hi(x
∗) = 0 and gi(x

∗) ≤ 0, respectively. In addition, µigi(x
∗) = 0 is referred to as a

complementary slackness condition. Under suitable convexity assumptions, the KKT

conditions formulated in Eq. (1.3) are also sufficient for optimality according to Bazaraa

et al. (2006).

Many nonlinear programming algorithms2 have been developed to solve Prob-

lem (1.1) with a reasonable number of decision variables and constraints. Efficient al-

gorithms are suitable for solving convex and continuously differentiable problems with

gradient- or derivative-based methods, such as Rosen’s Gradient Projection Method for

nonlinear constraints Rosen (1961), Zoutendijk’s method of feasible directions Zoutendijk

(1960), and Sequential quadratic programming (SQP) methods Han (1976), Powell (1978),

Schittkowski (1983).

However, designers may not have the ability to obtain the derivatives in many en-

gineering problems, since often, the needed functions are not explicitly available, and are

the results of large codes such as Finite Elements Analysis (FEA) or Computational Fluid

Dynamics (CFD). If the objective and constraint functions are nonconvex but differen-

tiable, augmented Lagrangian penalty functions are used to ensure the local convexity of

the original problems. Under the convex assumption, if the problem is non-differentiable,

e.g. f (x) = |x|, subgradient methods can be used to approximate the optimal value of

the objective via supporting hyperplanes on the epigraphs of convex functions (Bazaraa

2Defined by Wolfram MathWorld, an algorithm is a specific set of instructions for carrying out a procedure
or solving a problem, usually with the requirement that the procedure terminate at some point.

3



1.2. MULTIDISCIPLINARY DESIGN OPTIMIZATION

et al., 2006, Bertsekas, 1999).

There are also several algorithms that do not involve derivatives, called direct

methods. These methods are valuable when gradient information is not readily avail-

able or when the evaluation of the gradient is cumbersome and prone to errors. Direct

methods are generally robust and introduce a degree of randomness in order to achieve

global optimum designs. Some well-known direct methods are cyclic coordinates (Lan-

dau and Lifshits, 1989), Hooke and Jeeves method (Hooke and Jeeves, 1961), Rosenbrock

method (Rosenbrock, 1960), simplex method of Nelder and Mead (Nelder and Mead,

1965), Powell’s method of conjugate directions (Powell, 1964), and simulated annealing,

genetic, and differential evolution algorithms.

1.2 Multidisciplinary Design Optimization

Large-scale products such as automobiles and airplanes are complex engineered

systems comprised of many interacting subsystems and components. These complex

engineered systems are usually solved by employing a systems engineering strategy,

which is an architecture that enables and coordinates all the design processes within a

large engineering program. However, this approach is showing its limitations, since at

present the systems engineering community lacks a general theory to deal with the inter-

actions (Griffin, 2010, Simpson and Martins, 2011). Multidisciplinary design optimization

(MDO), which has evolved remarkably since its inception 25 years ago, offers alterna-

tive methods3 to complement and enhance the systems engineering to help address the

challenges inherent in the design of complex engineered systems (Simpson and Martins,

2011). More specifically, MDO is a field of systems engineering that uses optimization

methods to solve design problems incorporating a number of disciplines.

It is an important part of MDO to rely on computational design, i.e. integrating

3In the literature, many terms have been used to describe MDO methods, such as “method," “methodol-
ogy," “problem formulation," “strategy," “procedure," “algorithm," and “architecture.", This dissertation uses
the term “method", which refers to the combination of the design problem formulation and the organiza-
tional and algorithmic strategy used to solve it as an MDO method.

4



1.2. MULTIDISCIPLINARY DESIGN OPTIMIZATION

analysis software in a “black-box" fashion and employing a surrogate model. Previous

computer technology enabled higher fidelity codes to be processed faster, and gradu-

ally erased the distinctions between the analysis and optimization codes, leading to large

monolithic codes invoking several disciplinary mathematical models in a single optimiza-

tion cycle (Fulton et al., 1974, Vanderplaats, 1976). The methods adopting this single

optimization cycle have been referred to in literature as the multiple discipline feasible

(MDF) (Cramer et al., 1994), individual discipline feasible (IDF) (Cramer et al., 1994),

and simultaneous analysis and design (SAND) and all-at-once (AAO) methods (Balling

and Sobieszczanski-Sobieski, 1996, Cramer et al., 1992, 1994, Haftka, 1985). Due to the

large number of design variables involved in each disciplinary model, the intrinsic prac-

tical limitations of these monolithic systems of disciplinary codes soon became apparent,

leading to the development of decomposition-based MDO methods.

Subsequently, decomposition as an approach to break a large-scale optimiza-

tion problem into an equivalent set of smaller, independent but interacting subprob-

lems and components was successfully developed and applied to MDO (Balling and

Sobieszczanski-Sobieski, 1996, Sobieszczanski-Sobieski and Haftka, 1997, Wagner and

Papalambros, 1993). This decomposition is used to compress the execution time by ap-

plying additional resources, whether human or computational, to solve the problem at

hand (Agte et al., 2010). It became readily apparent that for an internally coupled mul-

tidisciplinary system, the optimal system-level design was more than simply a collection

of individually optimized subsystems and components (Agte et al., 2010).

In addition, the decomposition implementation for the multidisciplinary system

involved many diverse sets of analytical equations whose interaction often created ad-

ditional problems within itself, and in large applications involved a number of different

teams of specialists. As a result, that involvement required (and still requires) dealing

with a non-mathematical but crucially important set of human factors as a prerequisite

to success (Agte et al., 2010). A few examples of the decomposition-based MDO methods

are Concurrent Subspace Optimization (CSSO) and its variants (Bloebaum et al., 1992,
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Sobieszczanski-Sobieski, 1988, Wujek et al., 1996), Collaborative Optimization (CO) and

its variants (Braun et al., 1997, Demiguel and Murray, 2006, Roth and Kroo, 2008), Bi-Level

Integrated Systems Synthesis (BLISS) and its variants (Kodiyalam and Sobiesczanski-

Sobieski, 2000, Sobieszczanski-Sobieski et al., 2000, 2003), and Analytical Target Cascad-

ing (ATC) and its variants (Kim et al., 2006, 2003, Michelena et al., 1999, 2003, Tosserams

et al., 2006a, Wang et al., 2010). Among these decomposition-based MDO methods, a

relatively recent contribution of MDO includes methods that allow for finding optimal

system designs for a set of desired targets or goals. These are important because the de-

velopment of products in industry is often driven by the changing requirements caused

by technological and societal innovations as seen in Figure 1.1.

Figure 1.1: Design requirements growth for aerospace vehicles (Allen et al., 2004)

Such methods typically seek one or more solutions that meet a design target

within a pre-specified numerical performance. The methods that enable goal-seeking
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design for MDO are, among others, Physical Programming (PP) (Messac, 1996), Iso-

Performance (IP) (de Weck and Jones, 2006), Analytical Target Cascading (ATC) (Kim

et al., 2003), and Augmented Lagrangian Coordination (ALC) (Tosserams et al., 2008b).

The latter two, as decomposed-based, goal-seeking MDO methods, are ones with proven

solution convergence and equivalence (Bertsekas, 2003, Lassiter et al., 2005, Li et al., 2008).

In today’s business world, the request for maximum performance has been superseded by

a need for a “balance" among performance, product development cost, reliability, main-

tainability and other “-ilities" (Allen et al., 2004). Consequently, the further development

of decomposition-based, goal-seeking MDO methods is still in demand.

1.3 Sequential and Concurrent Engineering Strategies

Since 1980s, concurrent engineering (CE) has been the focus of research. It was

studied and widely implemented in industry to compress time to market and cost (Prasad,

1996), thereby improving the productivity and performance of the product development

process (PDP). Previously, PDP employed sequential engineering as the business strategy,

in which the various design tasks were completed one after another, with all attention and

resources focused on that current task. After a task is finished, all resources are then con-

centrated on the next one. In CE, however, different design tasks are addressed at the

same time and not necessarily in sequential order. More precisely, CE is an approach

used in PDP by which several teams within an organization work simultaneously to de-

velop new products and services, allowing for a streamlined procedure. In addition,

products and processes in CE are closely coordinated to achieve an optimal matching of

requirements for effective cost, quality, and delivery.

For the purpose of comparison, a specific problem is very useful in thinking about

MDO and sequential and concurrent engineering strategies. For this dissertation, the

model problem is an aeroelastic optimization given by Cramer et al. (1994). In static

aeroelasticity, a flexible wing of an aircraft in steady flight is considered, as shown in
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Figure. The air rushing over the wing causes pressures to be imposed on the wing, which

causes the wing to deflect and change shape. This change in wing shape in turn causes

the aerodynamic pressures to change. In static aeroelasticity, these physical processes are

considered to reach an equilibrium of forces.

L

W

F

D

Figure 1.2: A schematic of the forces on an aircraft in steady level flight

The aeroelastic system involves two analysis disciplines, which are aerodynam-

ics and structures. The computational problems for these two disciplines are generally

solved by individual analysis codes, i.e., a finite difference CFD code for aerodynamics,

and a finite element code for structures. Next, an optimization problem is added to the

aeroelastic example (Cramer et al., 1994). For example, a range minimization problem for

this aeroelastic model is given by

min
α,γ,t,Λ

− R(α, γ, t) = −

[
V

c
×

L

D
× ln

(
Wi

W f

)]

subject to g = σyield − σj(t) ≥ 0,

h = L(α, γ)− W = 0,

(1.4)

where R is the range or the objective function obtained through the Breguet range equa-

tion; V is the velocity, which is a system-level variable; L/D is the lift-to-drag ratio,

8



1.3. SEQUENTIAL AND CONCURRENT ENGINEERING STRATEGIES

which is output from the aerodynamics module; c is the specific fuel consumption from

the propulsion module and fixed as a constant value; and Wi and W f are the initial air-

craft weight and the final aircraft weight due to fuel burned, both of which are outputs

from the structural module. The parameter Λ is the wing sweep range, which is a global

design variable; t is the wing thickness, which is a local design variable of the structural

module; and α and γ are the wing twist angle and the tail sweep angle, respectively,

both of which are local design variables of the aerodynamics module. For an aircraft in

steady, level flight, the normal stress on the wing is limited by the yielding stress, being

represented as an inequality constraint g; and the lift force is equal to the weight, being

represented as an equality constraint h.

Figure 1.3 shows the partitioning of the range minimization problem of the aeroe-

lastic system. Since the coupling variables, i.e., forces, drag, displacements, and weight,

must be consistent, each subsystem minimizes the range while satisfying its own con-

straints by treating the coupling variables solved by the other subsystem as constant

values. Consequently, the design tasks of these two subsystems have to be implemented

in a sequential order.

Aerodynamic
Optimization

Structural
Optimization

min -range
w.r.t twist

s.t. lift = weight

min -range
w.r.t thickness

s.t. stress constraints

Displacements
Weight

Forces
Drag

Figure 1.3: Sequential engineering strategy of the range minimization problem

To take advantage of the concurrent engineering strategy, the analysis of the wing

design problem can be performed in disciplinary models with a centralized optimization

as seen in Figure 1.4 (a). This framework implements the analysis models concurrently,

which is realized by decoupling the disciplinary analyses so that they no longer rely on
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one another for their coupling variable inputs, and the coupling variables are added to

the set of design variables.

Aerodynamics
Analysis

Aerodynamics
Optimizer

Structural
Analysis

Structural
Optimizer

System-Level Optimizer

e.g., CO, CSSO

Aerodynamics
Analysis

Structural
Analysis

System-Level Optimizer

e.g., MDF, IDF, AAO (or SAND)

(a) Distributed disciplinary analysis models with a non-hierarchical framework

(b) Distributed disciplinary design models with a hierarchical (bi-level) framework

Thickness,
displacements,

weight

Displacements,
weight

Forces,
drag

Twist,
forces,
drag

Figure 1.4: Concurrent engineering strategy of the range minimization problem

To provide the discipline autonomy while enforcing the interdisciplinary consis-

tency, the range minimization problem can also be solved with two disciplinary models

that perform design tasks including optimization and analysis, see Figure 1.4 (b). In this

framework, discipline feasibility is maintained throughout the system-level optimization

process since the discipline optimizations are responsible for generating discipline feasi-

ble solutions for each system-level iteration.
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Similar to CE, parallel computing has been adopted in software development as

an alternative to sequential computing. This approach involves the simultaneous use of

multiple compute resources to solve a computational problem. When implementing par-

allel computing, a problem is broken into discrete parts that can be solved concurrently,

and then each part is further broken down into a series of instructions. Finally, instruc-

tions from each part are executed simultaneously on different CPUs (Barney, 2012). The

primary reasons for using parallel computing are to shorten the computational time with

potential reduced cost, to solve large-scale and complex problems, and to use computer

resources on a wide area network. Over the past 20+ years, the trends shown by ever

faster networks, distributed systems, and multi-processor computer architectures indicate

that parallelism is the future of computing.

For these reasons, it is necessary to develop a quantitative solution method that

can organize the multidisciplinary design tasks of the complex systems by including goal-

seeking and concurrent design concepts to meet the design requirements. To address this

need, this dissertation investigates coordination methodologies within the concurrent,

multidisciplinary optimization and goal-seeking framework.

1.4 Product Development Process

Generic Product Development Process

Produce development process (PDP) is the sequence of steps or activities which

an enterprise employs to conceive, design, and commercialize a product (Ulrich and Ep-

pinger, 2007). Many of these steps and activities are intellectual and organizational. In

industries, organizations usually define and follow a precise and detailed development

process. Every organization employs a process at least slightly different from that of ev-

ery other organization. In fact, the same enterprise may follow different processes for

different types of development projects.

A generic PDP consisting of six phases, depicted in Figure 1.5, is adopted from
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Ulrich and Eppinger (2007). The process begins with a planning phase, which is the link

to advanced research and technology development activities. The output of the planning

phase is the project’s mission statement, which is the input required to begin the concept

development phase and which serves as a guide to the development team. The conclusion

of the product development process is the product launch, at which time the product

becomes available for purchase in the marketplace. A summary of the input and output

of each phase in the product development process is illustrated in Table 1.1.

Planning

Mission
Approval

Concept
Review

System Spec
Review

Critical Design
Review

Production
Approval

Concept
Development

System-Level
Design

Detail
Design

Testing and
Refinement

Production
Ramp-Up

Figure 1.5: Generic product development process (Ulrich and Eppinger, 2007)

Table 1.1: Inputs and outputs of the generic product development process.

Phrases Inputs Outputs

1. Planning Corporate strategy and assessment of tech-
nology developments and market objec-
tives.

Project mission statement.

2. Concept development Project mission statement. Identification of target market and evalua-
tion of alternative conceptual designs.

3. System-level design One or more conceptual designs. A geometric layout of the product, a func-
tional specification of each of the subsys-
tems, and a preliminary process flow dia-
gram for the final assembly process.

4. Detail design Functional specification of the product. Complete specifications of the subsystems
and components, complete tolerances of all
of the unique parts, and the identification
of all of the standard parts to be purchased
from suppliers.

5. Testing and refinement Complete specifications and tolerances of
each part and standard parts purchased
from suppliers.

Construction and evaluation of multiple
preproduction versions of the product such
as early and later prototypes.

6. Production ramp-up Prototypes Work force training and solving the re-
maining problems in the production pro-
cesses.

The PDP described in Figure 1.5 and Table 1.1 is generic, and particular processes

will differ in accordance with a company’s unique context. In addition to the generic

PDP, automobile and aerospace industries often adapt a variant of the generic process,
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i.e., complex system development process. The characteristics of the complex system

development process and the resulting deviations from the generic process are compared

in Table 1.2.

Table 1.2: Summary of generic and complex product development processes

Generic Products Complex Systems

Description The team begins with a market opportunity and
selects appropriate technologies to meet cus-
tomer needs.

Systems must be decomposed into several sub-
systems and many components.

Distinct Features Process generally includes distinct planning,
concept development, system-level design, de-
tail design, testing and refinement and produc-
tion ramp-up phases.

Subsystems and components are developed by
many teams working in parallel, followed by
system integration and validation.

Examples Printers, screwdrivers, rollerblade skate, etc.. Airplanes, engines, automobiles, etc..

Complex System Development Process

Large-scale products such as automobiles and airplanes are often considered as

complex systems comprised of many interrelated subsystems and components. Most

people without experience in product development are impressed by how much time

and money are required to develop a complex system. The reality is that very few com-

plex systems can be developed in less than one year; many require three to five years, and

some take as long as ten years. Table 1.3 depicts five engineered products with a table

showing the approximate scale of the associated product development efforts along with

various distinguishing characteristics of the products (Ulrich and Eppinger, 2007). Vehi-

cles and airplanes are considered typical examples of complex systems; however, scholars

argue that small-scale systems, such as micro-accelerometers, involving a large number of

interrelationships across subsystems and components, can also be categorized as complex

systems (Tosserams et al., 2010).

When developing complex systems, modifications to the generic PDP address a

number of system-level issues. Figure 1.6 shows a modification of the generic PDP (Ulrich

and Eppinger, 2007). The concept development phase considers the architecture of the en-

tire system with multiple architectures perhaps being considered as competing concepts
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Planning
Concept

Development
System-Level

Design

Design

Design

Design

Design

Test

Test

Test

Test

Integrate
and Test

Production
Ramp-Up..

.

..
.

Mission
Approval

Concept
Review

System
Review

Production
Approval

Figure 1.6: Complex system development process (Ulrich and Eppinger, 2007)

Table 1.3: Attributes of five products and their associated development efforts (Ulrich and
Eppinger, 2007)

Stanley Rollerblade HP Deskjet Volkswagen Boeing 777
Screwdriver Skate Printer New Beetle Airplane

Annual production volume (unit/year) 100,000 100,000 4 million 100,000 50

Sales lifetime (years) 40 3 2 6 30

Number of unique parts 3 35 200 10,000 130,000

Development time (years) 1 2 1.5 3.5 4.5

Internal development team (people) 3 5 100 800 6,800

External development team (people) 3 10 75 800 10,000

Development cost (dollars) 150,000 750,000 50 million 400 million 3 billion

Product investment (dollars) 150,000 1 million 25 million 500 million 3 billion

for the overall system. The system-level design phase becomes critical. During this phase,

the original system is decomposed into multiple subsystems and then further into many

components. After the decomposition, teams are assigned to develop each component;

additional teams are assigned the specific challenge of integrating components into the

subsystems and these into the overall system. Consequently, each subsystem is handled

by a team that relies on its own design/test tools or methods.

1.5 The Role of the Systems Engineer

In the system-level design phase, designers often face two challenges. One is that

each team strives to achieve its own design objective by satisfying its own requirements

without knowing how those design decisions influence the behavior of other subsystems

or even the overall system. The second is that the detailed design of subsystems and
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components requires the implementation of a highly parallel process in which the many

development teams work concurrently but not in isolation.

Managing interrelationships across the components and subsystems is the task of

many types of system engineers. Complex system engineering seeks a feasible and bal-

anced design in the face of opposing interests and multiple, sometimes competing design

requirements. The system engineer must develop skills and instincts for identifying and

focusing effort on assessments to optimize the overall design and not favor one subsystem

or component at the expense of another (Kapurch, 2007). The art is in knowing when and

where to probe. Personnel with these skills are usually tagged as “systems engineers,"

but they may have other titles, such as lead system engineer, technical manager, or chief

engineer. For this dissertation, the term system engineer is used.

The exact role and responsibility of the system engineer may change from project

to project depending on the size and complexity of the project and from phase to phase

of the development process. For large-scale projects, there may be one or more system

engineers. For small projects, sometimes the project manager may perform these respon-

sibilities. No matter who assumes these duties, the complex system engineering functions

must be performed. The system engineer ensures that the system technically fulfills the

defined design requirements and a proper coordination methodology is being followed.

The system engineer oversees the project’s activities as performed by the technical teams

and directs, communicates, monitors, and coordinates the design tasks of subsystems

and components. The system engineer reviews and evaluates the technical aspects of

the project to ensure that the subsystem and component design processes are being im-

plemented properly and evolves the system from concept to product. In summary, the

system engineer is skilled in the art and science of balancing organizational and technical

interrelationships in complex systems.
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1.6 Research Scope

In human organizations, e.g. design teams consisting of project managers and

design engineers, various decision makers may have different objectives, which may be

different from the goal of the organization. To eliminate resulting conflicts, this disserta-

tion is restricted to discussions for which three assumptions are made.

Assumption 1 There is a well-defined organizational objective, which is determined based

on company goals, customer needs, and government regulations.

Assumption 2 The individual decision makers are either physical processors or they are

treated as if there were processors with predictable behavior.

Assumption 3 Design optimization of each subsystem or component operating in paral-

lel takes the same amount of time. If one subsystem of component analysis finishes

early, it waits on the others to finish.

This dissertation is limited to general concepts and generic descriptions of coor-

dination processes and techniques. Specifically, it provides information on coordination

methodologies and algorithms, describes the mathematical model for complex system

engineering problems, and analyzes the effort in the proposed methodologies and algo-

rithms using academic version engineering problems. The specifics of the demonstration

examples can be seen in the description of the partition structures and the details of the

coordination algorithms. Each example varies in these two areas, meaning the reader

should refer to the procedural requirements for the problem’s partition structure and

coordination algorithm.

1.7 Motivation and Research Objectives

The research presented in this dissertation is primarily motivated by recent efforts

in the automotive, aerospace, and other industries to formalize the product development
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process and take advantage of parallel computation. More specifically, this research is

motivated by the observation of the relationship between manufacturers and suppliers.

For example, Boeing annually purchases more than $50 billion in components and ser-

vices from a global network of more than 28,000 suppliers that collectively employ more

than 1.2 million people; the suppliers are required to demonstrate their capabilities for

providing Boeing-qualified components, on-time delivery, post-delivery support, compet-

itive cost, and swift response to changing requirements. To realize an efficient product

development process, the various tasks of designing subsystems and components should

be accomplished in parallel but not in isolation from one another (Kim, 2001). The prod-

uct development process for complex engineering systems results in a network of design

teams including various specialists and communicating with their fellow teams over the

network regularly.

The product development process, in fact, should be considered as an organiza-

tional problem rather than one able to be solved simply by grinding through a mathemati-

cal model or computer algorithm (Churchman and Eisenberg, 1969). However, early work

in developing a computer-aided environment or software to support complex, unstruc-

tured group decision processes within organizations has had an adverse effect, because

as a result, decisions could be made quickly on trying to satisfy all requirements (Nuna-

maker et al., 1988). More specifically, when conducting design tasks in parallel and iso-

lation (i.e., ignoring the existing interactions shared among design teams), each design

team could focus on its own task; however, isolating the interactions leads to higher

downstream4 costs (Kim, 2001).

This dissertation investigates fundamental methodologies and numerical appli-

cations on two coordination methodologies. The first coordination methodology is the

further investigation of analytical target cascading (ATC) for coordinating hierarchically

decomposed systems using the cutting plane method and bi-objective optimization meth-

ods. The second relates to the development of a new non-hierarchical, decentralized coor-

4In software engineering, downstream refers to data sent from a network service provider to a customer.
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dination methodology for a multi-agent network model. The new coordination method-

ology is termed network target coordination (NTC), the goal of which is to collectively

optimize the decomposed system without using a master problem.

1.8 Dissertation Outline

The research presented in this thesis adapts several existing optimization algo-

rithms, involving cutting plane methods (Bertsekas, 2003) and alternating direction method

of multipliers (ADMM) (Bertsekas and Tsitsiklis, 1989, Boyd et al., 2011, Gabay and

Mercier, 1976), to develop coordination methods for complex systems decomposed based

on multidisciplinary design optimization (MDO). The first topic of the thesis is to apply

and investigate the cutting plane methods for solving hierarchically decomposed prob-

lems. The second topic of the thesis is to develop a network target coordination method

based on consensus optimization and ADMM for realizing the complete parallelization

of nonhierarchically decomposed problems.

Chapter 1 introduced MDO methods in the contexts of systems engineering and

product development process, indicating that the primary focus of this dissertation was

on mathematical formulations and coordination strategies for both the hierarchically and

nonhierarchically decomposed problems. The outline of this dissertation is depicted in

Figure 1.7.

Chapter 2 overviews well-known MDO methods based on three steps involved

in the solution procedure. In Section 2.1, a consistent notation is introduced to iden-

tify general aspects of the distributed optimization methods developed in the literature.

In Section 2.2, the problem statements are presented to identify relationships between

variables and functions associated with individual subsystems. In Section 2.3, the classi-

fication criteria are discussed in more detail. Finally, the general properties of distributed

optimization methods are concluded in Section 2.4.

Chapter 3 overviews the rational for using the augmented Lagrangian method to
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Ch. 1 Introduction

Ch. 2 An Overview of Multidsicplinary Design Optimization Methods

Ch. 3 An Overview of Augmented Lagrangian and Duality

Hierarchical: 

Ch. 4 Analytical Target Cascading

   Ch. 4.4 Coordination Strategy using Subgradient Algorithm

   Ch. 4.5 Coordination Strategy using Biobjective Optimization

Nonhierarchical:

Ch. 5 Network Target Coordination via Consensus Optimization

Ch. 6 Numerical Applications of the Network Target Coordination Method

Ch. 7 Conclusion

Figure 1.7: Outline of the dissertation

solve decomposable engineering system design problems. The augmented Lagrangian

method is an extension of the quadratic penalty method and Lagrangian method in-

troduced in Chapter 2. In Section 3.2, the augmented Lagrangian dual formulation is

presented. Then, its augmented Lagrangian dual problem is defined in Section 3.3 and

the strong and weak duality are discussed. Section 3.3 presents the first-order optimality

conditions for the constrained optimization problem by analyzing the dual and primal

feasibility. Section 3.4 discusses the significance of Lagrangian multipliers. Section 3.6

illustrates the augmented Lagrangian coordination with respect to the introduction of

copies of coupling variables and the relaxation of consistency constraints. Finally, the

duality theorem and the augmented Lagrangian method are concluded in Section 3.7.

Chapter 4 presents the two new coordination methods for solving complex sys-

tems decomposed based on ATC. The main contribution of this chapter is to provide a

unified duality view of the subgradient update schemes for solving ATC-decomposable

problems. In addition, this chapter discusses the advantages and disadvantages of these

two cutting plane methods when applied to ATC-decomposable design problems. In Sec-

tion 4.2, the centralized, hierarchical problem structure is modeled. In Section 4.3, ATC

problem statement is presented, and a generic subgradient algorithm with five update
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schemes for solving the ATC-decomposed problems are given in Section 4.4. In Section

4.5, bi-objective optimization and its corresponding coordination algorithm are presented.

Finally, numerical applications are tested in Section 4.6 and the results are analyzed in

Section 4.7.

Chapter 5 proposes a new coordination method via consensus optimization with

the alternating direction method of multipliers (CADMM) to solve nonhierarchical de-

composed problems. This solution strategy consists of three steps. In the first step, each

agent solves for coupling variables locally with fixed Lagrangian multipliers, penalty

parameters, and the consensus estimates of all coupling variables. After achieving the

convergence of all subsystems, the second step aims to compute the consensus estimates

using the results of the coupling variables collected from each subsystem. In the third

and final step, the Lagrangian multipliers are updated based on sub-gradient methods.

Chapter 6 demonstrates the performance of the proposed method by solving three

nonconvex problems, including a geometric programming problem, the Golinski’s speed

reducer problem, and the MEMS-based micro-accelerometer design problem. The solu-

tion of these three problems are computed, and then the performance of the proposed

coordination method via the CADMM approach is analyzed with a comparison to the

ATC method via the alternating direction method of multipliers (ADMM) in the litera-

ture. The numerical results indicate that NTC with the CADMM is more efficient and

robust than the ATC with ADMM approach when solving the example problems.

Chapter 7 summarizes the primary contributions of the research, and gives rec-

ommendations for future research. From a mathematical viewpoint, the contribution

of the research is the development of mathematical formulations and corresponding al-

gorithms for realizing the large-scale, distributed design of both the hierarchically and

nonhierarchically decomposed systems. From an engineering application viewpoint, the

research reduces the computational costs and improves the solution accuracy for solving

large-scale design problems completed by geographically dispersed teams.
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Chapter 2

An Overview of Multidisciplinary Design

Optimization Methods

2.1 Introduction

Traditionally, the integration of optimization in engineering design was realized

by allowing design teams to contribute discipline analysis models to a system-level config-

uration team, which executed the models using single and monolithic methods, e.g. All-

In-One (AIO), multidisciplinary feasible (MDF), and individual discipline feasible (IDF)

methods. These methods are only useful during the early design stage, when the num-

ber of decision variables is relatively small, and they are appropriate for a small design

team. Because of their limitations, single and monolithic methods face challenges when

solving complex systems that are large-scale and multidisciplinary, and require a higher

performance with a low cost.

To address these challenges, a variety of multidisciplinary design optimization

(MDO) methods have been developed for efficient analysis and optimization of these com-

plex systems. Among others, several well-known methods are Concurrent Subspace Opti-

mization (CSSO) (Sobieszczanski-Sobieski, 1988), Collaborative Optimization (CO) (Braun

et al., 1997, Braun, 1996), Bi-level Integrated Systems Synthesis (BLISS) (Sobieszczanski-

Sobieski et al., 2000, 2003), Analytical Target Cascading (ATC) (Kim et al., 2003, Miche-
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lena et al., 1999, 2003), Quasi-separable Decomposition (QSD) (Haftka and Watson, 2005,

2006), Inexact/Exact Penalty Decomposition (IPD/EPD) (Demiguel and Murray, 2006),

Enhanced Collaborative Optimization (ECO) (Roth and Kroo, 2008), and Augmented La-

grangian Coordination (ALC) (Tosserams et al., 2008b). These MDO methods are also

summarized as following:

Equality-based MDO methods

Collaborative Optimization (CO) - Copies of the coupling variables are introduced

for each subsystem. Discipline subsystems minimize consistency constraints, de-

noted by the discrepancies between the copies of coupling variables and their re-

sponses, by subjecting local design constraints. The system-level problem minimizes

the original objective by subjecting to consistency constraints (Braun et al., 1997,

Braun, 1996).

Quasi-separable Decomposition (QSD) - Each discipline is assigned a target for a lo-

cal objective and the discipline subsystems maximize the residual in their local con-

straints and the discrepancy between the target and local objective. The system-level

problem minimizes a coupled objective function and the targets of each discipline by

subjecting to coupled design constraints and the residual in each discipline (Haftka

and Watson, 2005, 2006).

Concurrent Subspace Optimization (CSSO) - In the system-level problem, disci-

plinary analyses are conducted using surrogate models. In discipline subsystems,

the coupling variables and constraints are solved using surrogate models, and then

the solutions of these discipline subsystems are used to update the surrogate mod-

els (Sobieszczanski-Sobieski, 1988).

Bi-level Integrated Systems Synthesis (BLISS) - Coupled derivatives of the multidis-

ciplinary analysis are used to construct linear approximations for each discipline

subsystem. The derivatives with respect to the solutions of these subsystems are
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computed to form the system-level linear approximation, which is then optimized

with respect to coupling variables (Sobieszczanski-Sobieski et al., 2000, 2003).

Relaxation-based MDO methods

Inexact/Exact Penalty Decomposition (IPD/EPD) - This method is applicable to

solve MDO problems with no coupling objectives and/or constraints. Copies of

coupling variables are introduced for each subsystem. The consistency constraints

are relaxed using a penalty function. The coordination structure of the discipline

subsystems is investigated to compute sensitivities used for solving the system-level

problem (Demiguel and Murray, 2006).

Enhanced Collaborative Optimization (ECO) - As in Collaborative Optimization,

copies of coupling variables are also introduced. Discipline subsystems minimize

quadratic approximations of the objective by subjecting to local constraints and lin-

earized coupling constraints. Coupling variables are solved by the system-level

problem, which minimizes the sum of consistency constraints (Roth and Kroo, 2008).

Analytical Target Cascading (ATC) - Both copies of the coupling variables and

their corresponding consistency constraints are introduced in discipline subsystems.

These consistency constraints are then relaxed using a quadratic penalty function.

System-level problem and discipline subsystems independently solve their respec-

tive optimization problems. During the iterative process, penalty weights are grad-

ually increased until the desired termination tolerance for consistency constraints

is achieved (Kim et al., 2003, Michalek and Papalambros, 2005a,b, Michelena et al.,

1999, 2003).

Augmented Lagrangian Coordination (ALC) - Similar to ATC, both copies of cou-

pling variables and corresponding consistency constraints are introduced in dis-

cipline subsystems. Unlike ATC, these consistency constraints are relaxed using

an augmented Lagrangian function. During the iterative process, both Lagrangian
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multipliers and penalty weights are updated using various schemes in order to

achieve the desired termination tolerance for consistency constraints (Tosserams

et al., 2008b).

The fundamental idea of these MDO methods is to decompose the system into a

number of subsystems, and independently solve them using the standard optimization

algorithms. The decomposition process of these MDO methods is usually comprised

of two steps, i.e. partitioning and coordination (Wagner, 1993). The partitioning step

separates the system into many smaller subsystems so that they can be solved by various

design teams using object-, aspect-, or model-based partitioning strategies (Wagner and

Papalambros, 1993). The coordination step manages interactions among subsystems in

order to achieve a consistent, optimal solution, which should be equivalent to the optimal

solution for the original system.

Previous research has classified these MDO methods into the following widely

used categories:

• Problem formulation for single-level MDO optimization (Cramer et al., 1994),

• Single-level v.s. multi-level optimization (Balling and Sobieszczanski-Sobieski, 1996),

• Positioning of computational costs and organization of the individual subsystems

(Sobieszczanski-Sobieski and Haftka, 1997),

• Positioning of consistency constraints (Alexandrov and Lewis, 1999),

• Formulation structure and constraint relaxation (Tosserams et al., 2008a),

• Unified notation and solution procedure parallel to the decomposition and coordi-

nation steps (de Wit and van Keulen, 2010), and

• Unified description including optimization problem statements, diagrams, and de-

tailed algorithms (Lambe and Martins, 2011).
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This chapter provides an overview of the MDO methods, focusing on three gen-

eral features for solving complex systems, 1) whether to introduce copies of coupling

variables, 2) whether to relax the consistency constraints, and 3) which solution order to

choose. Section 2.1 introduces a consistent notation to identify general aspects of the dis-

tributed optimization architectures developed in the literature. Section 2.2 illustrates the

functional dependent table for identifying relationships between variables and functions

associated with individual subsystems. Section 2.3 discusses the classification criteria in

more detail and presents the formulations corresponding to MDO methods. Section 2.4

concludes by giving the general properties of distributed optimization architectures.

2.2 Terminology and Notation

Before discussing the classification criteria, the notation used throughout this

chapter must be defined. This notation, developed to compare the various problem for-

mulations within MDO architectures, is listed in Table 2.1.

Table 2.1: Mathematical notation for MDO problem data.

Symbol Definition

x Vector of local design variables
y Vector of coupling design variables (outputs from a discipline analysis)
yt Vector of coupling variable targets (inputs to a discipline analysis)
f Objective function
g Vector of inequality design constraints
h Vector of equality design constraints
c Vector of consistency constraints
M Total number of disciplines (or subsystems)
0 This subscript means that functions are shared by more than one discipline,

called coupling functions or variables
j This subscript means that functions or variables are associated only with

discipline j
⋆ This superscript means that functions or variables are achieved at their opti-

mal values
˜ This symbol denotes an approximation of a given function or vector of func-

tions
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In addition, several terms specific to the field of MDO are specified as follows:

• A design variable is one under the explicit control of an optimizer. Design vari-

ables may pertain to a single discipline, i.e. be local, or may be shared by multiple

disciplines (Lambe and Martins, 2012).

• A discipline analysis is a simulation that models the behavior of one discipline. Con-

ducting a discipline analysis consists of solving a series of equations and returning

a set of response variables (Lambe and Martins, 2012).

• A local design variable, denoted by xj, is a variable that is exclusively associated

with discipline j. The vector of local variables is denoted by xj.

• A linking design variable, denoted by y, is a variable that appears in more than

one discipline. This linking variable may be a design variable, or an analysis re-

sponse computed by one discipline used as an input to others. The vector of linking

variables solved by discipline j is denoted by yj. These linking variables are also

referred to as coupling variables.

• In many formulations, copies of the coupling variables must be made to allow the

discipline analysis or optimization to run independently and in parallel. These

copies are known as target variables denoted by a superscript t (Lambe and Martins,

2012).

• The function f is called, variously, an objective function, a cost function (minimiza-

tion), a utility function (maximization), or, in certain fields, an energy function or

energy functional. A feasible solution that minimizes (or maximizes, if that is the

goal) the objective function is called an optimal design solution, which is denoted

by x⋆.

• To preserve consistency between the coupling variable inputs and outputs at con-

vergence, a set of auxiliary constraints, i.e. cj = yt − yj, is defined as the consistency

constraints added to the formulation.
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2.3 Problem Statements

The most important consideration in the partitioning for systems optimization is

to identify the two types of interactions, i.e. coupling variables y and coupling functions

f0, g0, h0. The problem statement including only the coupling variables is given by

min
y, x1, ··· , xM

M

∑
j=1

fi(y, xj)

s.t. gj(y, xj) ≤ 0 j = 1, · · · , M (2.1)

hj(y, xj) = 0 j = 1, · · · , M.

Although the size does not matter in this equation, it is useful to think that xj has more

components than y. The objective f j and constraints gj and hj are almost block-separable

in xj, meaning the subsystems can be solved independently. For this reason, yj is re-

ferred to as the vector of coupling variables because when it is treated as a constant,

Problem (2.1) can be separated into M subsystems. In other words, the vector of coupling

variables complicates the problem.

Unlike block-separable Problem (2.1), the problem statement involving only the

coupling functions is defined as

min
x1, ··· , xm

f0(x1, · · · , xm)

s.t. g0(x1, · · · , xm) ≤ 0

h0(x1, · · · , xm) = 0

gj(xj) ≤ 0 j = 1, · · · , M

hj(xj) = 0 j = 1, · · · , M.

(2.2)

Although local constraints gj and hj are block-separable in xj for j = 1, 2, · · · , M,

the functions f0, g0 and h0 couple these subsystems, making the solving process of the

problem complicated.
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After combining two forms of interdependencies, a general formulation of the

problem with a decomposable structure is given by

min
y, x1, ··· , xm

f0(y, x1, · · · , xm) +
M

∑
j=1

f j(y, xj)

s.t. g0(y, x1, · · · , xm) ≤ 0

h0(y, x1, · · · , xm) = 0 (2.3)

gj(y, xj) ≤ 0 j = 1, · · · , M

hj(y, xj) = 0 j = 1, · · · , M.

The overall system objective is assumed to be the sum of the coupling objective f0 and the

subsystems objectives f j ∀ j = 1, · · · , M. The original constraints are divided into cou-

pling constraints g0 and h0 allocated to the system-level problem, and local constraints gj

and hj assigned to subsystem j. Without coupling variables and functions, Problem (2.3)

could be partitioned into M subsystems. These subsystems can be solved individually

by design teams because there is no interdependency between subsystems and, there-

fore, there is nothing to coordinate. However, when coupling variables and functions

are involved, a coordination method is needed to manage them, and to guide individual

subsystems towards the achievement of the optimal system design.

The relationships among local design variables xj, coupling variables y, objective

functions f0 and f j, and constraint functions g0, h0, gj, and hj with ∀ j = 1, · · · , M

has been analyzed by Barthelemy (1989) and Wagner and Papalambros (1993), among

others, using functional dependency tables (FDT). An example of the structure of the

interactions and its corresponding FDT of Problem (2.3) are depicted in Figure 2.1 and

Table 2.2, respectively. The figure shows that four subsystems are interconnected through

the coupling variable y, represented by solid lines, and coupling design/constraint func-

tions f0, g0, h0, represented by dashed lines. As in Wagner and Papalambros (1993), a

cell of the functional dependency table is shaded if the function of the associated row
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depends on the variable of the corresponding column. Without these coupling variables

and/or coupling functions, Problem (2.3) can be completely partitioned into M subsys-

tems, each associated with one discipline. If these coupling variables and/or functions

are present, a coordination method should be included to ensure their values to be equal

to one another.

In addition, functional dependency tables were used to present the strength of the

interactions among subsystems de Wit and van Keulen (2010) by identifying four patterns.

For the multilevel decomposition, the first pattern illustrates a functional dependency

table where the objective function is only associated with the top-level subsystem. The

second illustrates the case where there is a smaller number of coupling variables shared

among the objective and constraints. The third illustrates that a larger number of coupling

variables are shared among the objective and constraints, while the fourth illustrates that

the objective and constraints depend on all design variables and the analysis of responses

of all subsystems.

x1, f1, g1, h1

x2, f2, g2, h2 x3, f3, g3, h3

x4, f4, g4, h4

y

f0, g0, h0

Figure 2.1: Distribution of variables and functions of Problem (2.3) (Tosserams et al.,
2008a)

MDO methods are typically defined for optimization problems that belong to

one of these four patterns. These MDO methods coordinate data from the individual

subsystems such that the optimal solution to the entire system is achieved. Research into
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Table 2.2: Functional dependency table of Problem (2.3) (Tosserams et al., 2008a)

y x1 x2 x3 x4

f0

f1

f2

f3

f4

g0, h0

g1, h1

g2, h2

g3, h3

g4, h4

finding optimal problem decompositions to reduce the effort of coordination has been

conducted by, among others, Bloebaum (1995), Chen and Li (2005), and Allison et al.

(2007). The criteria for classifying MDO methods are discussed in the next section.

2.4 Classification Criteria

The primary goal of this chapter is to classify various MDO methods. In particular,

this classification aims to categorize these architectures by analyzing their similarities

and differences. The classification of these MDO methods is determined based on the

following three steps of the solution process.

Step 1: Introduction of Copies of Coupling Variables

The first step relates to whether or not the copies of coupling variables yj will be

added to the set of design variables of subsystem j. If a problem formulation introduces

them, consistency constraints must be added to the set of constraints. The residuals of

these consistency constraints denote the inconsistencies between the target coupling vari-

ables yt
j and the auxiliary coupling variables yj of subsystem j. If the residuals of consis-

tency constraints are not zero, only the individual discipline feasibility can be maintained

during the iterative solution process. Conversely, if a problem statement does not use

copies of coupling variables, the introduction of consistency constraints is not needed,
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and the multidisciplinary feasibility can be maintained during the iterative solution pro-

cess.

In general, there are two formulations used frequently to maintain the consistency

between the coupling variable and its copy. These formulations, referred to as consistency

constraints, can be expressed as

Strong consistency constraint: c = yt − y = 0 (2.4)

Weak consistency constraint: λTc = λT
(
yt − y

)
= 0. (2.5)

Equality constraint (2.4) is often referred to as the strong consistency constraint since it

forces the values of responses to fulfill their targets at each iteration. Equality constraint

(2.5) is called the weak consistency constraint, which equals to zero only if the Lagrangian

multiplier λ used to relax the consistency, achieves its optimal value, meaning this incon-

sistency approaches zero (de Wit and van Keulen, 2010).

Step 2: Relaxation of Constraints

The second step relates to whether or not the relaxation of the two types of con-

straints, design constraints (g0, h0, gj, and hj ∀ j = 1, · · · , M) and consistency con-

straints
(
cj ∀ j = 1, · · · , M

)
, will be added to the objective function. Typically, the relaxed

constraints, referred to as open constraints, enforce the feasibility only at convergence,

whereas the remaining constraints ensuring the feasibility at each iteration are called

closed constraints (Alexandrov and Lewis, 1999, Tosserams et al., 2008a).

Nested and Alternating Formulation Structures

There is a difference between the definition of design constraints and consistency

constraints: Design constraints are typically linear or nonlinear constraints introduced to

represent the design limits of a subsystem, and consistency constraints are typically linear

constraints introduced to decouple subsystems. Relaxing consistency constraints means
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2.4. CLASSIFICATION CRITERIA

that the coupled subsystems may obtain different values for the same coupling variable.

Similarly, relaxing design constraints implies that they can be violated at a subsystem

solution.

To illustrates the open and closed constraints, the problems in Table 2.3 are pre-

sented based on nested and alternating formulation structures (Tosserams et al., 2008a).

Then, the distinction between nested and alternating formulation structures is summa-

rized in Table 2.4 based on six features, involving 1) problem formulation, 2) difficulty

of solving the master system, 3) degree of strict assumptions for achieving convergence

proofs, 4) use of gradient-based algorithms for solving the master system, 5) possibility of

using approximations to improve the computational efficiency of solving subsystems, and

6) additional computation when using penalty functions to relax complicate constraints.
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Table 2.3: Summary of the relaxation of design and consistency constraints

Constraint Relaxation Formulation Structures

Design Consistency Nested Alternating

Closed Closed

min
y

f (y)

s.t. g0(y) ≤ 0

h0(y) = 0

bj(y) = 0 j = 1, · · · , M

where bj(y) =
{ 0 if ∃xj : gj(y, xj) ≤ 0, hj(y, xj) = 0

1 if 6 ∃xj : gj(y, xj) ≤ 0, hj(y, xj) = 0

Master: min
y

f (y, x1, · · · , xM)

s.t. gj(y, x1 , · · · , xM) ≤ 0 j = 0, · · · , M

hj(y, x1, · · · , xM) = 0 j = 0, · · · , M

Sub: min
xj

f (y, x1, · · · , xM)

s.t. gi(y, x1, · · · , xM) ≤ 0 i = 0, · · · , M

hi(y, x1, · · · , xM) = 0 i = 0, · · · , M

Closed Open

min
y

f (y)

s.t. g0(y) ≤ 0

h0(y) = 0

cj = (y − y∗
j ) = 0, j = 1, · · · , M

where y∗
j (y), x∗j (y) =

arg minyj ,xj
φj(y − yj)

s.t. gj(yj, xj) ≤ 0

hj(yj, xj) = 0

Master: min
y

f (y, x1, · · · , xM) +
M

∑
j=1

φj(y − yj)

s.t. gj(y) ≤ 0

hj(y) = 0

Sub: min
yj ,xj

f (y, x1, · · · , xM) + φj(y − yj)

s.t. gj(y, xj) ≤ 0

hj(y, xj) = 0

Open Closed

min
y

f (y)

s.t. g0(y) ≤ 0

h0(y) = 0

φ∗
j ≤ 0, j = 1, · · · , M

where φ∗
j = min

xj
{φj(gj(y, xj), hj(y, xj))}

Master: min
y

f (y, x1, · · · , xM)+

M

∑
j=0

φj(gj(y, x1, · · · , xM), hj(y, x1, · · · , xM))

Sub: min
xj

f (y, x1, · · · , xM)+

M

∑
i=0

φi(gi(y, x1 , · · · , xM), hi(y, x1, · · · , xM))

Open Open

min
y

f (y)

s.t. g0(y) ≤ 0

h0(y) = 0

φ∗
j ≤ 0, j = 1, · · · , M

where φ∗
j = min

yj ,xj
{φj(y − yj, gj(y, xj), hj(y, xj))}

Master: min
y

f (y, x1, · · · , xM) +
M

∑
j=1

φj(y − yj)+

θ0(g0(y, x1, · · · , xM), h0(y, x1 , · · · , xM))

Sub: min
yj ,xj

f (y, x1, · · · , xM) +
M

∑
j=1

φj(y − yj)+

θ0(g0(y, x1, · · · , xM), h0(y, x1 , · · · , xM))+

θi(gi(y, x1 , · · · , xM), hi(y, x1, · · · , xM))
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Table 2.4: Features of nested and alternating formulations

Nested Formulations Alternating Formulations

Apply to Problem (2.1) Problem (2.3)

Advantages

Local optima Differentability of optimization problems
The use of single-point approximations for subsys-
tems

Well-posedness of optimization problems

The use of multi-point approximations for subsys-
tems

The use of gradient-based algorithms

The use of approximations based on gradient in-
formation
The use of multi-point approximations

Disadvantages

Master non-differentability Requirement of differentiable objectives
Master ill-posedness Requirement of convex constraint sets
A large number of consistency constraints Strict assumptions for local convergence of parallel

schemes
Difficult use of gradient-based algorithms Additional updates of penalty parameters
Highly non-trivial approximations of subsystems Non-differentiable penalty functions
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Hierarchical and Nonhierarchical Decomposition Structures

A multilevel problem typically has a hierarchical structure as shown in Figure 2.2

(Tosserams et al., 2006b). The top-level, referred to as level 1, involves the parent sub-

system P11. One level lower, i.e. at level 2, the children subsystems of P11 can be found.

The subsystems located at level 2 are numerated from left to right. At the third level, the

children of level 2 subsystems can be found.

j = 1

j = 2 j = 3

j = 4 j = 5 j = 6

i = 1

i = 2

i = 3

Figure 2.2: Multi-level structure for a three-level hierarchy (Tosserams et al., 2006b)

For solving multilevel problems, two solution sequences, top-down and bottom-

up, can be employed to communicate the results of the coupling variables. Figure 2.3

depicts these two schemes for three-level problems by integrating the nested and alter-

nating formulation structures. In the alternating top-down scheme of Figure 2.3 (a), the

subsystems at level 1 converge and pass their estimates of coupling variables to subsys-

tems at level 2 and then level 3. This process is repeated until the three subsystems have

collaboratively converged to the original optimal solution. The alternating bottom-up

scheme of Figure 2.3 (c) is the mirror image of the alternating top-down scheme, i.e. the

subsystems at level 3 converge first and then pass their estimates of the coupling variables

to the subsystems at level 2 and then level 1. The nested structure of these two schemes

requires the convergence of the subsystems outlined in the dashed lines before sending

their estimates of coupling variables to subsystems at the bottom-level or top-level.

The hierarchical nature of MDO methods may not be the most suitable approach

for decomposing complex problems that do not have a clear hierarchical structure. For
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level 1

level 2

level 3

level 1

level 2

level 3

level 1

level 2

level 3

level 1

level 2

level 3

(a) Alternating
top-down

(b) Nested
top-down

(c) Alternating
bottom-up

(d) Nested
bottom-up

Figure 2.3: Convergence coordination schemes for decomposed optimization problems

those problems, direct communication between subsystems may be more appropriate.

For example, classic MDO problems are typically composed of subsystems ordered by

analysis disciplines among which no clear hierarchy may exist. These classic MDO meth-

ods concern the situation in which subsystems do not prescribe estimates of coupling

variables based on one another. Instead, coupling variables are estimated using sensi-

tivity information, e.g. global sensitivity equations (Sobieszczanski-Sobieski, 1988). By

introducing these equations to monitor the consistency, the strong consistency constraints

do not need to be relaxed to the objective, and the parallel computing of subsystems can

be realized by exchanging information only found among subsystems. However, using

sensitivity analysis to monitor the consistency is computational inefficient. Therefore,

one goal of this dissertation is to extend hierarchical decomposition based on relaxation

techniques to include nonhierarchical target response couplings of subsystems such that

the nonhierarchical communication between distributed subsystems seen in Figure 2.4 is

realized.

Figure 2.5 presents an integrated overview based on two types of consistency

constraints, i.e. strong and weak consistency constraints. Strong consistency constraints

36



2.4. CLASSIFICATION CRITERIA

Sub 1

Sub 2 Sub 3

Sub 4 Sub 5 Sub 6

Figure 2.4: Nonhierarchical information flow of distributed subsystems

are accomplished using global sensitivity equations, and weak consistency constraints are

accomplished using three typical approaches, involving Lagrangian relaxation, penalty

relaxation, and augmented Lagrangian relaxation. Both decomposition techniques can be

further decomposed into hierarchal and nonhierarchical formulations.
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Decomposition of
the original problem

yt yt

Strong 
consistency 
constraints

Weak
consistency 
constraints

Global 
Sensitivity 
Equations

1. Lagrangian
2. Penalty
3. Augmented 
Lagrangian

Hierarchical
Non-hierarchical

(a) Alternating top-down, 
(b) Nested top-down,
(c) Alternating bo!om-up,
(d) Nested bo!om-up.

Hierarchical Non-hierarchical

(a) Alternating top-down, 
(b) Nested top-down,
(c) Alternating bo!om-up,
(d) Nested bo!om-up.

Figure 2.5: Summary of the decomposition process
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Sub 1 Sub 2 Sub 3 Sub 4

Sub 1

Sub 2 Sub 3 Sub 4

Sub 1

Sub 2

Sub 3

Sub 4

Jacobi Gauss-Seidel Combination

Figure 2.6: Three schemes of solution sequences

Step 3: Solution Sequence

The third step determines the order for solving each subsystem, either nested or

alternating. In a nested formulation, all disciplinary subsystems are required to con-

verge to an optimal solution, and then the master problem evaluates the objective and

constraint functions and solves for an overall optimal solution. In an alternating formu-

lation, however, an iterative process is implemented between solving the master problem

and disciplinary subsystems. For both the nested and alternating formulation structures,

disciplinary subsystems can be solved using a Jacobi scheme, a Gauss-Seidel scheme, or

a combination of both. A Jacobi scheme solves all subsystems in parallel, after which

their solutions are updated. The Gauss-Seidel scheme solves all subsystems sequentially

and updates their solutions as soon as they become available. These three schemes are

depicted in Figure 2.6.

2.5 Concluding Remarks

This chapter identified three steps used to classify MDO methods. Introduction

of the copies of coupling variables was analyzed by constructing two types of consistency

constraints, i.e. strong and weak. Furthermore, based on these two types, the nested and

alternating problem formulations were presented, which were categorized as hierarchi-

cal and nonhierarchical decomposition structures. Finally, the solution sequence using a

Jacobi scheme, a Gauss-Seidel scheme, or a combination of both discussed the analysis
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presented in this chapter. We can conclude that the multidisciplinary design optimization

methods are practical for solving complex systems, when the amount of data exchanged

between individual subsystems remains small, and these subsystems are weakly cou-

pled.
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Chapter 3

An Overview of Augmented Lagrangian and

Duality

3.1 Introduction

The augmented Lagrangian method is an extension of the quadratic penalty method

and Lagrangian method (Bazaraa et al., 2006, Bertsekas, 2003), which are applied in de-

veloping MDO distributed optimization structures such as Collaborative Optimization

(CO) (Braun et al., 1997), Analytical Target Cascading (ATC) (Kim et al., 2003, Lassiter

et al., 2005, Michelena et al., 2003), Exact and Inexact Penalty Decomposition (EPD/IPD)

(Demiguel and Murray, 2006). The augmented Lagrangian method reduces the possibility

of ill-conditioning of the subsystems by introducing Lagrangian multiplier estimates.

This chapter overviews the rational for using the augmented Lagrangian method

to solve decomposable engineering system design problems. In Section 3.2, the aug-

mented Lagrangian dual formulation is presented. Then, its augmented Lagrangian dual

problem is defined in Section 3.3 and the strong and weak duality are discussed. Section

3.3 presents the first-order optimality conditions for the constrained optimization prob-

lem by analyzing the dual and primal feasibility. Section 3.4 discusses the significance

of Lagrangian multipliers. Section 3.6 illustrates the augmented Lagrangian coordination

with respect to the introduction of copies of coupling variables and the relaxation of con-
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sistency constraints. Finally, the duality theorem and the augmented Lagrangian method

are concluded in Section 3.7.

3.2 The Augmented Lagrangian Dual Function

In constrained optimization, it is often possible to convert the primal problem,

i.e. the original form of the optimization problem, to a dual problem (Bazaraa et al.,

2006). The fact motivates the following general philosophy: since dual problem captures

the properties of the primal problem, then if the primal optimal value is the same as

the dual optimal value, the behavior of the primal problem may be analyzed via its

dual counterpart. For a large-scale engineering system design problem, we can apply the

decomposition to the problem after introducing dual variables and working with the dual

problem.

For expressing an optimization problem without the convexity assumption, a min-

imization problem is given by

min
x∈Ω

f (x)

subject to h(x) = 0,

(3.1)

where the objective function is denoted by f : Rn 7→ R, the vector of equality constraint

functions h : Rn 7→ R
m, and the vector of design variables x with l, u ∈ Rn, l < u and

Ω = {x ∈ Rn|l < x < u}. The optimal objective value is denoted by f (x⋆) with respect to

the optimal solution x⋆. Assuming that h has continuous first derivatives on Ω, then its

first derivatives are denoted as

∇h(x) = (∇h1(x), · · · ,∇hm(x)) = h
′
(x) ∈ Rn×m. (3.2)

Since the discussion in this research only concerns with the relaxation of the consistency

constraints, which are equality constraints, the minimization problem is considered only
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including the equality constraints.

Lagrangian duality with the elimination of equality constraints is realized by aug-

menting the objective function with a weighted sum of the equality constraint functions.

The augmented Lagrangian L : Rn×m 7→ R for Problem (3.1) is defined as

Lρ(x, λ) = f (x) +
m

∑
i=1

λihi(x) +
1

2

p

∑
i=1

ρihi(x)
2. (3.3)

The vectors comprising of Lagrangian multipliers and the penalty parameters are defined

as λ = [λ1, · · · , λm] ∈ R
m and ρ = [ρ1, · · · , ρm] ∈ R

m
>0, respectively. The Lagrangian

multiplier λ is also referred to as the dual variable for Problem (3.1). In this research,

the augmented Lagrangian function instead of the Lagrangian function or the penalty

function is used, because through the augmented Lagrangian, ill-conditioning of the op-

timization problem can be avoided by using an appropriate strategy to find λ arbitrarily

close to the its optimal solution λ⋆ while keeping the penalty parameter ρ relatively small.

Unless stated otherwise, the reader is referred to Bazaraa et al. (2006) and Bertsekas (2003)

for the following discussion of augmented Lagrangian relaxation techniques.

The augmented Lagrangian dual function q : Rm 7→ R is defined as the minimum

value of the augmented Lagrangian over x ∈ Ω. For λ ∈ Rm,

q(λ) = inf
x∈Ω

{
f (x) +

m

∑
i=1

λihi(x) +
1

2

m

∑
i=1

ρihi(x)
2

}
. (3.4)

When the Lagrangian dual function is unbounded below with respect to the design vari-

able x, q(λ) = −∞. Since the dual function is the pointwise infimum of a family of affine

functions of λ, it is concave when Problem (3.1) is nonconvex (Bertsekas, 2003).

The dual function yields a lower bound q(λ) on the optimal value f (x∗) of Prob-

lem (3.1) (Bazaraa et al., 2006, Boyd and Vandenberghe, 2004). For any λ, the relationship

between q(λ) and f (x⋆) is given by

q(λ) ≤ f (x⋆). (3.5)
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This important property can be easily verified. If x̃ refers to a feasible point for Prob-

lem (3.1), i.e., hi(x̃) = 0 and any λ. Then we have

p

∑
i=1

λihi(x̃) +
1

2

m

∑
i=1

ρihi(x̃)
2 ≤ 0, (3.6)

since each term in the first sum is nonpositive, and each in the second sum is zero.

Thereby,

Lρ(x̃, λ) = f (x̃) +
m

∑
i=1

λihi(x̃) +
1

2

m

∑
i=1

ρihi(x̃)
2 ≤ f (x̃). (3.7)

Based on the above Equation (3.7), then

q(λ) = inf
x∈Ω

Lρ(x, λ) ≤ Lρ(x̃, λ) ≤ f (x̃). (3.8)

The inequality (3.5) holds except when q(λ) = −∞. As a result, the dual function can

give a lower bound for the primal objective value f (x⋆) if q(λ) > −∞.

3.3 The Augmented Lagrangian Dual Problem

For any λ, the Lagrangian dual function gives a lower bound on the optimal value

f (x⋆) of the optimization problem (3.1). Thus we have a lower bound that depends on

some parameters λ. A natural question is: What is the best lower bound that can be

obtained from the Lagrangian dual function? This leads to an optimization problem, i.e.,

max
λ

q(λ) (3.9)

This Lagrangian dual problem is associated with Problem (3.1), which is referred to as

the primal problem in this context. Using the term dual feasible to describe λ with

q(λ, ν) > −∞ means that λ is a feasible solution for the dual problem (3.9); λ⋆ is referred

to as a dual optimum or an optimal Lagrangian multiplier if it is an optimal solution

for Problem (3.9). If the primal problem (3.1) is nonconvex, the Lagrangian dual prob-
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lem (3.9) can still be transformed to a convex optimization problem, since the objective to

be maximized is concave and the constraint is convex.

The example above shows that frequently the domain of the dual function

dom q = {λ| q(λ) > −∞} (3.10)

has a dimension smaller than p. In many cases, the affine hull of dom q can be described

as a set of linear equality constraints, meaning that the equality constraints that are “hid-

den" or “implicit" in the objective q of the dual problem (3.9) can be identified. In this

case, an equivalent problem in which these equality constraints are given explicitly as

constraints can be formed.

Weak Duality The optimal value of the Lagrangian dual problem denoted as q⋆ is, by

definition, the best lower bound on f ⋆ that can be obtained from the Lagrangian dual

function. The relationship between the optimal dual objective and the optimal primal

objective is referred to as

q(λ⋆) ≤ f (x⋆), (3.11)

which holds even if the primal problem is nonconvex. This property is called weak

duality, which holds even if q⋆ and f ⋆ are infinite. If the primal problem is unbounded

below so that f ⋆ = −∞, then q⋆ = −∞, i.e. the Lagrangian dual problem is infeasible;

conversely, if the dual problem is unbounded above so that q⋆ = ∞, then f ⋆ = ∞, i.e.

the primal problem is infeasible. If the primal problem is bounded below, then the term

f (x⋆)− q(λ⋆) is often referred to as the optimal duality gap, indicating the discrepancy

between the primal optimal value and its best lower bound.

Strong Duality If the relationship

q(λ⋆) = f (x⋆), (3.12)
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holds, i.e., the optimal duality gap is zero, then a property called strong duality holds,

meaning that the best lower bound obtained by solving the augmented Lagrange dual

problem is exactly the same as the optimal primal objective. Strong duality is not, in

general, present. However, if the primal problem (3.1) is convex, i.e. of the form

min f (x)

subject to Ax = b,

(3.13)

with f (x) convex, usually (but not always), strong duality is exhibited.

3.4 First-Order Optimality Conditions

Sub-optimality and stopping criteria If a dual feasible variable λ can be found, a lower

bound on the optimal value of the primal problem q(λ) ≤ f (x⋆) is exhibited. Thus, a dual

feasible point λ provides a design such that q(λ) ≤ f (x⋆), and strong duality indicates

there exist many feasible and optimal designs (Bazaraa et al., 2006). When x is primal

feasible and λ is dual feasible, then

f (x)− f (x⋆) ≤ f (x)− q(λ). (3.14)

If the value of f (x)− q(λ) is set to ε > 0, the inequality (3.14) establishes that x is only ε-

suboptimal for the primal problem, and λ is only ε-suboptimal for the dual problem (Bert-

sekas, 2003). If f (x) − q(λ) = 0, then x is the primal optimal solution and λ is the dual

optimal solution.

The relationships between f (x) and q(λ) can be used in providing the stopping

criteria for optimization algorithms. If an algorithm produces a sequence of primal and

dual feasible points such as xk and λk for k = 1, 2, · · · , and ε > 0 is a given termination

tolerance, then the stopping criterion is given by

f (xk)− q(λk) ≤ ε, (3.15)
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which guarantees that xk is ε-suboptimal when the algorithm terminates (Bazaraa et al.,

2006).

Karush-Kuhn-Tucker Conditions Based on the above discussions, the functions f , gi,

· · · , gm, h1, · · · , hp are continuous and differentiable, but not necessarily convex; the

design variables x⋆ ∈ Ω and λ⋆ ∈ Rm are any primal and dual optimal points with zero

duality gap. Since x⋆ minimizes the augmented Lagrangian function Lρ(x⋆, λ⋆) over Ω,

then if F = ∇ f , its gradient must vanish at x⋆, i.e.

∂Lρ

∂x
= F(x⋆) +

m

∑
i=1

λ⋆

i ∇hi(x
⋆) +

m

∑
i=1

ρihi(x
⋆)∇hi(x) = 0. (3.16)

Thus, the Karush-Kuhn-Tucker (KKT) conditions for Problem (3.1) are defined as

Dual Feasibility: ∇ f (x⋆) +
m

∑
i=1

λ⋆

i ∇hi(x
⋆) +

m

∑
i=1

ρihi(x
⋆)∇hi(x

⋆) = 0, (3.17)

Primal Feasibility: hi(x
⋆) = 0, i = 1, · · · , m (3.18)

For any optimization problem with differentiable objective and constraint func-

tions exhibiting strong duality, any pair of primal and dual optimal points must satisfy

the KKT conditions (3.17). If the primal problem is convex, the KKT conditions are also

sufficient for the points to be globally primal or dual optimal. In other words, if f is

convex, hi is an affine, and x̃, λ̃, and ν̃ are any points that satisfy the KKT conditions

Dual Feasibility: ∇ f (x̃) +
m

∑
i=1

λ̃i∇hi(x̃) +
m

∑
i=1

ρihi(x̃)∇hi(x̃) = 0, (3.19)

Primal Feasibility: hi(x̃) = 0, i = 1, · · · , m (3.20)

then x̃ and λ̃ are global optimal solutions for the primal and dual problems, respec-

tively (Bertsekas, 2003).

For strong duality and a dual optimal solution (λ⋆, ν⋆), then any primal optimal
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point is also a minimizer of L (x, λ⋆, ν⋆). This fact sometimes allows for the computation

of a primal optimal solution via solving the dual problem. More precisely, strong duality

and an dual optimal solution (λ⋆, ν⋆) are known, and the minimizer of L (x, λ⋆, ν⋆), i.e.

the solution of

min f (x) +
m

∑
i=1

λ⋆

i hi(x) +
p

∑
i=1

ν⋆i hi(x)
2, (3.21)

is unique, then if the solution of problem (3.21) is primal feasible, it must be primal opti-

mal; if it is not primal feasible, then no primal optimal point can be achieved (Bertsekas,

2003).

3.5 Significance of Lagrangian Multipliers

Lagrange multipliers are a very useful technique in multivariable calculus, but all

too often their significance is not well understood. This section will make the concept and

the applications of Lagrangian multipliers clearer.

First, a case where an optimization problem depends on a parameter a is given by

min
x∈Ω

f (x; a)

s.t. h(x; a) = 0.

(3.22)

The Lagrangian function for Problem (3.22) is defined as

L(x, λ; a) = f (x; a) + λTh(x; a). (3.23)

Then, the KKT conditions with respect to L gives that

∂L

∂x
=

∂ f

∂x
+ λT ∂h

x
= 0, (3.24)

which represents the relationship between the first-order derivative of the objective func-
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tion and the first-order derivative of the equality constraints, i.e.

∂ f T

∂x
= −λT ∂hT

x
. (3.25)

In multivariable calculus, the partial first-order derivative of a function such as f (x) or

h(x) (written as ∂
∂ x ) forms a normal vector to a curve (in two dimensions, i.e. x ∈ R2) or

a surface (in higher dimensions), and that a particular point on these partial first-order

derivatives are constants. The length of the normal vector does not matter, meaning that

any constant multiplying ∂hT

x does not change the direction of the normal vector. For

Problem (3.22), the normal vectors of functions f (x; a) and h(x; a) are parallel. Thus, the

normal vector of the objective is written as a linear combination of the normal vectors of

the equality constraints. The inclusion of the unknown constant multiplier λ is necessary

because the magnitudes of the normal vectors may be different.

Since the optimization problem also depends on the parameter a, then the first-

order derivative of the objective function with respect to a is calculated as

d f

da
=

∂ f

∂a
+

∂ f T

∂x

dx

da
. (3.26)

By substituting Equation (3.25) into Equation (3.26), the Lagrangian multipliers can be

used to describe the sensitivity of the objective to changes in the equality constraints. In

equations, this statement reads

d f

da
=

∂ f

∂a
+ λ

∂hT

∂a
. (3.27)

The intuitive meanings of the Lagrangian multipliers can be interpreted in both

physics and economics. A tutorial “The Introduction to Lagrangian Multipliers1" intro-

duces that the equality constraint function h(x) can be considered as competing with the

objective function f (x) to pull the point x to its minimum. During the pulling process, the

Lagrange multiplier λ can be considered as a measure of how difficult h(x) has to pull the

1The sources is obtained from http://www.slimy.com/ steuard/teaching/tutorials/Lagrange.html
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point in order to achieve an equilibrium of the forces on the constraint curve (or surface).

This tutorial also emphasizes that in physics based on Lagrange multipliers in the cal-

culus of variations, the Lagrangian multiplier λ is the force of constraint. Moreover, the

economic meaning of the Lagrange multiplier λ is interpreted in a tutorial “Optimization

with An Equality Constraint: Interpretation of Lagrange Multiplier2". When the objective

of the problem is to minimize the overall cost subject to a limited resource, then λ can

be considered as either marginal value or shadow price of the resource. By conclusion,

the rate or sensitivity at which the value of the objective f (x) changes along with the

constraint h is represented by the value of the Lagrange multiplier.

3.6 Augmented Lagrangian Coordination

The augmented Lagrangian relaxation techniques discussed in the previous sec-

tions provide a basis for solving large-scale, complex system design problems. To deter-

mine an optimal design of the system, the multidisciplinary design optimization (MDO)

approach (Cramer et al., 1994) is adopted and is given by:

min
z=[yT ,xT

1 ,··· ,xT
M]

T
f0 (y, x1, · · · , xM) +

M

∑
j=1

f j(y, xj)

s.t. g0(y, x1, · · · , xM) ≤ 0

h0(y, x1, · · · , xM) = 0

gj(y, xj) ≤ 0 j = 1, · · · , M

hj(y, xj) = 0 j = 1, · · · , M

(3.28)

where the vector of design variables z =
[
yT, xT

1 , · · · , xT
M

]T
∈ Rn consists of a number of

coupling variables y ∈ Rny
, and a number of local variables xj ∈ R

nx
j associated only with

subsystem j, and ny + ∑
M
j=1 nx

j = n, where n denotes the number of design variables. The

linking variables may be common design variables shared by multiple subsystems, and

2The source is obtained from http://www.economics.utoronto.ca/osborne/MathTutorial/ILMF.HTM.
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interdisciplinary coupling variables that link the analysis models of different subsystems.

The coupling objective f0 : Rn 7→ R and coupling design constraints g0 : Rn 7→ R
m

g
0

and h0 : Rn 7→ R
mh

0 are non-separable and may depend on all design variables z. Local

objectives f j : Rnj 7→ R, and local design constraints gj : Rn 7→ R
m

g
j and hj : Rn 7→ R

mh
j

are associated exclusively with subsystem j, and may depend on the coupling variables

y and the local variables xj of only a single subsystem j, such that nj = ny + nx
j . In

addition, m
g
0 + ∑

M
j=1 m

g
j = mg and mh

0 = ∑
M
j=1 mh

j = mh, where mg denotes the number

of inequality constraints and mh the number of equality constraints. Unless indicated

otherwise, all vectors in this chapter are assumed to be column vectors.

Without the coupling variables y and the coupling functions f0, g0, and h0, i.e.

without interactions, the above problem can be partitioned into M smaller subsystems,

each associated with one discipline. When coupling variables and/or coupling functions

are present, a coordination method is required to guide the individual subsystem designs

to achieve an optimal design for the overall system.

To realize the situation in which all coupled subsystems are separated with respect

to the design variables of the individual disciplines, i.e., the design of each subsystem de-

pends only on the variables of its discipline, the augmented Lagrangian relaxation tech-

niques are applied by introducing the copies of the coupling variables and/or coupling

functions through the following two steps:

Step 1: Introduction of Copies of Coupling Variables The first step of the transforma-

tion is to introduce the copies of the coupling variables yj for each subsystem, such

that consistency constraints cj = yi − yj, i 6= j can be used to insure that introduced

copies achieve the same values, i.e. y1 = y2 = · · · = yM. As a result, the local con-

straint functions gj and hj only depend on the design variables yj and xj of system

j. However, since the consistency constraint c still depend on the coupling variables

of multiple subsystems, the augmented Lagrangian relaxation technique is required

to realize the separability of the subsystems.
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Step 2: Relaxation of the consistency constraints and/or coupling functions The second

step of the transformation is to relax the consistency constraint c and/or the cou-

pling functions f0, g0, and h0 through an augmented Lagrangian function Lρ. After

the relaxation, the local constraint functions gj and hj are separable with respect to

the design variables yj and xj of system j. Due to the relaxation, an error between

the primal and the dual problems is introduced, and an algorithm should be devel-

oped to reduce this error into zero. The resulting relaxed optimization problem for

Subsystem j is presented as

min
xj,yj

f j(yj, xj) + f0 (y, x1, · · · , xM) +

λT
y cj +

ρy

2
‖cj ◦ cj‖

2
2+

λT
hh0 +

ρh

2
‖h0 ◦ h0‖

2
2+

λT
g g0 +

ρg

2
‖g0 ◦ g0‖

2
2

s.t. gj(y, xj) ≤ 0,

hj(y, xj) = 0.

(3.29)

where λh ∈ R
mh

0 is the vector of Lagrangian multiplier estimates for the system-

wide equality constraints and ρh ∈ Rmh
0 is the vector of penalty parameters; simi-

larly, λg ∈ Rmh
0 is the vector of Lagrangian multiplier estimates for the system-wide

equality constraints and ρg ∈ Rm
g
0 is the vector of penalty parameters. When solv-

ing Subsystem j, the copies of coupling variables obtained from other subsystems

i = 1, 2, · · · , m, j 6= j are taken as constants, so that all subsystems can be designed

independently.

3.7 Concluding Remarks

The duality theory in nonlinear programming sparks a great deal of interest in

solving Multidisciplinary Design Optimization (MDO) problems. The first principal ap-
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plication of duality theory is that it enables us to derive systems of demand equations

which are consistent with minimizing the objective function simply by differentiating

an augmented Lagrangian function, as opposed to solving explicitly a constrained min-

imization problem. The second principal advantage of duality theory is that it enables

us to understand in an effortless way the sensitivity of the objective function changes

in constraints. During last forty years, several duality formulations that enjoy many of

the properties of linear dual programs have been derived, including the Lagrangian dual

problem, the conjugate dual problem, the surrogate dual problem, and the mixed La-

grangian and surrogate, or composite dual problem. The reader can refer to the work

of Geoffrion (1971) and Karamardian (1971) on various duality formulations and their

interrelationships.

For constrained optimization problems, the augmented Lagrangian method and

the corresponding algorithm, method of multipliers, were first proposed in the late 1960s

by Hestenes (1969) and Powell (1969). Augmented Lagrangian methods were developed

in part to bring robustness to the Lagrangian or penalty method, and in particular, to yield

convergence by assuming that the optimization problem is locally convexified. Many of

the early numerical experiments on the method of multipliers are due to Miele et al.

(1971a), Miele et al. (1971b), and Miele et al. (1972). Much of the early work is con-

solidated in a monograph by Bertsekas (1982), who also discusses similarities to older

approaches using Lagrangian or penalty functions (Arrow and Solow, 1958, Arrow et al.,

1958, Fiacco and McCormick, 1964), as well as a number of generalizations. For solving

MDO problems, the reader can refer to the work of Tosserams et al. (2006a) and Blouin

et al. (2005). In order to ensure the decomposability of the MDO problems with the

superior convergence properties of the method of multipliers, the alternating direction

method of multipliers (ADMOM) is introduced in Tosserams et al. (2006a) and extended

in Tosserams (2008).
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Chapter 4

Analytical Target Cascading

4.1 Introduction

Analytical target cascading (ATC) is a hierarchical, multilevel, multidisciplinary

coordination method used to solve large-scale system design optimization problems (Kim,

2001, Kim et al., 2003). Unlike other multilevel coordination methods (Braun, 1996,

Demiguel and Murray, 2006, Haftka and Watson, 2005, Sobieszczanski-Sobieski, 1988,

Sobieszczanski-Sobieski et al., 2000), ATC is one with proven solution convergence and

equivalence (Bertsekas, 2003, Lassiter et al., 2005, Li et al., 2008). The research presented

here continues efforts to solve ATC-decomposable problems based on the Lagrangian

duality theory (Bazaraa et al., 2006, Bertsekas, 2003). A dual counterpart of the primal

problem is solved by using the subgradient algorithm, the application of which includes

five schemes for updating dual variables. Three of these schemes, i.e., K, M, and O up-

dates, have been studied by Lassiter et al. (2005), Blouin et al. (2005), and Kim et al. (2006).

Two new schemes, known as the linear cutting plane method (LCP) and the proximal cut-

ting plane method (PCP) (Bertsekas, 2003), are investigated in this chapter to overcome

the convergence efficiency weaknesses of the existing subgradient update schemes.

After ATC was formalized (Kim, 2001), researchers for the last ten years have

focused on its efficiency for solving engineering problems. For example, Kim et al. (2003)
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demonstrated the efficiency of the ATC modeling and solution process in the chassis

design of a sports-utility vehicle, and Blouin et al. (2004) applied ATC to the design of

a continuously variable transmission for optimum vehicle performance, analyzing the

trade-off between subsystem optimality and overall design consistency.

Michalek and Papalambros (2005b) applied a quadratic penalty method (QP) for

ATC, requiring large penalty weights in order to find more accurate solutions. These

large weights, however, introduce ill-conditioning and cause computational difficulties.

To address such problems, they subsequently proposed an update method to determine

the minimal required weights for achieving the estimated violation of the consistency

constraints.

Lassiter et al. (2005) proposed an alternative method for relaxing the consistency

constraints using an ordinary Lagrangian function (OL) based on the Lagrangian duality

theory. They developed a subgradient algorithm for updating dual variables and en-

forcing convergence. In contrast to QP, this method allows the separability of coupled

subsystems. When applied to nonconvex problems, however, the OL method may not be

able to achieve the original optimal solution due to a duality gap (Li et al., 2008).

To further improve the solution accuracy and efficiency, the augmented Lagrangian

function based on the penalty method was applied by Tosserams et al. (2006a) using the

alternating direction method of multipliers (ADMM). Concurrently, an augmented La-

grangian coordination for ATC using the separable augmented Lagrangian dual method

(SALD) was introduced by Blouin et al. (2005) and further researched by Kim et al. (2006).

This method combines the ordinary Lagrangian duality with the augmented Lagrangian

duality, providing a subgradient algorithm without imposing the convexity and differen-

tiability conditions required for convergence.

As parallel computing became widespread, Li et al. (2008) applied the diagonal

quadratic approximation method (DQA) and the truncated diagonal quadratic approxi-

mation method (TDQA) to linearize the cross term of the augmented Lagrangian function

in order to create separable subsystems, desirable for improving the computational effi-
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ciency by solving subsystems concurrently. The advantage of the TDQA is that it limits

the number of inner loop iterations, thereby reducing the computation cost.

The main contribution of the research here is to provide a unified duality view

of the subgradient update schemes for solving ATC-decomposable problems. In addi-

tion, this chapter discusses the advantages and disadvantages of these two cutting plane

methods when applied to ATC-decomposable design problems. Section 4.2 models the

centralized, hierarchical problem structure. Section 4.3 presents the ATC problem state-

ment. Section 4.4 proposes a generic subgradient algorithm and the five update schemes

used to solve ATC-decomposed problems. Section 4.5 proposes a biobjective optimization

approach for solving ATC-decomposed problems. Finally, the numerical applications are

tested in Section 4.6, and the results are analyzed in Section 4.7.

4.2 Modeling Centralized, Hierarchical Problem Structure

Considering a finished product as a supersystem involving multiple systems, a

large-scale engineering systems design problem is typically decomposed into subsystems,

subsystems are decomposed into components, and so on, as seen in Figure 4.1 (Kim et al.,

2003). Each element in the hierarchy is assigned to an optimal design model P and an

analysis model a as shown in Figure 4.2 (Kim et al., 2003). The analysis model evaluates

the responses of an element by calling its respective optimal design model.

Analytical target cascading (ATC) is an approach for solving these hierarchically

decomposed systems design problems (Kim, 2001, Kim et al., 2002, 2003, Michelena et al.,

1999, 2003). As shown in Figure 4.2, ATC introduces design targets and cascades them to

elements located at lower levels through the model-based hierarchy. An analysis model

is employed by each element to compute responses to the targets assigned by the upper-

level element. An optimal design model is developed for each element to minimize the

discrepancies between the responses and targets. If elements located at the same level

share common design variables, these variables are coordinated by their parent element
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Supersystem

System System

Subsystem Subsystem Subsystem

Component Component Component Component

Figure 4.1: Hierarchy model of a large-scale system design problem (Kim et al., 2003)
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acomp
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acomp

Figure 4.2: Design and analysis models in the modeling hierarchy (Kim et al., 2003)

located at the upper-level.

To clarify the modeling hierarchy, notations are defined in Table 4.1. In addition,

the information flow of the ATC process is also illustrated in Figure 4.3, showing the

relations between the analysis models and design models using element j in level i as

an example. Usually, during the conceptual design phase, analysis models can be the

response surface models based on design of experiments, approximated models based on
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design sensitivity analysis, spreadsheet models, or mathematical descriptions.

Table 4.1: Nomenclature

Symbol Description

Psuper Supersystem level optimal design problem
Psys System level optimal design problem
Psub Subsystem level optimal design problem

Pcomp Component level optimal design problem
f Objective function for the original design problem
g Inequality constraints of the original design problem
h Equality constraints of the original design problem
i Level
j Problem number

tij Targets assigned to subsystem j at level i
rij Responses computed by the analysis model of subsystem j at level i
Yij Linking targets of subsystem j at level i
yij Linking responses of subsystem j at level i
fij Local objective function of subsystem j at level i
gij Local inequality constraints of subsystem j at level i
hij Local equality constraints of subsystem j at level i
xij Local design variables of subsystem j at level i
xij Vector of all design variables
aij Analysis model of subsystem j at level i
Cij The set of cij children of discipline j at level i labeled l1 through lcij

Ei The set of elements at level i

In ATC, the optimal design model is not based on using only one analysis model.

The top-level subsystem and the bottom-level subsystems of the hierarchy are special

cases. At the top-level, there is only one element, e.g., supersystem, and the given system

design target is specified. The bottom-level subsystems, e.g. components, are also special

cases since they have no lower-level responses. In addition, it should be emphasized that

ATC is not merely a design optimization methodology; it addresses the conceptual design

of the product development process as seen in Figure 4.5 (Kokkolaras and Papalambros,

2008). The purpose of including ATC in the product development process is to account

for the interrelations of the system parts, to identify possible tradeoffs, and to determine

optimal and consistent design specifications to match design targets as close as possible,

i.e. it can also be used to check whether the design targets can be achieved using the
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Subsystem Pij

Local variables xij

Linking variables yij

All design variables xij =
[
xij, yij

]

Local objective function fij

Local constraints gij, hij

Analysis models aij

Targets tij

Linking targets Yij

from parent

rij Responses
yij Linking responses

to parent

Responses r(i+1)l, l ∈ Cij

Linking responses y(i+1)l, l ∈ Cij

from children

t(i+1)l, l ∈ Cij Targets

y(i+1)l, l ∈ Cij Linking targets

to children

Figure 4.3: Information flow for ATC subsystem

available means (Kokkolaras and Papalambros, 2008). Once the problem is decomposed,

the design embodiment for each part can be created concurrently or sequentially.

In preparation for the introduction of the ATC problem statement, first the general

procedure for decomposing the original design problem of a system into ATC subsystems

is discussed. The mathematical problem formulations adapted in this chapter are based

on the notations of Tosserams et al. (2006a) and Li et al. (2008). The original design

problem of a system, denoted as the all-in-one (AIO) problem, is to find a design that

minimizes the objective and satisfies all constraints using the notations in Table 4.1, the

formulation of the AIO problem, which has N levels with M elements, is defined as

min
x11,··· ,xNM

N

∑
i=1

∑
j∈Ei

fij(xij)

subject to gij(xij) ≤ 0

hij(xij) = 0 (4.1)

rij − aij

(
xij, r(i+1)l l ∈ Cij

)
= 0

where xij =
[
xij, rij, r(i+1)l l ∈ Cij

]
, ∀j ∈ Ei, i = 1, · · · , N.
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Target cascad
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 d
ow

n

Target passed up

Supersystem Level

System Level

Subsystem Level

Compoenent Level

AIO
Approach

ATC-Decomposition
Approach

Elements 
in each level

Figure 4.4: AIO and ATC-decomposition approaches to optimal design

where Ei denotes the set of elements at level i; Cij the set of children of element j at level

i, and cij is the total number of element j’s children, for which Cij = {l1, · · · , lcij
}. The

element j consists of a local objective function fij, inequality constraint function gij, and

equality constraint function hij. These functions depend on a vector of design variables

xij, which is coupled with a parent at level i − 1 through the vector of response vari-

ables rij and is linked with children at level i + 1 through a number of response vectors

r(i+1)l1 , · · · , r(i+1)lcij
.

In theory, given the design and analysis models for each element, solving the

AIO problem (4.1) may be possible using classical optimization techniques. However, the

AIO approach is often impractical and even computational impossible because the size

of the problem, the interaction between the coupled subsystems, and the professional

expertise required prohibit the system from being solved. As an alternative, the ATC-

decomposition approach formulates and solves an optimization problem for individual

elements in the hierarchy. The ATC-decomposition approach partitions the system de-

sign problem into multiple subsystems, thereby effectively reducing the computational

difficulty and cost. The cascading process corresponding to these two approaches is illus-

trated in Figure 4.4 (Tosserams, 2008).
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4.3 Analytical Target Cascading Design Problem Statement

In designing an engineering system, the relationship between the knowledge of

goals and iterations during the design process can be seen in Figure 4.6. ATC can be

utilized to communicate technical objectives to different design teams, knowing a priori

that these goals are achievable without conflicting with the goals of other teams. Con-

sistent system design can then be realized with minimum communication overhead, i.e.,

maximum efficiency, to avoid costly iterations late in the process.

Conceptual design

100

80

60

40

20

0

P
er

ce
n

ta
g

e

Embodiment design

goal

goal

Desired knowledge of technical objectives

Timescale

Detail design

Desired number of iterations

Current knowledge of technical objectives

Current number of iterations

Figure 4.6: The relationship between the knowledge of goals and the number of iterations

ATC as design methodology was motivated originally by design cases in the au-

tomotive industry. In the design of a vehicle, a project manager determines the design re-

quirements, including powertrain, body, chassis, engine, transmission, wheels, gear box,

axis, and differential. These design requirements can then be translated into quantifi-

able design targets. These design targets are assigned to the supersystem and propagated
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throughout the rest of the systems, subsystems, and components. Figure 4.7 illustrates the

systems of a vehicle in the hierarchy. For each element of the hierarchy, i.e., supersystem,

systems, subsystems, and components, design and analysis tasks are executed. To ac-

count for the interactions between elements, the design and analysis tasks are repetitively

conducted until a feasible and consistent design is achieved.

Vehicle Supersystem Level

System Level

Subsystem Level

Component Level

Powertrain

Transimission WheelsEngine

Axis DifferentialGear Box

Body Chassis

Figure 4.7: Decision hierarchy of a vehicle design problem (Kim, 2001)

The Primary Steps of Analytical Target Cascading Process

ATC is a process of determining the appropriate targets for each element for a

specified set of the overall targets. Implementation of ATC in a product development

process is summarized below:

1. Specification of overall targets to quantify the design requirements,

2. Propagation of the overall targets to the individual targets of the systems, subsys-

tems, and components,

3. Design and analysis of the systems, subsystems, and components to achieve the

responses that meet the respective targets,
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4. Validation of the design of the decomposed problem with respect to the overall

targets.

Figure 4.8 further illustrates these four steps:

1. Specify top-level targets (a). Develop appropriate models

(b). Partition the original problem

(c). Formulate ATC problems

(d). Solve the partitioned problem

2. Propagate targets

3. Perform element detail 
design to meet targets

4. Verify resulting design

Figure 4.8: Four steps of the ATC process

If the individual targets of the elements (i.e., systems, subsystems, and compo-

nents) cannot be met, then the process is repeated beginning at Step 2 with updated

information obtained from the previous attempt. If the top-level targets cannot be met,

then the decision maker, e.g., the executive manager, is presented with the design that

best fulfills the top-level targets and is required to make a decision about whether to

accept the design or to refine the targets and repeat the entire process.

Primal Problem Statement

The AIO Problem (4.1) is ATC-decomposable due to its special multilevel structure

and the vector of response variables rij (see Figure 4.9). However, it is still not separa-

ble because the subsystems are coupled through the response rij. To separate the AIO

problem, the target variable tij is introduced, and the consistency constraint

cij = tij − rij = 0 (4.2)
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j = 1
x11, f11, g11, h11

j = 2
x12, f22, g22, h22

j = 3
x23, f23, g23, h23

j = 4
x34, f34, g34, h34

j = 5
x35, f35, g35, h35

j = 6
x36, f36, g36, h36

i = 1

i = 2

i = 3

r22 r23

r34 r35 r36

Figure 4.9: An example of the ATC hierarchical structure

is created to force the response variable to fulfill the target variable. This constraint is

added to Problem (4.1), which is referred to as Primal Problem (4.3).

min
x11,··· ,xNM

N

∑
i=1

∑
j∈Ei

fij(xij)

subject to gij(xij) ≤ 0

hij(xij) = 0

rij − aij

(
xij, r(i+1)l l ∈ Cij

)
= 0

cij = tij − rij = 0 (4.3)

where xij =
[
xij, rij, r(i+1)l l ∈ Cij

]

∀j ∈ Ei, i = 1, · · · , N.

The solution to Problem (4.3) also solves the original problem (4.1) (Tosserams et al.,

2006a).

Decomposed Problem Statement

For the purpose of decomposition, inconsistency between the target and the re-

sponse is allowed. However, by allowing this inconsistency, the solutions obtained at each

subsystem may be infeasible for the overall problem. This issue can be resolved by using
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relaxation techniques, such as the quadratic penalty function (Michalek and Papalam-

bros, 2005a), the ordinary Lagrangian function (Lassiter et al., 2005), or the augmented

Lagrangian function (Tosserams et al., 2006a). In this research, consistency constraints are

relaxed using the augmented Lagrangian function.

The relaxed primal problem is partitioned into M relaxed primal subsystems, also

referred to as decomposed problems. The subsystem j at level i of the decomposed

problem is defined as

min
xij

fij(xij)− vT
ijrij +

∥∥wij ◦
(
tij − rij

)∥∥2

2
+

∑
l∈Cij

vT
(i+1)lt(i+1)l + ∑

l∈Cij

∥∥∥w(i+1)l ◦
(

t(i+1)l − r(i+1)l

)∥∥∥
2

2

subject to gij(xij) ≤ 0 (4.4)

hij(xij) = 0

rij − aij

(
xij, t(i+1)l l ∈ Cij

)
= 0

where xij =
[
xij, rij, t(i+1)j ∀l ∈ Cij

]

rij = aij(xij).

The vector vT
ij denotes the transposition of the dual variable vector for the ordinary La-

grangian term, and wij is the penalty vector for the quadratic term. The ◦ symbol denotes

the element-wise product defined as [a1, a2, · · · , an] ◦ [b1, b2, · · · , bn] = [a1b1, a2b2, · · · , anbn].

The dual variable vij and the weight wij are fixed when solving this problem. In addition,

since the target tij and r(i+1)l are constants for subsystem j at level i, the terms vT
ij tij and

vT
ij r(i+1)l are eliminated from the objective function.

The resulting dual problem for the relaxed primal problem is given by

max
v

ψ(v)

where ψ(v) =

{
min

x11,··· , xNM

N

∑
i=1

∑
j=Ei

fij(xij) +
N

∑
i=2

∑
j∈Ei

vT
ij

(
tij − rij

)
+
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N

∑
i=2

∑
j∈Ei

∥∥wij ◦
(
tij − rij

)∥∥2

2
,

s.t. gij(xij) ≤ 0

hij(xij) = 0, (4.5)

rij(xij)− aij

(
xij, t(i+1)l ∀l ∈ Cij

)
= 0

where xij =
[
xij, rij, t(i+1)l ∀l ∈ Cij

]

∀j ∈ Ei, i = 1, · · · , N

}
.

Although the augmented Lagrangian function can be applied to ATC to eliminate

the duality gap, the resulting primal subsystem loses its separability due to the quadratic

penalty terms (Li et al., 2008, Michalek and Papalambros, 2005a,b). To overcome this diffi-

culty, Stephanopoulos and Westerberg (1975), Ruszczynski (1995), and Li et al. (2008) pro-

posed to maintain through linearization the quadratic term using the Diagonal Quadratic

Approximation Method (DQA). To realize the separation of the original system, the co-

ordination approach proposed in this research makes copies of the quadratic term for

coupled subsystems without linearize them, applies a strategy to update the penalty pa-

rameter w for the quadratic term, and solves subsystems with fixed value of penalty

parameter.

4.4 Coordination Strategy Using Subgradient Algorithm

The goal of ATC is to identify interactions and possible tradeoffs among elements

early in the design development process and to determine specifications that yield con-

sistent system design with minimized deviations from desired targets. To accomplish

this goal, the dual problem is solved indirectly since it and the primal problem have the

same optimal AIO value. A solution to the dual problem is found using a subgradient

algorithm. Since the dual function ψ(v) is not differentiable, a subgradient of the dual
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function tij − rij is calculated with respect to the dual variable vij for subsystem j at level

i (Bazaraa et al., 2006). At each iteration, the dual problem is solved in two steps. The

first step solves decomposed Problem (4.4) of each subsystem for some values of dual

variables, and the second step updates the dual variables.

The vector of primal design variables obtained by solving primal subsystems at

iteration k is denoted by xk. The dual variables and penalty weights at iteration k are

denoted by vk and wk. The subgradient of the dual objective function of subsystem j at

level i at iteration k is denoted as tk
ij − rk

ij. As a computational framework for this work,

the following generic subgradient algorithm is used.

Step 1: Initialize x0, v1, and w1. Set k = 1.

Step 2: Individually solve subsystems (4.4) in parallel or sequentially.

Step 3: For each subsystem, calculate the subgradient tk
ij − rk

ij. If the current primal solu-

tion is feasible for the AIO problem and the algorithm converged, stop.

Step 4: If not, update the dual variable vk to obtain vk+1 and update the penalty weight

wk to obtain wk+1. Set k = k + 1. Repeat Step 2 to Step 4.

Subgradient Methods

Dual update schemes significantly impact the effectiveness of the algorithm con-

vergence. At iteration k + 1, the dual variable vij is updated as

vk+1
ij = vk

ij + sk
ij

(
tk
ij − rk

ij

)
, (4.6)

where sk
ij is the step size calculated based on one of the update schemes shown in Table

4.2, namely the K, M, or O update schemes. For the O update scheme, the step size

depends on the optimal AIO dual objective value ψ(v⋆), which is generally unknown,

thus making the method impractical. However, it is included here for the purpose of

comparison.
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Table 4.2: Stepsize of the traditional dual update schemes

Schemes sk
ij Ref.

K 1
k‖tk

ij−rk
ij‖2

(Lassiter et al., 2005)

M (1+5)

(k+5)‖tk
ij−rk

ij‖2
(Bertsekas, 2003)

O
ak(ψ⋆−ψ(vk))

5‖tk
ij−rk

ij‖2
, 1 < a < 2 (Gasimov, 2002)

Cutting Plane Methods

Two cutting plane methods are applied here to solve for the dual variable v. The

purpose of these methods is to generate a piecewise linear approximation of the dual

function during an iterative process. This approximation is refined at each iteration by

adding a hyperplane, also called a cut, and used in lieu of the dual function in the

optimization process.

Compared to the traditional update schemes seen in Table 4.2, the cutting plane

methods have the following advantages that make them attractive choices: 1) they do

not require differentiability of the objective and constraint functions of the dual problem;

and 2) they do not require evaluation of the objective and constraint functions at each

iteration.

Linear Cutting Plane Method The first cutting plane method is the linear cutting plane

method (LCP). Let θk+1(v) be a piecewise linear approximating function of the dual func-

tion based on the dual variables, the dual function values, and the corresponding subgra-

dients obtained in all previous iterations. The resulting LCP problem is defined as

max
v

θk+1(v)

where θk+1(v) = min
v

{
ψ
(

v1
)
+

(
v − v1

)T (
t1 − r1

)
, · · · , (4.7)

ψ
(

vk
)
+

(
v − vk

)T (
tk − rk

)}
.
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In each iteration, a linearization of the form ψ(vk) + (v − vk)T
(
tk − rk

)
is added to the

approximating function, meaning Problem (4.7) is equivalent to

min
q, v

− q

s.t. q ≤
{ N

∑
i=1

∑
j∈Ei

fij

(
x

η
ij

)
+

N

∑
i=2

∑
j∈Ei

v
ηT

ij

(
t
η
ij − r

η
ij

)
+ (4.8)

N

∑
i=2

∑
j∈Ei

∥∥∥w
η
ij ◦

(
t
η
ij − r

η
ij

)∥∥∥
2

2
, η = 1, · · · , k.

}

Problem (4.8) has the advantage of being a linear programming problem with respect to

q and v with a finite number of inequality constraints. By integrating Problem (4.8) into

the generic algorithm and solving it at each iteration, the dual variable is updated and

used to solve the primal subsystem at the next iteration.

Proximal Cutting Plane Method One characteristic of the linear cutting plane method

is that it generally creates large step sizes, an advantage when far from the optimal solu-

tion, but a disadvantage when approaching the optimum solution and, thus, may induce

instability (Bertsekas, 2003). A way to limit the effects of this phenomenon is to add a

quadratic term to the piece-wise linear function, thereby reducing large deviations from

the current point. This method is referred to as the proximal cutting plane method (PCP),

is defined as

max
v

θk+1(v)−
1

2µk

∥∥∥v − vk
∥∥∥

2

2

where θk+1(v) = min
v

{
ψ
(

v1
)
+

(
v − v1

)T (
t1 − r1

)
, · · · , (4.9)

ψ
(

vk
)
+

(
v − vk

)T (
tk − rk

) }
.

where θk+1(v) is as defined in Problem (4.7) and µk is a positive non-decreasing scalar

parameter sequence (Bertsekas, 2003).
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Methods for Updating Penalty Parameters

In previous research reported in (Kim et al., 2006), the penalty parameter wij was

updated using wk+1
ij =

∣∣∣vk
ij

∣∣∣, which controls the convergence. In this paper, the following

method, which, according to Bertsekas (2003) and Tosserams et al. (2006a), can accelerate

the convergence process, is used.

wk+1
ij =

{
wk

ij, if
∣∣∣ck

ij

∣∣∣ ≤ α
∣∣∣ck−1

ij

∣∣∣

β wk
ij, if

∣∣∣ck
ij

∣∣∣ > α
∣∣∣ck−1

ij

∣∣∣
, (4.10)

where 0 < α < 1 and 1 ≤ β < 3 are recommended.

4.5 Coordination Strategy Using Biobjective Optimization

The previous section applies the dual methods based on subgradient optimization

(Kim et al., 2006, Wang et al., 2010) for solving ATC-decomposed problems. While all

these efforts have advanced the computational effectiveness of ATC, they have left room

for further improvements. In this section, the ATC-decomposed problems are solved us-

ing a biobjective optimization method, which has been published recently (Gardenghi

et al., 2012). Readers can also refer to Gardenghi (2009) for more details of the method-

ology, convergence proofs, and numerical applications of the biobjective optimization

method. The following paragraphs are near-verbatim copies of a paper co-authored by

the author and collaborators (Gardenghi et al., 2012), in which the author primarily con-

tributes to the engineering application of the method using an analytical mass allocation

problem taken from (Allison et al., 2005, Tosserams et al., 2006a).

ATC-decomposed Problems are in general inherently biobjective, since they seek

to optimize two performance measures of the system by means of minimizing the devi-

ations from the fixed targets. The measuring of these deviations can be approached in

two ways. First, one can consider a scalar measure of the deviations, such as a norm of
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the vector of deviations, and formulate a single objective problem with the norm as a

scalar objective, which has commonly been done in the ATC literature. Second, one can

consider the vector of deviations and formulate a multi-objective problem with this vector

as the objective function.

ATC partition and coordination incorporates a compromise between the objec-

tives that measure the performance of the system and the demands of the subproblems

reflected in their constraints. Solving a subsystem independently of the system yields a

subsystem optimal solution that has the best objective value for this subsystem but may

produce targets that are not achievable by other subsystems. Accepting deterioration

of that best objective value increases the achievability of the targets. This compromise

between the optimality and achievability lends itself neatly to biobjective optimization,

which, by definition, models optimization problems with conflicting objectives. There-

fore, this section employs biobjective optimization in the algorithms and shows their

effectiveness on one engineering example problem.

To compromise between optimality and achievability, the algorithm is designed

for systems with a single upper-level and a single lower-level subsystem. This research

considers a two-level system with an objective function for only the upper-level problem

in which the deviation between the vector of upper-level objectives f11 and a fixed tar-

get vector T determined by the designer is minimized. The Euclidean norm is used to

measure these deviations. Hence, Problem 4.1 results in the AIO problem

min
x11 , r22, x22

‖ f11 (x11, r22)− T‖2
2

subject to g11 (x11, r22) ≤ 0

h11 (x11, r22) = 0 (4.11)

g22 (x22) ≤ 0

h22 (x22) = 0

r22 = a22 (x22) .
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The bi-level structure and the definition of the response, r22, make the AIO prob-

lem ATC-decomposable. However, the problem is not yet separable since the response

links the two subsystems together. To make this problem separable, new variables, t22, are

introduced in the form t22 − r22 = 0, which is called the consistency constraint, yielding

the following problem formulation

min
x11, r22, x22, t22

‖ f11 (x11, t22)− T‖2
2

subject to g11 (x11, t22) ≤ 0

g22 (x22) ≤ 0

h11 (x11, t22) = 0 (4.12)

h22 (x22) = 0

r22 = a22 (x22) , t22 − r22 = 0.

The consistency constraints are relaxed and the biobjective problem is created as

follows

min
x11, r22, x22, t22

{
‖ f11 (x11, t22)− T‖2

2 , ‖t22 − r22‖
2
2

}

subject to g11 (x11, t22) ≤ 0

h11 (x11, t22) = 0 (4.13)

g22 (x22) ≤ 0

h22 (x22) = 0

r22 = a22 (x22) .

This problem is then decomposed into two subsystems. Assuming rk
22 to be a fixed value
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of r22, the upper-level bi-objective subsystem is

Upper Biobjective Sub :

min
x11 , t22

{
‖ f11 (x11, t22)− T‖2

2 ,
∥∥∥t22 − rk

22

∥∥∥
2

2

}

subject to g11 (x11, t22) ≤ 0 (4.14)

h11 (x11, t22) = 0.

Assuming tk−1
22 to be a fixed value of t22, the lower-level subsystem is given by

Lower Biobjective Sub :

min
x22, r22

∥∥∥r22 − tk−1
22

∥∥∥
2

2

subject to g22 (x22) ≤ 0 (4.15)

h22 (x22) = 0

r22 = a22 (x22) .

Given the problem statements of subsystems (4.14) and (4.15), the initial upper-level, a

single objective subsystem, is then defined as

Init Upper Sub :

min
x11, t22

‖ f11 (x11, t22)− T‖2
2 (4.16)

subject to g11 (x11, t22) ≤ 0

h11 (x11, t22) = 0.

Using Subsystems (4.14), (4.15), and (4.16), a generic algorithm is proposed for

Problem (4.11). The algorithm is based on principles of biobjective optimization, which

are relevant to ATC-decomposable problems. Its premise is that if an optimal solution of

Subsystem (4.16) yields a target, t22, that is achievable for the lower-level subsystem (4.15),
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then the algorithm will stop during initialization, indicating that the lower-level problem

is capable of achieving the target that the upper-level problem desires. However, if the

constraints of the lower-level subsystem inhibit the desired target, then the algorithm will

require multiple iterations to negotiate a target that is achievable by the lower-level and

yet allows for an acceptable objective value for the upper-level.

Given a predefined optimality tolerance, ε > 0, the pseudocode for the generic

algorithm, Alggen, is presented in Pseudocode 1. During the initialization, the upper-

level Subsystem (4.16) is solved, and it is likely that the intermediate solution obtained

achieves a smaller (for minimization problems) value than the true value of the AIO

optimal solution by violating some constraints. This solution value becomes a lower

bound for the AIO solution value since the lower-level constraints have been relaxed. At

the same time, the target, t0
22, for the lower-level subproblem (4.15) is set.

Pseudocode 1
algorithm Alggen

input: ε > 0, Init Upper Sub, Upper Biobjective Sub, and Lower Sub
begin

solve Init Upper Sub for
(
x0

11, t0
22

)
;

set k = 1;
solve Lower Sub for

(
xk

22, rk
22

)
;

while
∥∥∥rk

22 − tk−1
22

∥∥∥
2

2
≥ ε do

begin
solve Upper Biobjective Sub for

(
xk

11, tk
22

)
;

k = k + 1;
solve Lower Sub for

(
xk

22, rk
22

)
;

end while

end

output: AIO Solution

In the main step of the algorithm, and in accordance with target cascading, the

target obtained at the upper-level is sent down to the lower-level subproblem as the initial

target that would be ideal if it is achievable. If the subproblem can achieve this target,

or in other words, a solution feasible for the lower-level subproblem can be computed so

that its response matches the target, the algorithm stops. Otherwise, an optimal solution
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that is feasible for the subproblem is computed so that its response, rk
22, is the closest to

the target. This closest response is then sent to the upper level where the bi-objective

optimization problem (4.14) is solved.

In every iteration of the main step of the algorithm, another bi-objective problem

is solved based on different subproblem responses. The bi-objective problem involves the

simultaneous optimization of two objective functions, the AIO objective and the deviation

objective produced by the relaxed consistency constraint, subject to the upper-level design

constraints. The bi-objective problem models the conflict between the optimality of the

AIO problem and the achievability of the target by the subproblem response. If the lower-

level response cannot achieve the target, then the optimal value of the AIO objective has

to be degraded so that a new target will become “more achievable.”

Although the upper and lower-level subsystems use terms that resemble quadratic

penalty terms, their role is different from that in the penalty approach (Li et al., 2008,

Tosserams et al., 2006a), as can be seen when comparing the weights accompanying these

terms. In the proposed biobjective approach the weights are continually constant, while

in the penalty approach they keep increasing. The constant values are implied by the bi-

objective context while the quadratic penalty method requires the weights to be updated

at every iteration.

When solving the bi-objective problem, it is necessary to compute its specific

Pareto solutions (Ehrgott, 2005). Pareto points are sought that favor the minimization

of the deviation objective value at the expense of the deterioration (here, an increase) of

the AIO objective value obtained in the initialization. For the conceptual development

of the algorithm, the method for computing these Pareto solutions is unimportant, and,

therefore, the algorithm is referred to as generic.

The fact that the subsequent iterates are in the Pareto set helps the user under-

stand the tradeoff between the system optimality and the achievability of targets for the

subproblems. From iteration to iteration of the generic algorithm, the optimality degrades

while the achievability improves. If the targets are achievable, the user can continue the
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algorithm until it converges. However, if the targets are not achievable, which is the

expected case in real-life applications, the user can stop the algorithm at any iteration

accepting the current tradeoff between optimality and achievability. In this way, the algo-

rithm guides users and enables them to make an informed decision regarding termina-

tion. The proposition presenting a proof for this case can be referred to Gardenghi et al.

(2012).

Algorithm for Two Subproblems In the implementation of the algorithm, the biobjec-

tive problem (4.14) is replaced with the following scalarized subproblem

Upper Sub :

min
x11, t22

(1 − α) ‖ f11 (x11, t22)− T‖2
2 + α

∥∥∥t22 − rk
22

∥∥∥
2

2

subject to g11 (x11, t22) ≤ 0,

h11 (x11, t22) = 0,

(4.17)

where 0 < α < 1. Pseudocode 1 requires two changes. The Upper Sub in the input is

substituted for Upper Biobjective Sub, and the line that reads “solve Upper Biobjective Sub”

is replaced with the line “solve Upper Sub” which calls subproblem (4.17) to be solved.

The resulting algorithm is referred to as Alg2S.

In the weighted-sum problem we are able to easily select weights that yield de-

sired Pareto solutions of subproblem (4.14) due to its biobjective nature. The choice of the

weights results from the assumption that users are unwilling to accept that the lower-level

subproblem responses are far from achieving their targets even though the AIO objective

value is small. Therefore, the small AIO objective value is sacrificed to find a lower-level

subproblem response that is closer to the target. Under this premise it is unnecessary

to solve the biobjective problem (4.14) for more than a single well chosen Pareto solu-

tion. The algorithm only seeks the Pareto solution that places a priority on minimizing
∥∥t22 − rk

22

∥∥2

2
while allowing an increase of the AIO objective. We choose the weight α to
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be very close to but not equal to 1. If we were to let α = 1 and the problem had alter-

nate optimal solutions that minimized the deviations, then the solution returned by the

optimizer may not be the solution that also accounts for minimizing ‖ f (x11, t22)− T‖2
2.

Hence, α < 1 is required.

The stopping criterion for algorithm Alg2S, as given in Pseudocode 1, is the

amount of deviation (or lack of feasibility with respect to the consistency constraints)

that is acceptable between the target and the actual response of the lower-level problem.

It is generally given by a predetermined acceptable tolerance, ε > 0, based on the problem

at hand as well as the numerical precision of the optimizer.

4.6 Numerical Applications

Numerical Applications for Subgradient Algorithm

For the purpose of comparing with the K, M, and O update schemes, as well as

all other ATC methods (Li et al., 2008, Tosserams et al., 2006a), three examples are used

to demonstrate the cutting plane methods. The decomposition configuration for these

three examples is illustrated in Figure 4.10. In each decomposition configuration, design

variables, objective functions, and constraint functions are associated with each element.

The coupling variables are depicted between connected elements.

In this research, three criteria are used to evaluate performance: the solution error,

the number of iterations, and the number of function evaluations. All these criteria are

defined by Tosserams et al. (2006a) and Li et al. (2008). For all examples, markers (from

left to right) shown in Figures 4.11, 4.12, and 4.13 represent numerical experiments with

the consistency error termination tolerance set to ǫ =
{

10−2, 10−3, 10−4, 10−5, 10−6
}

. The

three examples are implemented and solved using Matlab’s algorithms: the sequential

quadratic programming for all subsystems, the medium-scale linprog simplex algorithm

for the linear cutting plane method, and the interior-point-convex method for the proxi-

mal cutting plane method.
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i=1

Example 1 Example 2

j=1

f1, f2

g1, g2, h1, h2

x1, x2, x4, x5, x7

-
g3, g4, h3

x8, x9, x10

-
g5, g6, h4

g1,1, g2,1, g3,1, g4

F2, f2, h1,1

F3, f3, h1,2

x12, x13, x14

j=2 j=3

i=2

i=3

x3, x11 x6, x11

j=1

Master 
Problem

f1

ggear

j=2
f2, f4, f6

gshaft, 1

x4,x6 x5,x7-

x1,x2,x3
x1,x2,x3

x1,x2,x3

j=3
f3, f5, f7

gshaft, 2

d1, dr,1

j=4

Example 3

j=1

f11=m1+mr,1

g1,2, g2,2, g3,2

d2, dr,2

j=2

f22=m2+mr,2

g1,3, g3,3

d3

j=3

f33=m3

Figure 4.10: Decomposition configurations of examples.

Example 1: Nonconvex Nonlinear Programming Problem

The first example is a two-level decomposition of a geometric programming prob-

lem studied by Kim et al. (2006), Kim (2001), Tosserams et al. (2007). Its AIO problem is

given by

min
x1 , x2,··· , x14

f = x2
1 + x2

2

s.t. g1 =
(

x−2
3 + x2

4

)
x−2

5 − 1 ≤ 0

g2 =
(

x2
5 + x−2

6

)
x−2

7 − 1 ≤ 0

g3 =
(

x2
8 + x2

9

)
x−2

11 − 1 ≤ 0

g4 =
(

x−2
8 + x2

10

)
x−2

11 − 1 ≤ 0

g5 =
(

x2
11 + x−2

12

)
x−2

13 − 1 ≤ 0 (4.18)

g6 =
(

x2
11 + x2

12

)
x−2

14 − 1 ≤ 0
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h1 =
(

x2
3 + x−2

4 + x2
5

)
x−2

1 − 1 = 0

h2 =
(

x2
5 + x2

6 + x2
7

)
x−2

2 − 1 = 0

h3 =
(

x2
8 + x−2

9 + x−2
10 + x2

11

)
x−2

3 − 1 = 0

h4 =
(

x2
11 + x2

12 + x2
13 + x2

14

)
x−2

6 − 1 = 0

where x1, x2, · · · , x14 ≥ 0.

Figure 4.11 displays the number of iterations and the number of function evalu-

ations as functions of the solution error. For all updates, a starting point is randomly

selected from the initial designs given by Tosserams et al. (2007). The initial dual variable

and weight are set to v1 = 0 and w1 = 2, where w1 = 2 is the critical weight observed

in (Tosserams et al., 2007). The parameters used for updating w are set to α = 0.25 and

β = 1.1. The parameter used in PCP is set to µ = 2.
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Figure 4.11: Example 1: the number of iterations and the number of function evaluations
as functions of the solution error.
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Example 2: Golinski’s Speed Reducer Problem

The second example is the Golinski’s speed reducer problem studied by Golinski

(1970), Tosserams et al. (2007), and others, consisting of minimizing the weight of a re-

ducer while satisfying the stress, deflection, and geometric constraints imposed by gear

and shaft design practices. The AIO problem is given by

min
x1 ,··· ,x7

f =
7

∑
i=1

fi,

s.t. ggear = [g5, g6, g9, g10, g11]
T ≤ 0

gshaft,1 = [g1, g3, g7]
T ≤ 0

gshaft,2 = [g2, g4, g8]
T ≤ 0

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17.0 ≤ x3 ≤ 28.0, 7.3 ≤ x4 ≤ 8.3,

7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5,

where f1 = 0.7854x1x2
2(3.3333x2

3 + 14.9335x3 − 43.0934),

f2 = −1.5079x1x2
6, f3 = −1.5079x1x2

7,

f4 = 7.477x3
6, f5 = 7.477x3

7,

f6 = 0.7854x4x2
6, f7 = 0.7854x5x2

7

g1 =
1

110x3
6

√(
745x4

x2x3

)2

+ 1.69 · 107 − 1 (4.19)

g2 =
1

85x3
7

√(
745x5

x2x3

)2

+ 1.575 · 108 − 1

g3 =
1.5x6 + 1.9

x4
− 1, g4 =

1.1x7 + 1.9

x5
− 1

g5 =
27

x1x2
2x3

− 1, g6 =
397.5

x1x2
2x3

− 1

g7 =
1.93x3

4

x2x3x4
6

− 1, g8 =
1.93x3

5

x2x3x4
7

− 1

g9 =
x2x3

40
− 1, g10 =

5x2

x1
− 1, g11 =

x1

12x2
− 1.
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Figure 4.12 displays the number of iterations and the number of function evalu-

ations as functions of the solution error. For all updates, a starting point is randomly

selected from the initial point given by Tosserams et al. (2007). The initial dual variable

and weight are set to v1 = 0 and w1 = 5, where w1 = 5 is the critical weight observed in

Tosserams et al. (2007). The parameters used for updating w are defined as α = 0.25 and

β = 1.1. The parameter in PCP is defined as µ = 1.1.
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Figure 4.12: Example 2: the number of iterations and the number of function evaluations
as functions of the solution error

Example 3: Anchor Beam Problem

The third example is a structural problem modified from Allison et al. (2005) and

used by Tosserams et al. (2006a) and Li et al. (2008). The objective function consists

of minimizing the total mass with constraints being imposed on stresses, deflections,

and transmitted forces. Design variables of this structural optimization problem are the

diameters of three beams di, i = 1, 2, 3 and rods dr,j, j = 1, 2. The AIO problem is defined
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as

min
d1,d2,d3,dr1,dr2

3

∑
i=1

mi +
2

∑
j=1

mr,j

s.t. g1,i =
σb,i

σ
− 1 ≤ 0, i = 1, 2, 3

g2,j =
σa,j

σ
− 1 ≤ 0, j = 1, 2

g3,i =
Ft,i

F
− 1 ≤ 0, i = 1, 2, 3

g4 =
f1

f 1

− 1 ≤ 0

hi = fi − fi+1 − fr,i = 0, i = 1, 2

where mi =
π

4
d2

i Lρ, i = 1, 2, 3 (4.20)

mr,j =
π

4
d2

r,jLρ, j = 1, 2

σb,i =
32L(Fi − Fi+1)

πd3
i

, i = 1, 2, 3

fi =
64L3(Fi − Fi+1)

3πEd4
i

, i = 1, 2, 3

σa,j =
4Fj+1

πd2
r,j

, j = 1, 2

fr,j =
4Fj+1L

πEd2
r,j

, j = 1, 2.

In this problem, mi is the mass of beam i, mr,j the mass of rod j, σb,i the bending stress

in beam i, σa,j the axial stress in rod j, Ft,i the force transmitted at the clamped end

of beam i, and δ1 the vertical deflection of beam 1. Additional compatibility constraints

hi, i = 1, 2 are employed because the number of unknown forces and moments exceeds the

number of equilibrium equations, and the problem is statically indeterminate Tosserams

et al. (2006a). The parameters used in this example are set to σ = 127 · 106 N/m2, F =

400 N, δ = 27 mm, ρ = 2700 kg/m3, E = 70 GPa, L = 1m, and F1 = 1000 N.

Figure 4.13 displays the number of iterations and the number of function evalua-

tions as functions of the solution error. The starting point for the primal problem is set
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to x0 = [0.035, 0.035, 0.03, 0.003, 0.003] (Tosserams et al., 2006a), which is slightly different

from the initial point used by Allison et al. (2005) and was intentionally selected as infea-

sible in order to demonstrate that the method does not require a feasible starting point.

The initial dual variable and weight are set to v1 = 0 and w1 = 1. For all update schemes,

the parameters used to update the dual variable w are defined as α = 0.25 and β = 1.1.

The parameter used in the PCP is defined as µ = 2.
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Figure 4.13: Example 3: the number of iterations and the number of function evaluations
as functions of the solution error

Numerical Applications for Biobjective Optimization

One example problem is used to demonstrate the effectiveness of the biobjective

optimization in comparison with other ATC coordination methods. To this end, this

section applies the algorithm to the analytical mass allocation problem and reports the

errors obtained by the algorithms. The objective error is defined as

| f k − f ⋆|

f ⋆
(4.21)
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where f k is the AIO objective value at the end of iteration k. The solution or feasibility

error is measured by the violation of the consistency constraints

∑
C11

∥∥∥tk
22 − rk

22

∥∥∥
2

2
, (4.22)

where C11 denotes the set of subproblems being the children of problem 1 at level 1. Addi-

tionally, we report the tradeoff between the AIO problem optimality and the achievability

of the targets by the subproblems, which is a special feature of the biobjective algorithms.

This tradeoff is measured by the AIO objective value at the end of iteration k, which with

respect to problem (4.11) is also given by

f k =
∥∥∥ f11

(
xk

11, tk
22

)
− T∥∥∥2

2
, (4.23)

and the violation of the consistency constraints (4.22) in the same iteration.

Whenever possible, the performance of the proposed algorithm on these exam-

ples is compared with the algorithms that have the best performance on the same exam-

ples, as reported in the literature. We do not compare computational results obtained

with the ATC coordination and the AIO approach because our goal is not to improve

computational efficiency by decomposition, but to demonstrate the effectiveness of our

biobjective-based coordination scheme as compared to other coordination schemes. All

computations, except for the mass allocation problem (Section 4.1.5) and the portal frame

design problem (Section 4.3), have been run using Matlab version 7.10.0.499 (R2010).

The two engineering design problems have been solved with Matlab version 7.12.0.635

(R2011a).

Analytical Mass Allocation Problem The structural optimization problem described in

Section 4.6 is also used to demonstrate the performance of the biobjective optimization.

The goal of this problem is to find the dimensions of the beams and rods that minimize

the overall mass. This problem is solved for four values of the weight α = 0.7, 0.8, 0.9, and
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0.999, which offers more insight into the weight selection process. Figure 4.14 shows that

the minimal objective error is 0.0488 and Figure 4.15 shows that the solution error is in

the range from 10−4 to 10−9.

0 2 4 6 8 10
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Iterations

O
b

je
c
ti
v
e

 E
rr

o
r

Anchor Beam Problem with Two Subproblems

 

 

α=0.7

α=0.8

α=0.9

α=0.999

Figure 4.14: Objective error obtained with Algorithm Alg2S in iteration k for the mass
allocation problem

Note that for this example the objective error does not change with the change

of the weight while the solution error does. As the weight increases, the solution error

decreases because this error results directly from the deviations that decrease due to a

higher weight applied to the them. On the other hand, the objective error measures

the lack of optimality and remains the same despite the fact that the objective function

remains in conflict with the solution error and therefore could deteriorate. In comparison

to the other weights, the highest weight of 0.999 guarantees the fastest target achievability

at no expense to system optimality.

Figure 4.16 presents the tradeoff between the AIO objective value at the subse-

quent solutions returned by the algorithm at the end of iteration k and the deviation

measured by
∥∥tk

22 − rk
22

∥∥2

2
in the same iteration. The curve associated with the highest
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Figure 4.15: Solution error obtained with Algorithm Alg2S in iteration k for the mass
allocation problem

weight confirms that, in this problem, this weight offers the fastest target achievability at

no expense to AIO optimality. The same problem was also solved with a subgradient op-

timization method (Wang et al., 2010) that required 37 iterations to achieve the objective

error of 0.0585 and the solution error of 10−9.

4.7 Concluding Remarks

Conclusion for Subgradient Algorithm

These three numerical experiments show that significant computational benefits

can be achieved by using the cutting plane methods (LCP and PCP) rather than the tra-

ditional subgradient update schemes (K, M, and O updates). This result is due to two

aspects. First, both the traditional subgradient update schemes and the cutting plane

methods calculate a single subgradient at each iteration, which is used to update the dual

variable. However, LCP and PCP update the dual variable based on not only the current
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Figure 4.16: Iterative solutions obtained with Algorithm Alg2S for the mass allocation
problem: tradeoff between the AIO objective value versus the infeasibility of the solution
with respect to the consistency constraints in iteration k

subgradient but also all previously generated ones. Second, the strategies for using the

subgradient are quite different. The K, M, and O updates are based on algebraic formula-

tions and were developed from the gradient and gradient-projection methods, using the

subgradient as a direction for updating vk (Bertsekas, 2003). Conversely, LCP and PCP,

being more sophisticated, are based on geometrical formulations and continually improve

the piece-wise linear approximations of the dual objective during the iterative process.

Both LCP and PCP have advantages and disadvantages. LCP generates a large

step size, which leads to quick convergence at the beginning of the iterative process.

PCP generates a smaller step size, which may explain why Example 2 shows a poor

convergence of PCP at the beginning of an iterative process. However, as the number of

iterations increases, PCP improves the convergence process by controlling and limiting the

step size in updating the dual variable vk. This improvement is achieved by introducing

the quadratic term of Equation (4.9) into the dual objective function. In searching for a
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new dual variable vk+1, i.e. solving Problem (4.8), the initial point is the value of the dual

variable vk, which may not be an appropriate starting point. The use of parameter µk, a

non-decreasing sequence, mitigates this issue (Bertsekas, 2003).

The results of this computational effort are shown in Figure 4.17 as functions of the

solution error. Both LCP and PCP outperform the K, M, and O updates, except in Example

2, where the O update performs better than PCP at the beginning of the iterative process.

However, one should recall that the O update, as defined in (Goffin, 1977), does not have

a practical merit since it assumes that the AIO dual objective value is known. Therefore,

the cutting plane methods seem to outperform all practical subgradient methods in these

examples.
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Figure 4.17: CPU time (sec) as functions of the solution error for three examples

For each of the three example problems, several starting points for the primal

design variables were tested. Example 3 was solved using an infeasible starting point

demonstrating that a feasible starting point is not required. The expected nonconvexity

of the three problems means that the starting points may have a significant effect on the

results. In addition, a starting point must be defined for the dual variables. In theory, the

starting point for the dual variables could affect the speed of convergence but should not

89



4.7. CONCLUDING REMARKS

affect the dual solution since the dual function is concave. However, the presence of the

inner loop optimization of the primal problem, depending on its convexity, may influence

the effect of the starting point in searching for the primal solution. This issue should be

investigated further.

Conclusion for Biobjective Optimizatin

Table 4.3 presents the number of complete iterations of Algorithm Alg2S required

after initialization to find a solution of each example problem with a sufficiently small

error. For two problems, the nonconvex and reducer problem, no actual iterations of the

algorithm were required. The solutions generated in the initialization were optimal. Table

4.3 also reports the value for α used (which remained fixed throughout the trials), the final

objective value achieved, and the solution error of the final solution. The solution error is

given by the value of ‖t22 − r22‖
2
2.

Table 4.3: A summary of results obtained with Alg2S

Problem Mass Alloc.

Algorithm Iterations 8

Fixed Value of 0.999

Final Objective Value 6.6602

Solution Error 3.2604e-9

It is clear from all five examples that Algorithm Alg2S can quickly and efficiently

solve both convex and nonconvex problems with two subproblems because it can easily

detect the achievability of the targets for the lower-level subproblem with respect to its

feasibility constraints and because the biobjective context provides information on the

magnitude of the weight.

The strength of Algorithm Alg2S lies in its initialization, which is what makes

it different from other ATC methods. It immediately identifies problems whose opti-

mal solution is constrained by the upper-level constraints, and it provides intelligent (as

opposed to randomly selected) targets for the lower-level subproblem. The quadratic
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penalty methods or subgradient optimization could exhibit a similar behavior when zero

Lagrange multipliers or weights are assumed in the first iteration. In Tosserams et al.

(2006a) and Li et al. (2008), the authors discuss such experiments and report that some

of those algorithms performed unnecessary iterations before returning to the optimal

weights.

In summary, by analyzing coordination methods using either the subgradient al-

gorithm or the biobjective optimization, it is noticed that there are often two types of en-

gineering systems involved in practice. One type of systems is developed for a particular

target, which can be achieved by decomposing the systems into smaller elements with a

hierarchical, multi-level structure. The other type of systems may lack a centrally-agreed

target, so that the hierarchical coordination methods cannot be easily applied to solve

these systems. To address this issue, a network target coordination method is studied in

the next chapter.

91



Chapter 5

Network Target Coordination

5.1 Introduction

Multidisciplinary design optimization (MDO) is concerned with systematic ap-

proaches to achieve the optimal design of complex, coupled engineering systems, where

“multidisciplinary" refers to various objects or aspects that need to be considered in the

design of engineering systems (Alexandrov and Lewis, 2000). The design process is com-

plex because the size, the coupling, and the required expertise prohibit an engineering

system from being solved with an all-in-one (AIO) method, where it is treated as a fully

integrated single system. Consequently, it is decomposed into multiple subsystems, each

of which is solved by a design team relying on its own design tools or methods. After the

decomposition, each design team attempts to achieve its own design objective by satis-

fying the subsystem constraints without knowing how its design decision influences the

other subsystems or the overall system. Therefore, a coordination method that enables

subsystems to collaboratively optimize the original system is needed.

In the field of engineering design, several coordination methods have been pro-

posed for the optimal design of decomposed systems. These methods are generally classi-

fied into three categories: 1) interaction approximation methods, 2) bi-level programming

methods, and 3) penalty and Lagrangian relaxation methods (Tosserams et al., 2008b).
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Among these methods, the Lagrangian relaxation methods have recently become very

popular because they efficiently handle problems that cannot be solved using the conven-

tional interaction approximation methods and bi-level programming methods. These La-

grangian relaxation methods are introduced for MDO problems based on analytical target

cascading (ATC) in Kim et al. (2003). In ATC, target-response pairs are employed to repre-

sent the interdependencies of MDO-decomposed problems, and consistency constraints

are used to match the targets with their respective responses. To reduce the inconsis-

tency of the decomposed system, the consistency constraints are relaxed to the objective

function. During the solution process, the residuals of the consistency constraints are

minimized using either the ordinary Lagrangian function (Lassiter et al., 2005) or the

augmented Lagrangian function (Blouin et al., 2005, Tosserams et al., 2006a, Wang et al.,

2010).

To separate the coupled subsystem, the ordinary Lagrangian function based on

duality theorem is introduced by Lassiter et al. (2005) in the field of engineering design.

This method, however, can achieve an accurate solution only under restrictive assump-

tions that specifically include the convexity of the original problem. When a system is

nonconvex, a duality gap may occur, preventing ordinary Lagrangian duality from obtain

the optimal solution (Bertsekas, 2003). Because of numerical difficulties with ordinary La-

grangian function when solving nonconvex problems, the augmented Lagrangian func-

tion is introduced for ATC-decomposed problems by Blouin et al. (2005) and Tosserams

et al. (2006a). The augmented Lagrangian function consists of an ordinary Lagrangian

relation term and a penalty-like quadratic relation term. This quadratic term is intro-

duced into the objective function so that the problem can be locally convexified (Bertsekas,

2003). Bertsekas (2003) also used the augmented Lagrangian function with the method

of multipliers to solve the relaxed problem. Then to reduce the computational cost of

the method of multipliers, the alternating direction method of multipliers (ADMM), orig-

inally proposed by Gabay and Mercier (1976), is applied by Tosserams et al. (2006a) on

ATC-decomposed problems.
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However, the inclusion of the quadratic term makes the ATC-decomposed systems

non-separable, and the desired parallelization of decomposed problems may not be re-

alized. For parallel computing of subsystems, a block coordinate descent (BCD) method

is applied to so called quasi-separable problems (Tosserams et al., 2007), in which the

proposed method iterates between solving a master problem and solving all subsystems

concurrently. By depending on this master problem and solving it analytically, the BCD

method realizes parallel computing of all subsystems. However, this method partially

realizes the parallelization of decomposed problems, since the master problem cannot be

solved until the solutions of all subsystems are available. To solve a similar problem, a di-

agonal quadratic approximation (DQA) is also applied to linearize the quadratic term of

the augmented Lagrangian function in Li et al. (2008). However, one primary limitation

of the DQA method is that it can achieve good numerical performance only when the

total number of coupling variables is small (Li et al., 2008). In addition, another obstacle

to progress in realizing the parallelization of decomposed problems is that the proposed

BCD and DQA methods seem to be too complex. Although the designers of these two

methods are often able to convey an intuitive understanding of how their methods work,

it is often difficult to make this intuition formal and precise.

In the field of distributed computing, ADMM has recently become very popular

due to its abilities to solve large-scale or distributed problems. ADMM is often em-

ployed for solving consensus optimization problems (Bertsekas, 2003, Bertsekas et al.,

2003, Lynch, 1996, Olfati-Saber et al., 2007). A survey by Olfati-Saber et al. (2007) de-

scribes that “consensus problems have a long history in computer science and provide

the foundation of the field of distributed computing." In the field of distributed compu-

tation over networks, “consensus" means that all agents can agree on a certain interest

by considering the state of all agents; a “consensus optimization problem" is then solved

to determine the optimal value for the consensus; and a “consensus algorithm" is the

rule that illustrate the interaction and the information exchange among agents on the

network (Olfati-Saber et al., 2007).
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Consensus optimization problems have been solved using ADMM in the field of

distributed computing in the 1980s by Bertsekas and Tsitsiklis (1989). In a recent review

of the distributed consensus problems in the context of ADMM by Boyd et al. (2011),

the authors argues that ADMM is well suited to solve distributed convex optimization

problems. In addition, a recent survey by Nedić and Ozdaglar (2010) and several recent

applications in fields of signal processing (Mateos et al., 2010) and wireless communi-

cations (Schizas et al., 2008, Zhu et al., 2010) are also good resources to understand the

consensus optimization problems, especially in conjunction with ADMM. Since there are

many variations of ADMM and many convergence results for ADMM in the literature,

the works of Bertsekas and Tsitsiklis (1989) and Boyd et al. (2011) are referred to for their

very influential discussions of the method. The applications of the method assume that

1) the real valued objective and constraints are closed, proper, and convex with respect to

the design variables; and the ordinary Lagrangian function of the optimization problem

has a saddle point, meaning that the strong duality holds for the problem (see Chapter 3

for the background).

In this chapter, the research employs both the consensus optimization and ADMM

to address three issues concerned with engineering design problems. The first issue is

that the decomposed design problems often lack a centralized access to determine values

of coupling variables, e.g. a master problem. The second issue is that these problems

usually involve a number of geographically distributed design teams that prefer direct

communications among one another. The third issue is that there are a lot of changes

during the design process so that a failure of a subsystem should not influence the work

of all others.

To address these issues, a new, yet simple, coordination method is developed for

nonhierarchically decomposed systems in the field of engineering design. The approach is

developed such that the centralized access is eliminated. As explained in detail in the next

sections, the proposed approach uses augmented Lagrangian relaxation, consensus opti-

mization, and ADMM. The proposed solution strategy consists of two steps. In the first
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step, an optimization problem associated with each agent is solved based on the results

of the consensuses and the Lagrangian multipliers. In the second step, the Lagrangian

multiplier is updated when the local coupling does not match with the consensus. The

update of the consensus is achieved using a locally averaging step.

The outline of this chapter is as follows. Section 5.2 models the consensus opti-

mization problem for MDO-decomposed problems based on a multi-agent network. In

Section 5.3, the strategy is discussed for a single variable consensus problem. In Section

5.4, the strategy is extended to a multiple variable consensus optimization problem. The

chapter is concluded in Section 5.5.

5.2 Modeling Network Architecture

The primary motivation for proposing a network model is that many engineering

systems cannot be decomposed based on the hierarchical, multi-level structure proposed

by ATC. Structures representing the organizations of these systems are considered to be

non-hierarchical, distributed networks and an example structure is shown in Figure 5.1.

In the structure, the rectangular boxes represent the subsystems and the arcs represent

the coupling variables shared by the subsystems.

Subsystem Subsystem

Subsystem Subsystem

Figure 5.1: A nonhierarchical model of a system design problem

This figure illustrates the differences between ATC and the non-hierarchical, dis-

tributed network structure. In ATC, a single top-level subsystem represents the overall
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system and each lower level discipline a subsystem or components of its parent subsys-

tem. However, there is no level in the distributed network structure. In addition, ATC

requires the parent subsystem to compute the coupling variables shared by lower level

subsystems, whereas the distributed network model allows direct information flows be-

tween coupled subsystems. A similarity is also observed between the ATC and distributed

network. Both structures require the use of individual design model P and analysis model

a as seen in Figure 5.2, that considers inputs from coupled subsystems.

Psubasub Psub asub

Psubasub Psub asub

Figure 5.2: Design and analysis models in a nonhierarchical model

More formally, this research uses a new coordination method based on a multi-

agent network model, consisting of a set N = {1, 2, · · · , m} of agents and a set A =

{(1, 2), (1, 3), · · · , (m − 1, m)} of arcs. The node adjacency list N(i) is the set of nodes

adjacent to node i; in this case, N(i) = {j ∈ N : (i, j) ∈ A}. The arc adjacency list

A(i) of agent i is the set of arcs emanating from that node, that is A(i) = {(i, j) ∈ A :

j ∈ N}. A simple example of the multi-agent model is shown in Figure 5.3 in which

N = {1, 2, 3}, A = {(1, 2), (2, 3), (1, 3)}, N(1) = {2, 3}, N(2) = {1, 3}, N(3) = {1, 2},

A(1) = {(1, 2), (1, 3)}, A(2) = {(2, 1), (2, 3)} and A(3) = {(3, 1), (3, 2)}.

5.3 Single Variable Unconstrained Consensus Optimization

To provide an initial illustration of the network target coordination based on con-

sensus optimization, an unconstrained optimization problem with one design variable is
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2

1

3

Figure 5.3: An example multi-agent network model

used and defined as

min f (y) =
m

∑
i=1

fi(y) (5.1)

where y ∈ R, and fi : R → R is a convex objective function associated with agent i. The

function fi denotes the i-th term in the objective function.

In each subsystem, a copy of the design variable y is made and denoted yi as

a coupling design variable. In addition, a variable, referred to as a global consensus,

is introduced to ensure that all agents agree on the same value of the local coupling

variables yi, i = 1, 2, · · · , m. Problem (5.1) can be rewritten as

min
m

∑
i=1

fi(yi)

subject to yi − z = 0, i = 1, 2, · · · , m.

(5.2)

The global consensus is collaboratively determined by all agents and Problem 5.2, referred

to as a consensus problem, is solved for the optimal solutions of all local coupling vari-

ables and the global consensus. Due to the introduction of the consensus z, Problem 5.2

can be separated into m subsystems and assigned to their corresponding agents. ADMM

for Problem (5.2) can be obtained directly based on the augmented Lagrangian function

Lρ(y1, · · · , ym, z, ν1, · · · , νm) =
m

∑
i=1

(
fi(yi) + νi(yi − z) +

ρ

2
‖yi − z‖2

2

)
(5.3)
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The resulting ADMM is described as following (Boyd et al., 2011)

yk+1
i = argmin

yi

(
fi(yi) + νi(yi − z) +

ρ

2
‖yi − z‖2

2

)
, (5.4)

zk+1 =
1

m

m

∑
i=1

(
yk+1

i +
1

ρ
νk

i

)
, (5.5)

νk+1
i = νk

i + ρ
(

yk+1
i − zk+1

)
. (5.6)

Here, the first and last steps are carried out independently for each agent. The step that

updates the consensus estimate z is occasionally referred to as the central collector (Boyd

et al., 2011), in which, the consensus is analytically solved with the projection of yk+1 + 1
ρ νk

onto each agent.

To further simplify the ADMM, the consensus update step can also be rewritten

as

zk+1 = ȳk+1 +
1

ρ
ν̄k, (5.7)

where ȳk+1 denotes the average value of the sum of all local couplings ∑
m
i=1 yk+1

i and ν̄k

denotes the average value of the sum of all Lagrangian multipliers ∑
m
i=1 νk

i corresponding

to each agent. Then, the νi update step can also be averaged as

v̄k+1 =
∑

m
i=1 νk+1

i

m

=
∑

m
i=1 νk

i + ρ
(

∑
m
i=1 yk+1

i − ∑
m
i=1 zk+1

)

m

= v̄k + ρ
(

ȳk+1 − zk+1
)

= v̄k + ρ

[
ȳk+1 −

(
ȳk+1 +

1

ρ
ν̄k

)]

= 0.

(5.8)

Substituting Eq. (5.7) into Eq. (5.8) means that ν̄k+1 = 0, i.e. the dual variables have an

average value of zero after the first iteration. This is an important indicator for eliminating

the z update step. At iteration k > 1, using zk = ȳk, the ADMM can be reduced to a
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simpler form

yk+1
i = argmin

yi

(
fi(yi) + νi(yi − ȳk) +

ρ

2
‖yi − ȳk‖2

2

)

νk+1
i = νk

i + ρ
(

yk+1
i − ȳk+1

)
.

(5.9)

The ADMM algorithm is an intuitive algorithm with the Lagrangian multiplier

being updated separately to drive the local coupling to the consensus, and quadratic

term helping pull all the local couplings reach their average value while still attempting

to minimize each local objective function fi. Then, after eliminating the consensus update

step, the ADMM algorithm is referred to as the consensus alternating direction method of

multipliers (CADMM). When applying this method after the first iteration, the objective

and constraint sets are distributed across multiple agents, and each agent only has to

solve its own objective and constraint functions, plus a linear term and a quadratic term

which are updated at each iteration.

For CADMM, the primal and dual residuals are given by

rk =
(

yk
1 − ȳk, · · · , yk

m − ȳk
)

,

sk = −ρ
(

ȳk − ȳk−1, · · · , ȳk − ȳk−1
)

,

(5.10)

meaning their squared norms are

∥∥∥rk
∥∥∥

2

2
=

m

∑
i=1

∥∥∥yk
i − ȳk

∥∥∥
2

2
,

∥∥∥sk
∥∥∥

2

2
= m ρ2

∥∥∥ȳk − ȳk−1
∥∥∥

2

2
.

(5.11)

The first term in Eq. (5.11) is m times the standard deviation of the points yi, · · · , ym, a

natural measure showing the lack of consensus. The second term in Eq. (5.11) also has an

intuitive meaning, i.e., the average value ȳk of the local parameter estimates in the previ-

ous iteration can be modified slightly by νk
i , which is the cost of the i-th agent disagreeing

with the consensus in the previous iteration. The use of different forms of penalty func-

tions in the augmented Lagrangian term will lead to corresponding changes in the prior
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distribution (Boyd et al., 2011). For example, using a matrix penalty P rather than a

scalar ρ means that the Gaussian prior distribution has been employed in Tosserams et al.

(2006a).

5.4 Multiple Variable Constrained Consensus Optimization

In this section, a constrained consensus optimization problem with respect to mul-

tiple consensuses is considered. This minimization problem has local design variables

xi ∈ R
nx and local coupling variables yi ∈ R

ny , i = 1, · · · , m, with the objective function

f1(x1, y1) + · · ·+ fm(xm, ym) separable with respect to xi and yi. Each of these coupling

variables consists of a selection from the components of the global consensus set z ∈ Rn,

i.e., each component of each local coupling variables corresponds to some global con-

sensus component zg. The mapping from local coupling indices onto the global variable

index can be written as g = G(i, j), meaning that the j-th component of the local coupling

variables yij should agrees on the value of the global consensus zg.

Achieving the same value for the local couplings and the global consensus also

means that

yij = zG(i,j), i = 1, · · · , m, j = 1, · · · , ni (5.12)

If G(i, j) = j for all agents, each local coupling variable is only a copy of the global consen-

sus zG(i,j), resulting in a single-dimensional consensus optimization problem, similar to

the one discussed in the previous section. General consensus is of interest in cases where

ni ≪ n so each vector of local coupling variables is comprised of only a small number of

the global consensus.

In the context of MDO problems, the multidimensional form of consensus opti-

mization naturally arises when the global variable z denotes the full set of design spec-

ifications, and its different subsets of the design specifications are distributed among m

agents. Then yi is the sub-vector of z corresponding to the design specifications that ap-

pear in the i-th subsystem. In other words, each agent solves only its block of coupling
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design specifications.

For ease of notation, zi ∈ R
ni is defined by zij = zG(i,j). Since the global variables

zi are the ideal values of the local variables yi, the consistency constraints can then be

written as ci = yi − zi = 0, i = 1, · · · , m. The general form consensus optimization is

then given by

min
m

∑
i=1

fi(xi, yi)

subject to gi (xi, yi) ≤ 0, i = 1, · · · , m

hi (xi, yi) = 0, i = 1, · · · , m

ci (yi, zi) = yi − zi = 0, i = 1, · · · , m

w.r.t. x̄ = [x1, · · · , xm, yi, · · · , ym, z1, · · · , zm] .

(5.13)

A simple model of a multidimensional consensus optimization is shown in Figure

5.4. In this example, there are m = 3 subsystems, the global variable dimension n = 3, and

the local coupling variable dimensions n1 = 2, n2 = 3, and n3 = 2. The agents and global

variables form a bipartite graph, with each edge representing a consensus consistency

constraint between a local coupling variable component and a global coupling variable

component.

Agent 1

Agent 2

Agent 3

y1

z1

z2

z3

y2

y3

A list of 
global consensuses

Figure 5.4: A general form of the consensus optimization
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The augmented Lagrangian function for Problem (5.15) is given by

Lρ =
m

∑
i=1

(
fi(xi, yi) + vi (yi − zi) +

ρ

2
‖yi − zi‖

2
2

)
, (5.14)

with dual variables vi ∈ R
ni . Then, CADMM consists of the iterations

yk+1
i = argmin

(yi, yi)∈Xi

{
fi(xi, yi) + vk

i yi +
ρ

2

∥∥∥yi − zk
i

∥∥∥
2

2

}

zk+1 = argmin
z

{
m

∑
i=1

(
−vk

i zi +
ρ

2

∥∥∥yk+1
i − z̃i

∥∥∥
2

2

)}

vk+1
i = vk

i + ρ
(

yk+1
i − zk+1

i

)

Xi =

{
(xi, yi) :

gi (xi, yi) ≤ 0

hi (xi, yi) = 0
i = 1, 2, · · · , m,

(5.15)

where the yk+1
i and vk+1

i update schemes can be calculated independently in parallel for

each agent i.

The z-update step decouples across the components of z, since Lρ is fully separa-

ble from its components:

zk+1
g =

∑G(i,j)=g

(
yk+1

ij + 1
ρ vk

ij

)

∑G(i,j)=g 1
, (5.16)

meaning zg is found by averaging all entries of yk+1
i (e) + 1

ρ vk
i (e) that correspond to the

global index g. Similar to single-dimensional consensus optimization, after the first itera-

tion,

∑
G(i,j)=g

vk
ij = 0, (5.17)

i.e., the sum of the dual variable entries that correspond to any given global index g is

zero. Thus, the z-update step can be written as

zk+1
g =

1

ng
∑

G(i,j)=g

(
yk+1

ij

)
, (5.18)
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where ng is the total number of local couplings that correspond to the global consensus

zg. In other words, the global consensus update step is only a local averaging step for

each component zg, rather than a global averaging. In other words, only the agents that

are linked to a component zg will impact on the value of zg (Boyd et al., 2011).

5.5 Concluding Remarks

This chapter details a network target coordination (NTC) method based on con-

sensus optimization and alternating direction method of multipliers (CADMM) for engi-

neering design problems. In this method, the original system is decomposed into mul-

tiple subsystems, which are solved by agents to generate and maintain the estimates of

the coupling variables. All agents communicate the values of these estimates to their

neighboring agents over a connected multi-agents network. The distributed coordination

method utilize techniques found in the nonlinear programming literature. The primary

techniques used here are augmented Lagrangian relaxation, consensus optimization, and

alternating direction method of multipliers.

The NTC method offers a large degree of flexibility to the designer through the

introduction of consensus optimization and a multi-agent network model. Based on the

consensus estimate, the coupling variables shared by multiple agents are coordinated

through an arithmetic mean agreed by these agents. Because of the disagreement term,

each agent is able to modify the consensus estimate to achieve the optimality and feasibil-

ity of individual subsystems. The multi-agent network model provides the designer with

the opportunity to coordinate the coupling variables in a nonhierarchical organizational

structure of the design problem, which may be desired if the design problem did not fit

as prescribed by the hierarchical, multi-level coordination method (ATC).

More specifically, the ATC method formulated the problem with a multi-level hi-

erarchical structure and required the coupling variables shared by multiple subsystems

at the same level to be coordinated by their parent subsystem. This type of coordination
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method introduces additional consistency constraints in order to ensure that the coupling

variables computed by the parent subsystems have the same value for the children sub-

systems. Unlike ATC, NTC has a non-hierarchical structure and coordinates the coupling

variables locally at each agent. Thus, there is no parent-children relationship between

agents and no need to introduce additional consistency constraints. Furthermore, the

NTC method potentially allows all agents to be updated either in a Jacobi-type or in a

Gauss-Seidel iteration schemes.

In summary, the network coordination method using the CADMM algorithm pro-

vides: 1) a completely separable formulation for representing the decomposed systems, 2)

a flexible distributed coordination method for optimizing decomposed systems, 3) an ex-

plicit, efficient algorithm for solving subproblems in-parallel, and 4) a distributed, simple,

and efficient guide for updating the Lagrangian multipliers vi in each node. In addition,

the vector of Lagrangian multipliers vi can also be calculated by using subgradient algo-

rithms (Wang et al., 2010, 2012) as presented in Chapter 4, extending the method to solve

non-differentiable optimization problems.
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Chapter 6

Numerical Applications of Network Target

Coordination

6.1 Introduction

In this chapter, numerical applications of the network target coordination (NTC)

method via the consensus alternating direction method of multipliers (CADMM) pro-

posed in the previous chapter is implemented using three example problems. These

problems exhibit the distributed coordination, in which all agents are solved concurrently

and each agent is characterized by a local objective function and constraint set. The first

example is a nonconvex geometric programming problem used by Kim et al. (2006) and

Tosserams et al. (2006a). The second example is the speed reducer problem, a nonconvex

engineering problem, taken from the works of Golinski (1970), Tosserams et al. (2007),

and Lu and Kim (2010). The third example is based on analysis models of an ADXL150

micro-accelerometer from Devices (1998), Zhou (1998), Samuels (1996), and Tosserams

et al. (2010), also a nonconvex engineering problem.

The results obtained using the NTC method via CADMM are also compared to the

ones solved by using analytical target cascading (ATC) via alternating direction method

of multipliers (ADMM) (Tosserams et al., 2006b). The numerical performance of these

two coordination methods is quantified using three measurements, namely the solution
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error esol, the maximal design constraint violation max-con, and the number of iterations

k. The solution accuracy esol is defined as

esol =
∥∥∥1 − x̄k

scaled

∥∥∥
∞

(6.1)

where x̄k
scaled consists of the components of the optimal solution for the decomposed

problem x̄k scaled using the AIO optimal solution x∗, i.e., x̄k
scaled = x̄k/x̄∗. The infinity

norm is defined as ‖x‖∞ = max(|x1|, |x2|, · · · , |xn|).

To ensure that the optimal solutions obtained by these two coordination methods

respectively are consistent for the overall system, two criteria are adopted from Tosserams

et al. (2007) to check that the consistency constraint can converge to zero. First, when the

reduction of the consistency constraint after two successive iterations became smaller than

a user-defined termination tolerance ε, the solution procedure for all example problems

is considered converged, i.e.

∣∣∣ck
ij − ck−1

ij

∣∣∣
1 + |yk

ij|
< ε, j = 1, · · · , mc, (6.2)

where for agent i, the j-th component of the consistency constraint ci is denoted by cij.

Similarly, yij is the j-th component of the vector of local coupling variables yi. The super-

script k denotes the number of iterations. The denominator, 1 + |yij|, is used for scaling

the consistency constraint and for ensuring that the denominator is not zero. Second, the

maximal consistency constraint violation is also considered as a convergence criterion, i.e.

|ck
ij|

1 + |yk
ij|

< ε. (6.3)

Based on the duality theorem (Bertsekas, 2003), the consistency constraints of each agent

are the gradients of a dual problem, which transform the relaxed subsystem design prob-

lem (5.15) into a maximization problem by finding the optimal Lagrangian multipliers

vi. Since the Lagrangian multipliers are unbounded when solving the dual problem, the
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optimal values of the Lagrangian multipliers can be found when the corresponding gra-

dients of the dual problem are zero. Therefore, if the consistency constraints ci are smaller

than the termination tolerance ε > 0, the solution procedure for the relaxed subsystem

design problem (5.15) is finished.

6.2 Example 1: Nonconvex Geometric Programming Problem

The first example, a nonconvex geometric programming problem used in earlier

work on ATC (Kim, 2001, Michalek and Papalambros, 2005a, Tosserams et al., 2006a,

Tzevelekos et al., 2003), was used to demonstrate that the solutions obtained with NTC

using the CADMM approach can converge to the solutions found using an AIO approach.

The example has 14 variables, six inequality constraints, and four equality constraints.

The objective is convex, but the constraints are non-convex, violating the assumptions of

the convergence proof of the augmented Lagrangian coordination algorithms. The AIO

problem is given by

min f = x2
1 + x2

2

s.t. g1 =
(

x−2
3 + x2

4

)
x−2

5 − 1 ≤ 0,

g2 =
(

x2
5 + x−2

6

)
x−2

7 − 1 ≤ 0,

g3 =
(

x2
8 + x2

9

)
x−2

11 − 1 ≤ 0,

g4 =
(

x−2
8 + x2

10

)
x−2

11 − 1 ≤ 0,

g5 =
(

x2
11 + x−2

12

)
x−2

13 − 1 ≤ 0,

g6 =
(

x2
11 + x2

12

)
x−2

14 − 1 ≤ 0, (6.4)

h1 =
(

x2
3 + x−2

4 + x2
5

)
x−2

1 − 1 = 0,

h2 =
(

x2
5 + x2

6 + x2
7

)
x−2

2 − 1 = 0,

h3 =
(

x2
8 + x−2

9 + x−2
10 + x2

11

)
x−2

3 − 1 = 0,

h4 =
(

x2
11 + x2

12 + x2
13 + x2

14

)
x−2

6 − 1 = 0,
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where x̄ = [x1, x2, · · · , x14] ≥ 0.

The unique optimal solution, obtained through the sequential quadratic programming

(SQP) method offered by fmincon in MATLAB R2011(a), to the AIO problem is found at

x∗ = [2.84, 3.09, 2.36, 0.76, 0.87, 2.81, 0.94, 0.97, 0.87, 0.80, 1.30, 0.84, 1.76, 1.55] and

the corresponding objective value is f (x∗) = 17.59.

Problem Decomposition

Four decompositions were selected to illustrate the performance of the proposed

method, the details being presented in Figures 6.1 and 6.2. Each box represents an agent,

and the link between two boxes represents coupling variables shared by both the agents.

The variables, objective function, and constraint functions are distributed among cor-

responding boxes. The number of coupled variables increases with the decomposition

index, while the number of local variables and functions decreases with the decomposi-

tion index. For simplification, the augmented term for each agent in Eq. (5.15) is denoted

by φi, i = 1, · · · , m.

Experimental Setup

All four decompositions were solved using both the CADMM and ADMM ap-

proaches. The initial design for the problem was randomly selected from the five initial

designs given by Tosserams et al. (2006a). For ADMM, the initial weight setting strat-

egy was the one presented in Tosserams et al. (2006a), where the initial dual variable

and penalty parameter are set to v = 0 and w = 10−3, respectively. The parameters for

updating w of ADMM are set to β = 1.1, γ = 0.9. Several initial values for the penalty

parameter ρ were tried using the following scheme

ρ =
2| f̂i|

cT
i ci

, (6.5)
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x3, x11

min  x1
2 + x2

2  + Ȉ1

min  Ȉ2

w.r.t.  x1 = [x1, x2, x4, x5, x6, x7, x12, x13, x14]
y1 = [x3, x11]

w.r.t.  x2 = [x8, x9, x10]
y2 = [x3, x11]

s.t.  g1 = [g1, g2, g5, g6] ≤ 0
h1 = [h1, h2, h4] = 0 

s.t.  g2 = [g3, g4] ≤ 0
h2 = [h3] = 0 

Decomposition 1

1

2

x3 x6

x11

w.r.t.  x1 = [x1, x2, x4, x5, x7]
y1 = [x3, x6]

w.r.t.  x2 = [x8, x9, x10]
y2 = [x3, x11]

w.r.t.  x3 = [x12, x13, x14]
y3 = [x6, x11]

s.t.  g1 = [g1, g2] ≤ 0
h1 = [h1, h2] = 0 

s.t.  g3 = [g5, g6] ≤ 0
h3 = [h4] = 0 

s.t.  g2 = [g3, g4] ≤ 0
h2 = [h3] = 0 

Decomposition 2

min  x1
2 + x2

2  + Ȉ11

min  Ȉ22 min  Ȉ33

Figure 6.1: Network frameworks of the geometric programming problem: decomposi-
tions 1 and 2

where agent i has both local objective function and consistency constraints, and their ap-

proximated values were set to | f̂i| = 10 and ci = 1. The corresponding penalty parameters

for all four decomposition cases were set to ρ = 20
2 = 10. There is no need to update the

penalty parameter ρ during the solution procedure. This problem was solved considering

the termination tolerances ε = [10−3, 10−4, 10−5, 10−6].

Numerical Results

The results for the numerical experiments, summarized in Table 6.1, show that

both the ATC with ADMM and NTC with CADMM were able to find an optimal so-

lution close to the AIO solution. More specifically, both the ADMM and CADMM
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min  x1
2 + x2

2 + Ȉ1

w.r.t.  x4 = [x8, x9, x10], y4 = [x3, x11]

w.r.t.  x1 = [ ]
y1 = [x1, x2]

w.r.t.  x1 = [x1, x4]
y1 = [x3, x5]

w.r.t.  x3 = [x8, x9, x10]
y3 = [x3, x11]

w.r.t.  x2 = [x2, x7]
y2 = [x5, x6]

s.t.  g4 = [g3, g4] ≤ 0
h4 = [h3] = 0 

w.r.t.  x5 = [x12, x13, x14], y5 = [x6, x11]

s.t.  g5 = [g5, g6] ≤ 0
h5 = [h4] = 0 

s.t.  g2 = [g1] ≤ 0
h2 = [h1] = 0 

s.t.  g1 = [g1] ≤ 0 
h1 = [h1] = 0 

s.t.  g3 = [g3, g4] ≤ 0
h3 = [h3] = 0 

w.r.t.  x4 = [x12, x13, x14]
y4 = [x6, x11]

s.t.  g4 = [g5, g6] ≤ 0 
h4 = [h4] = 0 

s.t.  g2 = [g2] ≤ 0
h2 = [h2] = 0 

x11

Decomposition 3

min  Ȉ3
3 min  Ȉ4

4

x5

x3 x6

min  x1
2 + Ȉ11 min  x2

2 + Ȉ22

x11

Decomposition 4

min  Ȉ4
4 min  Ȉ5

5

x5

x3

x1 x2

x6

min  Ȉ2 min  Ȉ3

w.r.t.  x2 = [x4], y2 = [x1, x3, x5]

s.t.  g3 = [g2] ≤ 0
h3 = [h2] = 0 

w.r.t.  x3 = [x4], y3 = [x2, x5, x6]

2

1

3

Figure 6.2: Network frameworks of the geometric programming problem: decomposi-
tions 3 and 4

were improved by taking more iterations with smaller termination tolerances. Consid-

ering the maximum constraint violations, the results indicate that CADMM can satisfy a

very strict constraint tolerance. Considering the accuracy in terms of solution error esol,

CADMM performs better than ADMM, resulting in an improved magnitude of solution

error by a factor of 100 or 1000. The optimal solutions obtained here using the ADMM

approach (Tosserams et al., 2006a) are slightly different from the ones published, and

the possible reason may be the use of difference nonlinear programming algorithms for

solving each subsystem.
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Table 6.1: Results for the decomposed geometrical programming problem

Decomp ATC-ADMM NTC-CADMM

1

ε f (x̄∗) k max-con esol f (x̄∗) k max-con esol

1e − 3 17.58 21 0.0014 6.304e-4 17.58 13 3.141e-4 3.893e-4
1e − 4 17.59 35 1.056e-4 1.842e-4 17.58 18 1.907e-6 2.130e-5
1e − 5 17.59 98 1.499e-5 5.256e-5 17.59 21 1.294e-6 8.081e-6
1e − 6 17.59 151 6.524e-7 9.399e-4 17.59 25 5.774e-7 4.630e-7

2

ε f (x̄∗) k max-con esol f (x̄∗) k max-con esol

1e − 3 17.57 21 0.0015 8.157e-4 17.57 40 8.896e-5 8.120e-4
1e − 4 17.59 30 6.156e-5 3.870e-5 17.59 52 1.510e-4 1.360e-4
1e − 5 17.59 112 5.889e-6 8.147e-4 17.59 68 4.376e-6 1.101e-5
1e − 6 17.59 152 6.925e-7 0.0010 17.59 84 1.739e-7 1.323e-6

3

ε f (x̄∗) k max-con esol f (x̄∗) k max-con esol

1e − 3 17.57 20 0.0023 0.0012 17.58 40 7.893e-5 7.648e-4
1e − 4 17.59 49 0.269e-4 5.260e-4 17.59 52 1.417e-4 1.290e-4
1e − 5 17.59 134 1.828e-8 8.875e-4 17.59 68 4.183e-6 1.054e-5
1e − 6 17.59 164 1.163e-6 5.091e-4 17.59 84 1.315e-7 1.115e-6

4

ε f (x̄∗) k max-con esol f (x̄∗) k max-con esol

1e − 3 17.61 21 0.0012 0.0014 17.54 46 0.0023 0.0021
1e − 4 17.59 39 3.434e-4 4.522e-4 17.59 73 1.421e-4 1.631e-4
1e − 5 17.59 114 1.622e-5 9.732e-4 17.59 99 4.864e-6 1.157e-5
1e − 6 17.59 162 1.807e-6 8.067e-4 17.59 121 5.246e-7 1.250e-6

The objective value f (x̄∗) is the optimal objective value obtained with respect to the opti-
mal solution x̄∗ achieved at iteration k.
The parameter max-con denotes the maximum constraint violation achieved at iteration
k.
The parameter esol denotes the solution error achieved at iteration k.

6.3 Example 2: Golinski’s Speed Reducer Problem

The second example is a speed reducer problem taken from the works of Golinski

(1970), Tosserams et al. (2007), and Lu and Kim (2010). The speed reducer includes two

mating gears inside a gear box and two shafts, one input and one output. The design

variables are the dimensions of the gears (x1, x2, x3) and of both shafts (x4, x6 and x5, x7)

depicted in Figure 6.3.

The problem was decomposed into three subsystems, one subsystem minimizing

the weight of the reducer and the other two minimizing the stresses on their assigned

shafts by satisfying the stress, deflection, and geometric constraints. The AIO problem
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x7

x1
x2 x3

x4

x6

x5

Gears

Shaft 2

Shaft 1

Figure 6.3: A schematic of Golinski’s speed reducer

for designing the speed reducer is given by

min
x̄=[x1,··· ,x7]

f (x) =
7

∑
i=1

fi

s.t. ggear = [g5, g6, g9, g10, g11]
T ≤ 0,

g(shaft, 1) = [g1, g3, g7]
T ≤ 0,

g(shaft, 2) = [g2, g4, g8]
T ≤ 0,

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17.0 ≤ x3 ≤ 28.0,

7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5, (6.6)

where F1 = 0.7854x1x2
2(3.3333x2

3 + 14.9335x3 − 43.0934),

F2 = −1.5079x1x2
6, F3 = −1.5079x1x2

7, F4 = 7.477x3
6 ,

F5 = 7.477x3
7, F6 = 0.7854x4x2

6, F7 = 0.7854x5x2
7,

g1 =
1

110x3
6

√(
745x4

x2x3

)2

+ 1.69 · 107 − 1,

g2 =
1

85x3
7

√(
745x5

x2x3

)2

+ 1.575 · 108 − 1,

g3 =
1.5x6 + 1.9

x4
− 1, g4 =

1.1x7 + 1.9

x5
− 1, g5 =

27

x1x2
2x3

− 1,

g6 =
397.5

x1x2
2x3

− 1, g7 =
1.93x3

4

x2x3x4
6

− 1, g8 =
1.93x3

5

x2x3x4
7

− 1,

g9 =
x2x3

40
− 1, g10 =

5x2

x1
− 1, g11 =

x1

12x2
− 1.
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The optimal objective value for the AIO problem is achieved at f (x∗) = 2994.4 with the

optimal solution being x∗ = [3.5000, 0.7000, 17.0000, 7.3000, 7.7153, 3.3502, 5.2867]T .

Problem Decomposition

The problem decomposition used here is depicted in Figure 6.4. The design vari-

ables, objective functions, and constraint functions are distributed among three agents.

The AIO design variable set x̄ was also assigned to these three subsystems: x4 and x6 be-

ing assigned to shaft 1 subsystem, and x5 and x7 to shaft 2 subsystem; the gear subsystem

did not have any local design variables. Design variables x1, x2, and x3 represent coupling

variables shared by three subsystems. In the language of the design specifications, the

three subsystems collaboratively determined the values of the thickness and radiuses of

shafts 1 and 2.

w.r.t. x1 = [ ]   
y1 = [x1, x2, x3]

s.t.  g1 = [ggear] ≤ 0

min  F1
 + Ȉ1

1

w.r.t.  x2 = [x4, x6] 
y2 = [x1, x2, x3]

s.t.  g2 = [gshaft, 1] ≤ 0

min  F2
 + F4

 +F6
 +Ȉ2

2

w.r.t.  x3 = [x5, x7] 
y3 = [x1, x2, x3]

s.t.  g3 = [gshaft, 2] ≤ 0

min  F3
 +F5

 +F7
 + Ȉ3

3

x1, x2, x3 x1, x2, x3

x1, x2, x3

Figure 6.4: Network framework of Golinski’s speed reducer problem

Experimental Setup

As in the previous example, the performances of the NTC via CADMM and ATC

via ADMM were compared. For ADMM, the initial penalty weight is set to w0 = 103. The

parameters for updating w of ADMM are set to β = 1.1 and γ = 0.9. For CADMM, the
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initial guess for the Lagrangian multiplier vi was set to 0. The penalty parameter was set

to ρ = 102. For both the CADMM and ADMM approaches, five randomly selected initial

values were tested, similar to Tosserams et al. (2007). All subsystems were solved using

the interior-point algorithm offered by fmincon using default settings. This problem is

solved with the termination tolerance set to ε = 10−3, 10−4, · · · , 10−10.

Numerical Results

As in the previous demonstrated example problem, different algorithms are com-

pared: the ADMM approach with the quasi-separable coordination method and the

CADMM approach with distributed coordination methods. The results are presented

in Table 6.2, showing that the optimal solution can be obtained using these two algo-

rithms and are in excellent agreement with the AIO optimal solution. When comparing

the number of iterations k, the CADMM approach can achieve a better computational

efficiency than the ADMOM approach. When considering the maximum constraint vio-

lations, the results indicate that the CADMM approach can satisfy a very strict constraint

tolerance, and the inequality constraint corresponding to this max-con is active at the

optimal solution1. When comparing the performance of these two algorithms in terms of

the solution error esol, the CADMM approach can converge to a more accurate optimal

solution than the ADMM approach.

6.4 Example 3: Micro-accelerometer Design Problem

The third example is a micro-accelerometer design problem based on an ADXL150

style accelerometer from Analog Devices (Devices, 1998, Samuels, 1996). Many MEMS-

based micro-accelerometers use a capacitive-sensing scheme for acceleration detection

and have been widely used in the automotive, the robotics, and other industries. For this

research, the example problem includes four analysis models, representing design aspects

1Active constraint. M. Hazewinkel (originator), Encyclopedia of Mathematics.http://www.enylopediaofmath.org/index.php?title=Ative_onstraint&oldid=14642
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Table 6.2: Results for the decomposed Golinski’s speed reducer design problem

Tolerance ATC-ADMM NTC-CADMM

ε f (x̄∗) k max-con esol f (x̄∗) k max-con esol

1e − 3 2994.0 26 2.7561e-04 2.1431e-04 2996.6 19 9.0518e-4 3.1231e-4
1e − 4 2994.3 35 2.7532e-05 2.1413e-05 2994.5 24 5.8782e-10 6.4458e-5
1e − 5 2994.4 46 1.8544e-06 1.4423e-06 2994.3 28 5.9880e-06 4.6573e-6
1e − 6 2994.4 58 1.5657e-07 1.2178e-07 2994.4 35 5.8782e-10 8.2286e-8
1e − 7 - - - - 2994.4 43 3.5890e-8 2.7915e-8
1e − 8 - - - - 2994.4 50 5.8782e-10 5.1624e-10
1e − 9 - - - - 2994.4 57 5.8782e-10 3.9815e-10

1e − 10 - - - - 2994.4 74 5.8782e-10 1.6485e-10

The objective value f (x̄∗) is the optimal objective value obtained with respect to the
optimal solution x̄∗ achieved at iteration k.
The parameter k denotes the iteration number.
The symbol − indicates that the solution cannot be obtained using ADMM.

of structures, electrostatics, dynamics, and electronics (Mukherjee, 1998, Senturia, 2001,

Tosserams et al., 2010, Zhou, 1998). A simplified schematic of such a capacitive-sensing

accelerometer is shown in Figure 6.5.

Spring
kx

Damping effect 
Bx

External
acceleration

aext

Proof mass
movement

x

y θ

x

Feedback
units

Sensing
units C1

+Vs

-Vs

C2

Proof
Mass

Figure 6.5: Schematic of a capacitive-sensing accelerometer (Tosserams et al., 2010)

The micro-accelerometer design problem is formulated as four optimization prob-

lems, each attempting to find optimal settings for input parameters such that the design

specifications and desired device behavior are obtained (Tosserams et al., 2010). These

cases differ with respect to which design specifications are selected as optimization vari-

ables; for example, Case 1 includes only the proof mass and U-spring dimensions as

optimization variables, while Case 4 includes 22 optimization variables related to elec-
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trostatics, dynamics, circuit, and responses subproblems. The analysis model given by

Tosserams et al. (2010) requires that values are assigned to all input parameters (design

specifications of the micro-accelerometer analysis model). A baseline design is then de-

fined by using the original ADXL150 accelerometer parameters for a maximum measure

frequency of ω = 1000 Hz. Based on the baseline design, the formulation of the optimal

design problem of the accelerometer is given by:

min
x, Amax

Amax

subject to gc,1 = −
S(x)

Smin
+ 1 ≤ 0

gc,2 =
an(x)

amin
− 1 ≤ 0

gc,5 = −
a f s(x)

ameans
+ 1 ≤ 0 (6.7)

g f (x) ≤ 0

xlb ≤ x ≤ xub

x̄ = [x, Amax]

where x represents the vector of the input parameters that are selected as design vari-

ables. Parameter Amax of constraints gs,16 and gs,17 is included as an artificial optimiza-

tion variable to avoid nonsmoothness in the definition of the area A (Tosserams et al.,

2010). The design constraints ensure that performance with respect to sensitivity, noise,

and range is at least as good as the baseline design (i.e., Smin = S(xbase), amin = an(xbase),

and ameans = a f s(xbase), where xbase is the baseline design.) The functional constraints

g f = [gs,1−17, ge,1−6, gd,1−4, gc,3, gc,4, gc,6] assure the performance and functioning of four

subsystems, i.e., structures, electrostatics, circuits, and dynamics.

The optimal solutions for the AIO problem are obtained by analyzing three cases.

Case 1 considers seven variables of the proof mass and U-springs as design variables.

Case 2 adds nine sense and feedback unit variables to the first case. In Case 3, four more

circuit design variables are added. The results for solving the AIO problem are shown
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in Table 6.3. The optimal results obtained are slightly different from the results given

by Tosserams et al. (2010), e.g., the width of beam 2 of the U-spring wb2 = 5.500, which

increases the maximum area Amax of the micro-accelerometer from 0.1880 to 0.1916. This

slight difference might due to the settings of the optimization solver. All three cases in

this research are solved using the sequential quadratic programming (SQP) solver offered

by fmincon of Matlab R2011(a) with default settings except for “Maxfunevals = 100000"

and “Maxiter = 200". The modification of these two settings prevents iterations that do

not terminate in fmincon. Similar to the scaling scheme used by Tosserams et al. (2010),

the vector of the design variables x is also scaled with respect to their baseline values, i.e.

x̄scaled = x̄/x̄base.

Table 6.3: Optimal results for three cases of the AIO micro-accelerometer problem

Components Variables (x̄) Boundary Optimal Designs

Lower Upper Baseline Case 1 Case 2 Case 3

Objective Value Amax [mm2] 0.01 1.0 0.5000 0.1916 0.0962 0.0807

Proof mass & U-springs

lp [µm] 2 700 500 476.7 354.7 355.9
wp [µm] 2 400 50 47.10 80.80 81.59
lb1 [µm] 2 400 125 107.0 124.4 103.2
lb2 [µm] 1 200 6.00 2.100 1.500 1.500
wb [µm] 2 10 2.40 2.000 2.000 2.000
wb2 [µm] 2 10 4.00 5.500 2.000 2.000
lb3

∗ [µm] 2 400 105 88.48 88.95 67.41
lls

∗ [µm] 1 100 2.00 1.400 1.000 1.000

Sense & Feedback

l f [µm] 2 400 120 120 39.00 17.41
lov [µm] 2 400 114 114 37.80 16.30
gs [µm] 0.5 20 1.3 1.3 0.844 0.800
gsu [µm] 0.5 20 1.3 1.3 0.500 0.500
g f [µm] 0.5 20 1.3 1.3 0.795 0.953
g f u [µm] 0.5 20 1.3 1.3 0.500 0.500
gx [µm] 0.5 20 0.7 0.7 0.500 0.500
w f [µm] 2 20 4.00 4.00 5.157 5.202
ws [µm] 2 20 4.00 4.00 2.000 2.000

Circuit

Vs0 [V] 1 4 2.5 2.5 2.5 4.000
Vd [V] 1 4 2.5 2.5 2.5 1.640
Ca [ f F] 1 1000 350 350 350 231
Gni [−] 1 20 17 17 17 20

- Values colored in light grey are not optimized but inherited from the baseline design.
- Dependent variables marked with an asterisk (∗) are calculated based on lb3 = lb1 + wa/2 −

wp/2 and lls = lb2 − gx.

118



6.4. EXAMPLE 3: MICRO-ACCELEROMETER DESIGN PROBLEM

Problem Decomposition

The problem decomposition presented in Figure 6.6 illustrates a method by which

the micro-accelerometer design problem can be partitioned into three subsystems, i.e.,

circuit, sensor dynamics, and sensor geometry. The distribution of design variables, ob-

jective functions, and constraint functions are also depicted in this figure. The AIO design

variable set x̄ is separated into these three subsystems: Ca and Gni are local design vari-

ables of the circuit subsystem; components of the set x̄ except Ca and Gni are local design

variables of the sensor geometry subsystem; the sensor dynamics subsystem does not

have a local design variable. The linking variables except for Vs0 are not optimization

variables of the AIO problem but intermediate analytical quantities introduced as a result

of decomposition. The single arrows in the figure indicate the dependency relationships

of these intermediate analytical quantities.

Circuit1 min Ȉ1

w.r.t. x1 = [Ca, Gni], 

y1 = [Sm, an,m, Sd, Vs0, Cp]
s.t. g1 = [gc,1, gc,2, ... , gc,6] ≤ 0

Sensor Dynamics2

min Ȉ2

w.r.t. x2 = [ ]
y2 = [Sm, an,m, m, J, b, kx,m, kx,e, ky, kθ]

s.t. g2 = [gd,1, gd,2, ... , gd,4] ≤ 0 

Sensor Geometry3

min Amax + Ȉ3 

w.r.t. x3 = [z except Ca, Gni], 

y3 = [m, J, b, kx,m, kx,e, ky, kθ, Sd, Cp]

s.t. g3 = [gs,1, gs,2, ... , gs,18, ge,1, ge,2, ... , ge,6] ≤ 0

Sm, an,m Sd, Vs0, Cp

m, J, b, kx,m, kx,e, ky, kθ

Figure 6.6: Network framework of the micro-accelerometer problem

Experimental Setup

The performance of the CADMM approach is again compared to that of the

ADMM approach. For both the CADMM and ADMM approaches, ten randomly se-

lected initial values were investigated. The ADMM approach uses the same initial weight
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setting strategy given by Tosserams et al. (2010) with v = 0 and w = 10−3. The parame-

ters for updating the w in ADMM were set to β = 1.1 and γ = 0.9. For the CADMM, the

initial values of the dual variables were set to v = 0. Based on the initial settings seen in

Eq.(6.5), the estimates were set to f̂i = 2.5 and ci = 1 (these estimates are scaled values),

and the penalty parameter was obtained and set to ρ = 5/10 = 0.5 for all three cases. All

subsystems were solved with the SQP algorithm offered by fmincon using default settings

except for “Maxfunevals = 100000" and “Maxiter = 200". This problem was solved with

a termination tolerance set to ǫ = 0.001.

Numerical Results

In all three cases, the results shown in Table 6.4 indicate that both the ATC with

ADMM and the NTC with CADMM approaches were able to find optimal solution close

to the AIO optimal solution. By comparing the objective value Amax, CADMM out-

performs ADMM except in Case 1. By comparing the minimum number of iterations,

CADMM outerperforms ADMM. A possible explanation may be that the use of consensus

estimates and disagreement terms speeds up the convergence. By comparing the max-

imum constraint violations, CADMM outperforms ADMM since the optimal solutions

obtained by using the latter cannot strictly satisfy the constraint tolerance. By comparing

the solution accuracy, ADMM outperforms CADMM except in Case 2. A possible expla-

nation for this finding may be that the solution accuracy of NTC with CADMM adopting

the Jacobian-type iteration (all agents are simultaneously updated) was no better than the

solution accuracy of ATC with ADMM using the Gauss-Seidel (subsystems are updated

one at a time) (Tsitsiklis, 1989). For these three cases, both the ADMM and CADMM ap-

proaches provided optimal objective values Amax that were not sensitive to the randomly

selected initial points.

In addition, both the CADMM and ADMM approaches may have difficulties with

nonconvex functions. The reason the solution accuracy of these two approaches is rela-

tively poor for all three cases is still unknown. But a similar situation was observed in the
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results published in Tosserams et al. (2010) and it should be noticed that the results (in

bold) obtained here using the ATC with ADMM approach are much better than the results

published. A possible explanation may be due to the following reasons. The optimiza-

tion variables for all three cases were involved in high non-convex constraint functions.

However, based on the duality theorem, both the objective and constraint functions of

the optimization problems are required to be convex for the methods to converge. In

addition, the optimization algorithm (such as SQP offered by MATLAB 2011(a)) used for

solving subsystems may also lack the ability to find global optimal solutions for problems

with high non-convexity, resulting in extra computational difficulty for the coordination

procedure.

Table 6.4: Results for the decomposed micro-accelerometer problem

AIO ATC-ADMM NTC-CADMM

Amax Amax k Max-Con esol Amax k Max-Con esol

Min 0.1934 66 0.0010 1.1723 0.1964 31 0 1.3383
Case 1 0.1916 Mean 0.1934 69 0.0013 1.1807 0.1964 31 6.478e-11 1.3898

100%|100% Max 0.1934 73 0.0016 1.1909 0.1965 31 2.104e-10 1.6005

Min 0.0988 56 0.0012 1.7716 0.0973 53 0 1.7487
Case 2 0.0962 Mean 0.0992 57 0.0015 2.5988 0.0978 64 5.651e-4 2.5855

100%|100% Max 0.1000 60 0.0017 3.9895 0.0982 79 0.0023 3.7677

Min 0.0854 55 8.527e-4 2.0263 0.0820 54 4.707e-14 2.1779
Case 3 0.0807 Mean 0.0859 59 0.0015 2.0582 0.0825 68 1.867e-4 2.2123

100%|100% Max 0.0864 62 0.0030 2.0780 0.0830 110 7.042e-4 2.2270

- For each case, the percentage of converged initial points is indicated on the first column.
- Although the solution error esol obtained for CADMM is comparably larger than the results of

ADMM, all these optimal results satisfy the design lower and upper specifications and, therefore,
are considered useful for a practical engineering design.

- Values in bold are optimal results significantly different from the results observed by Tosserams
et al. (2010), in which Case 3 did not converge to a solution close to its AIO optimal solution.

6.5 Concluding Remarks

This chapter analyzed the numerical performance of NTC via CADMM for solving

three nonconvex, nonlinear optimization problems, including a geometrical programming

problem, a Golinski’s speed reducer design problem, and a micro-accelerometer design
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problem. The convergence of the NTC method was studied and preliminary results of nu-

merical experiments were presented. The comparison of the proposed NTC via CADMM

and ATC via ADMM was demonstrated using the results of numerical experiments. The

results indicate that NTC via CADMM is more efficient and robust than ATC via ADMM.

In terms of efficiency, the CADMM can achieve converged optimal solutions after a few

iterations. In terms of robustness, the optimal solutions obtained by using CADMM were

not sensitive to the randomly selected initial points. The CADMM also has advantages.

This approach offers a large degree of freedom in updating the dual variables, favorable

when coding the decomposed problems. Additionally, this approach can achieve optimal

solutions with efficiency and robustness by using a simplified penalty parameter update

scheme.

More specifically, NTC via CADMM seems to outperform ATC via ADMM be-

cause the locally averaging step for updating the consensus eliminates the influence of

Lagrangian multipliers and penalty parameters. Compared to the analytical master solu-

tion of the coupling variables y defined as

y =
∑

M
i=1 wi ◦ wi ◦ yi −

1
2 ∑

M
i=1 vi

∑
M
i=1 wi ◦ wi

(6.8)

by Tosserams et al. (2006a), the local updating scheme

zk+1
g =

1

ng
∑

G(i,j)=g

yk+1
ij

given in the previous chapter does not include the information of Lagrangian multipliers

and penalty parameters. Although ideally, the penalty parameters may be increased to

large values, which drive the term

1
2 ∑

m
i=1 vi

∑
m
i=1 wi · wi

to a near zero value and may result in ill-conditioning of the problem. Furthermore, in
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the NTC method, the agents that are linked to a component zg will impact the value of

zg; however, the analytical master solution y given in Eq. (6.8) indicates that the targets of

coupling variables for subsystem i will also be influenced by all Lagrangian multipliers

and penalty parameters. Thus, NTC via CADMM uses a Jacobi-type iteration to coor-

dinate all subsystems, while ATC via ADMM uses a combination of Gauss-Siedel and

Jacobi iterations to coordinate all subsystems. As a result, NTC via CADMM can provide

a simpler yet accurate update scheme for determining the value of the coupling variables

during the solution process, resulting in the reduced number of iterations and improved

solution accuracy.

Although the numerical performance of the NTC with CADMM approach is effi-

cient and accurate when solving the example problems, further research is still needed. In

this research, the micro-accelerometer design problem provides only one type of decom-

position and should be investigated further by applying the proposed method to other

types of decompositions. An investigation focusing on improving solution accuracy when

solving problems with high nonconvexity should be conducted.
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Chapter 7

Conclusions

7.1 Contributions

The fundamental contribution of this dissertation is the development of math-

ematical formulations and corresponding algorithms for realizing the large-scale, dis-

tributed design of both hierarchically and nonhierarchically decomposed systems. From

an application viewpoint, the research contributes to the reduction of computational costs

and the improvement of solution accuracy for solving these design problems potentially

completed by geographically dispersed teams.

When studying the hierarchically decomposed complex systems, the research pre-

sented in Chapter 4 contributes to the development of two new subgradient-based algo-

rithms. These two new algorithms, linear and proximal cutting plane methods, were im-

plemented based on augmented Lagrangian relaxation techniques and compared to the

traditional update schemes used in subgradient algorithms. The results of three noncon-

vex nonlinear examples suggests that significant computational benefits can be achieved

by using the cutting plane methods.

Furthermore, a biobjective approach was also developed for effectively solving

hierarchically decomposed problems. Based on the analytical target cascading, this ap-

proach was introduced to optimize two performance measures of the system by means
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of minimizing the deviations from the fixed design requirements and the local objective.

In this biobjective approach, the generic algorithm for two-level, hierarchically decom-

posed problems was proposed. The algorithm can be easily adapted for problems with

any number of lower-level subproblems, as demonstrated by the analytical mass alloca-

tion problem. The convergence of the algorithm is also verified based on the established

results in nonlinear programming for block coordinate descent methods.

When studying nonhierarchically decomposed complex systems, the network tar-

get coordination (NTC) method was proposed using the consensus optimization with the

alternating direction method of multipliers (CADMM) in Chapters 5. In this coordination

method, a complex system was partitioned into a number of smaller, manageable subsys-

tems, which were independently solved by agents. Since these subsystems are interact

with one another, a coordination strategy was introduced to generate the consensus esti-

mates of coupling variables for all agents. When using the proposed NTC method, it was

assumed that the design optimization of each subsystem operating in parallel takes the

same amount of time, and if one subsystem analysis finishes early, it waits on the others

to finish. During the coordination process, all agents communicate the values of these

consensus estimates to their neighboring agents over a connected multi-agents network.

The numerical performance of the NTC method was studied and preliminary re-

sults were presented in Chapter 6. This chapter demonstrated the performance of the

proposed NTC method by solving three nonconvex, nonlinear optimization problems, in-

cluding a geometrical programming problem, a Golinski’s speed reducer design problem,

and a micro-accelerometer design problem. The comparison of the proposed NTC with

CADMM approach and the ATC with the the alternating direction method of multipliers

(ADMM) approach were analyzed using the results of numerical experiments. In general,

the results indicated that the CADMM approach was more efficient and robust than the

ADMM approach.

This research also provided a classification of the multidisciplinary (MDO) meth-

ods in the literature in Chapter 2, and an overview of the rational of using augmented
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Lagrangian relaxation techniques to solve decomposable engineering system design prob-

lems in Chapter 3. In particular, the classification clearly revealed the similarities and dif-

ferences among the widely applied MDO methods by focusing on three general features,

i.e. the introduction of the copies of coupling variables, the relaxation of constraints,

and the solution sequence; the overview of the theoretical rational provided the general

properties of the proposed coordination methods for solving both the hierarchical and

nonhierarchically decomposed problems.

Specific contributions of the research are summarized into four aspects:

1. Developed cutting plane methods based on duality theorem for ATC-decomposed

problems, achieving an optimal solution if the system design optimization prob-

lem is convex or a lower bound of the objective if the system design optimization

problem is nonconvex.

2. Developed bi-objective optimization to capture ATC features and proposed the

generic algorithm for two-level problems.

3. Developed a network target coordination (NTC) framework capturing interactions

among distributed design teams, while at the same time allowing design autonomy

for each team.

4. Demonstrated actual implementations of both the ATC and NTC successfully us-

ing four example problems: a mathematical problem and three engineering design

problems.

7.2 Furture Research

For cutting plane methods, future work should study the impact of various param-

eters such as starting points for primal and dual variables, and the subjective parameters

used in updating the dual variables. In addition, the effect of some of the issues gen-

erally encountered when solving large scale engineering problems, i.e., non-continuous
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variables and functions, time consuming evaluations and large number of levels and sub-

systems, on the performance of the cutting plane methods should be investigated. Finally,

a comparison with other existing methods for ATC, such as the penalty method, should

be performed.

For biobjective optimization, further research can be continued in several di-

rections. Convergence of the three-subproblem algorithm allowing for communication

at the lower level should be established. Other scalarizing approaches, in addition to

the weighted-sum method, to solve the ATC-related biobjective optimization problems

should be investigated. While they are not expected to make conceptual changes to the

biobjective framework, they may offer computational savings. Furthermore, the proposed

biobjective framework can be extended for ATC problems with lower-level objective func-

tions, as well as systems with two or more subproblems on each level and systems with

three or more levels.

For network target coordination, the following aspects are worthy of further in-

vestigations:

1. Efficiency. Further understanding of efficiency issues of the proposed NTC will be

beneficial to reduce the computational costs.

2. Applying to practical large-scale problems. Current NTC is still limited to academia

version complex systems, however, more complex problems should be investigated

in order to verify the efficiency and accuracy of the proposed method.

3. Intelligent consensus estimates. Agent based design methodology in combination

with target distribution have been be applied to allow design agents with appropri-

ate intelligence for follow-up design actions with different options. This idea should

be further investigated in order to better model the decision making for achieving

the consensus of coupled subsystems.

4. Parameter setting investigation. Comprehensive research should be conducted for

setting the values of parameters used for updating the penalty weights and dual
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variables.

In summary, this research continues to build on recent methods to address de-

composed large-scale, complex systems design problems. It addresses some issues and

proposes new algorithms, and the success of these approaches will be in the wide spread

use of such methods to address current and future engineering design problems.
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