7 research outputs found

    A parametric time frequency-conditional Granger causality method using ultra-regularized orthogonal least squares and multiwavelets for dynamic connectivity analysis in EEGs

    Get PDF
    Objective: This study proposes a new para-metric TF-CGC (time-frequency conditional Granger causality) method for high-precision connectivity analysis over time and frequency domain in multivariate coupling nonstationary systems, and applies it to source EEG signals to reveal dynamic interaction patterns in oscillatory neo-cortical sensorimotor networks. Methods: The Geweke's spectral measure is combined with the TVARX (time-varying autoregressive with exogenous input) model-ling approach, which uses multiwavelet-based ul-tra-regularized orthogonal least squares (UROLS) algo-rithm aided by APRESS (adjustable prediction error sum of squares), to obtain high-resolution time-varying CGC representations. The UROLS-APRESS algorithm, which adopts both the regularization technique and the ultra-least squares criterion to measure not only the signal themselves but also the weak derivatives of them, is a novel powerful method in constructing time-varying models with good generalization performance, and can accurately track smooth and fast changing causalities. The generalized measurement based on CGC decomposition is able to eliminate indirect influences in multivariate systems. Re-sults: The proposed method is validated on two simulations and then applied to source level motor imagery (MI) EEGs, where the predicted distributions are well recovered with high TF precision, and the detected connectivity patterns of MI-EEGs are physiologically interpretable and yield new insights into the dynamical organization of oscillatory cor-tical networks. Conclusion: Experimental results confirm the effectiveness of the TF-CGC method in tracking rapidly varying causalities of EEG-based oscillatory networks. Significance: The novel TF-CGC method is expected to provide important information of neural mechanisms of perception and cognition

    Boosting wavelet neural networks using evolutionary algorithms for short-term wind speed time series forecasting

    Get PDF
    This paper addresses nonlinear time series modelling and prediction problem using a type of wavelet neural networks. The basic building block of the neural network models is a ridge type function. The training of such a network is a nonlinear optimization problem. Evolutionary algorithms (EAs), including genetic algorithm (GA) and particle swarm optimization (PSO), together with a new gradient-free algorithm (called coordinate dictionary search optimization – CDSO), are used to train network models. An example for real speed wind data modelling and prediction is provided to show the performance of the proposed networks trained by these three optimization algorithms

    Brain functional and effective connectivity based on electroencephalography recordings: A review.

    Get PDF
    Functional connectivity and effective connectivity of the human brain, representing statistical dependence and directed information flow between cortical regions, significantly contribute to the study of the intrinsic brain network and its functional mechanism. Many recent studies on electroencephalography (EEG) have been focusing on modeling and estimating brain connectivity due to increasing evidence that it can help better understand various brain neurological conditions. However, there is a lack of a comprehensive updated review on studies of EEG-based brain connectivity, particularly on visualization options and associated machine learning applications, aiming to translate those techniques into useful clinical tools. This article reviews EEG-based functional and effective connectivity studies undertaken over the last few years, in terms of estimation, visualization, and applications associated with machine learning classifiers. Methods are explored and discussed from various dimensions, such as either linear or nonlinear, parametric or nonparametric, time-based, and frequency-based or time-frequency-based. Then it is followed by a novel review of brain connectivity visualization methods, grouped by Heat Map, data statistics, and Head Map, aiming to explore the variation of connectivity across different brain regions. Finally, the current challenges of related research and a roadmap for future related research are presented

    Improved Dynamic Latent Variable Modeling for Process Monitoring, Fault Diagnosis and Anomaly Detection

    Get PDF
    Due to the rapid advancement of modern industrial processes, a considerable number of measured variables enhance the complexity of systems, progressively leading to the development of multivariate statistical analysis (MSA) methods to exploit valuable information from the collected data for predictive modeling, fault detection and diagnosis, such as partial least squares (PLS), canonical correlation analysis (CCA) and their extensions. However, these methods suffer from some issues, involving the irrelevant information extracted by PLS, and CCA’s inability to exploit quality information. Latent variable regression (LVR) was designed to address these issues, but it has not been fully and systematically studied. A concurrent kernel LVR (CKLVR) with a regularization term is designed for collinear and nonlinear data to construct a full decomposition of the original nonlinear data space, and to provide comprehensive information of the systems. Further, dynamics are inevitable in practical industrial processes, and thus a dynamic auto-regressive LVR (DALVR) is also proposed based on regularized LVR to capture dynamic variations in both process and quality data. The comprehensive monitoring framework and fault diagnosis and causal analysis scheme based on DALVR are developed. Their superiority can be demonstrated with case studies, involving the Tennessee Eastman process, Dow’s refining process and three-phase flow facility process. In addition to MSA approaches, autoencoder (AE) technology is extensively used in complicated processes to handle the expanding dimensionality caused by the increasing complexity of industrial applications. Apart from modeling and fault diagnosis, anomaly detection draws great attention as well to maintain the performance, avoid economic losses, and ensure safety during the industrial processes. In view of advantages in dimensionality reduction and feature retention, autoencoder (AE) technology is widely applied for anomaly detection monitoring. Considering both high dimensionality and dynamic relations between elements in the hidden layer, an improved autoencoder with dynamic hidden layer (DHL-AE) is proposed and applied for anomaly detection monitoring. Two case studies including Tennessee Eastman process and Wind data are used to show the effectiveness of the proposed algorithm

    Effective EEG analysis for advanced AI-driven motor imagery BCI systems

    Get PDF
    Developing effective signal processing for brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) involves factoring in three aspects of functionality: classification performance, execution time, and the number of data channels used. The contributions in this thesis are centered on these three issues. Contributions are focused on the classification of motor imagery (MI) data, which is generated during imagined movements. Typically, EEG time-series data is segmented for data augmentation or to mimic buffering that happens in an online BCI. A multi-segment decision fusion approach is presented, which takes consecutive temporal segments of EEG data, and uses decision fusion to boost classification performance. It was computationally lightweight and improved the performance of four conventional classifiers. Also, an analysis of the contributions of electrodes from different scalp regions is presented, and a subset of channels is recommended. Sparse learning (SL) classifiers have exhibited strong classification performance in the literature. However, they are computationally expensive. To reduce the test-set execution times, a novel EEG classification pipeline consisting of a genetic-algorithm (GA) for channel selection and a dictionary-based SL module for classification, called GABSLEEG, is presented. Subject-specific channel selection was carried out, in which the channels are selected based on training data from the subject. Using the GA-recommended subset of EEG channels reduced the execution time by 60% whilst preserving classification performance. Although subject-specific channel selection is widely used in the literature, effective subject-independent channel selection, in which channels are detected using data from other subjects, is an ideal aim because it leads to lower training latency and reduces the number of electrodes needed. A novel convolutional neural network (CNN)-based subject-independent channels selection method is presented, called the integrated channel selection (ICS) layer. It performed on-a-par with or better than subject-specific channel selection. It was computationally efficient, operating 12-17 times faster than the GA channel selection module. The ICS layer method was versatile, performing well with two different CNN architectures and datasets.Developing effective signal processing for brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) involves factoring in three aspects of functionality: classification performance, execution time, and the number of data channels used. The contributions in this thesis are centered on these three issues. Contributions are focused on the classification of motor imagery (MI) data, which is generated during imagined movements. Typically, EEG time-series data is segmented for data augmentation or to mimic buffering that happens in an online BCI. A multi-segment decision fusion approach is presented, which takes consecutive temporal segments of EEG data, and uses decision fusion to boost classification performance. It was computationally lightweight and improved the performance of four conventional classifiers. Also, an analysis of the contributions of electrodes from different scalp regions is presented, and a subset of channels is recommended. Sparse learning (SL) classifiers have exhibited strong classification performance in the literature. However, they are computationally expensive. To reduce the test-set execution times, a novel EEG classification pipeline consisting of a genetic-algorithm (GA) for channel selection and a dictionary-based SL module for classification, called GABSLEEG, is presented. Subject-specific channel selection was carried out, in which the channels are selected based on training data from the subject. Using the GA-recommended subset of EEG channels reduced the execution time by 60% whilst preserving classification performance. Although subject-specific channel selection is widely used in the literature, effective subject-independent channel selection, in which channels are detected using data from other subjects, is an ideal aim because it leads to lower training latency and reduces the number of electrodes needed. A novel convolutional neural network (CNN)-based subject-independent channels selection method is presented, called the integrated channel selection (ICS) layer. It performed on-a-par with or better than subject-specific channel selection. It was computationally efficient, operating 12-17 times faster than the GA channel selection module. The ICS layer method was versatile, performing well with two different CNN architectures and datasets
    corecore