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 
Abstract— Objective: This study proposes a new para-

metric TF-CGC (time-frequency conditional Granger 
causality) method for high-precision connectivity analysis 
over time and frequency domain in multivariate coupling 
nonstationary systems, and applies it to source EEG signals 
to reveal dynamic interaction patterns in oscillatory neo-
cortical sensorimotor networks. Methods: The Geweke’s 
spectral measure is combined with the TVARX 
(time-varying autoregressive with exogenous input) model-
ling approach, which uses multiwavelet-based ul-
tra-regularized orthogonal least squares (UROLS) algo-
rithm aided by APRESS (adjustable prediction error sum 
of squares), to obtain high-resolution time-varying CGC 
representations. The UROLS-APRESS algorithm, which 
adopts both the regularization technique and the ultra-least 
squares criterion to measure not only the signal themselves 
but also the weak derivatives of them, is a novel powerful 
method in constructing time-varying models with good 
generalization performance, and can accurately track 
smooth and fast changing causalities. The generalized 
measurement based on CGC decomposition is able to 
eliminate indirect influences in multivariate systems. Re-
sults: The proposed method is validated on two simulations 
and then applied to source level motor imagery (MI) EEGs, 
where the predicted distributions are well recovered with 
high TF precision, and the detected connectivity patterns of 
MI-EEGs are physiologically interpretable and yield new 
insights into the dynamical organization of oscillatory cor-
tical networks. Conclusion: Experimental results confirm 
the effectiveness of the TF-CGC method in tracking rapidly 
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varying causalities of EEG-based oscillatory networks. 
Significance: The novel TF-CGC method is expected to 
provide important information of neural mechanisms of 
perception and cognition. 

Index Terms—EEG, time-frequency (TF) conditional 
Granger causality (CGC), multiwavelets, ultra-regularized 
orthogonal least squares (UROLS), adjustable prediction 
error sum of squares (APRESS), motor imagery (MI), dy-
namic connectivity. 

I. INTRODUCTION 

YNAMIC interactions within brain regions enable syn-
chronization of neuronal oscillations, which is a suggested 

mechanism underlying the perceptual and cognitive functions 
[1]. Analyzing time-varying interaction patterns of oscillatory 
brain networks is a considerably important and challenging 
research topic in the neuroscience field [2]. The traditional 
measures for quantifying interdependencies among neural 
systems in the time and frequency domain are mainly based on 
correlation and coherence, respectively [3]. The two measures 
hold a significant share in functional network analysis, but both 
omit the direction information of interaction. Based on Granger 
causality [4], several methods, for example, directed coherence 
and directed transfer function (DTF) [3] have been proposed to 
infer directed influences between signals. These methods, 
however, cannot distinguish between direct and indirect causal 
effects in multivariate coupling systems effectively. This fur-
ther boosted the development of partial directed coherence 
(PDC) [3, 5] and direct DTF (dDTF) [6] to deal with the 
drawback. In addition, mutual information [7] is another ap-
proach exploited to reveal causal dependence, and the original 
symmetric estimates led to a directed measure called condi-
tional transfer entropy (TE) [7, 8]. 

The widely known measures discussed above previously 
assume the underlying signals are stationary and the interac-
tions are constant over time, such an assumption restricts he 
application of these methods in some degree for dealing with 
time-varying neural signals especially EEGs with high nonsta-
tionarity. Recently, dynamic Granger causality (GC) analysis 
has emerged as a powerful technique to detect directed inter-
actions among coupled nonstationary systems, and has been 
extensively investigated in neurophysiological studies [9, 10]. 
The key in dynamic GC detection is the identification of the 
time-varying autoregressive with exogenous input (TVARX) 
models for nonstationary signals. Several methods have been 
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developed for assessing dynamic GC relations in time or fre-
quency domain [11], mainly including nonparametric method 
[12, 13], sliding window approach [14], adaptive multivariate 
estimation [10] and parametric modelling approach [15-18]. 

In the nonparametric GC detection method [12], the time- 
frequency (TF) causality analysis was based on nonparametric 
wavelet transforms and the performance was validated by 
monkey local field potentials. Nevertheless, for this method, it 
is difficult to select desirable initial parameters of wavelets, 
including the number of tapers, wavelet prototype and the res-
olution trade-off factor, to ensure both good time and frequency 
resolution simultaneously [12]; and thus the estimates may not 
be reliable when only a few trials of short length data sets are 
available. In the sliding window approach [19], the temporal 
functions of spectral GC can be roughly extracted by analyzing 
traditional time-invariant GC influences for each single win-
dow through ARX modelling algorithm. However, the time 
resolution of this approach is smeared and the detection per-
formance depends on the window size, which limits its practi-
cal applicability for nonstationary systems. In the adaptive 
multivariate strategy, the recursive least squares (RLS) and 
Kalman filtering algorithms are commonly used for estimating 
time-varying parameters [10, 20]. These adaptive methods can 
detect slow varying interaction relations, but they are sensitive 
to noise and may fail to track rapid changing connectivity due 
to the deficiency of slow convergence speed [21, 22]. 

Compared with the above mentioned methods, the paramet-
ric approaches, based upon TVARX model identification using 
a basis function expansion and regression scheme, can provide 
better performance for dynamic GC detection [16, 21]. In such 
a detection framework, the basic time-varying models of sig-
nals are firstly estimated by applying a set of pre-defined basis 
functions with good representation properties [23-25] and 
running an efficient model structure determination algorithm 
such as the orthogonal forward regression [26, 27]; 
time-varying variances of model prediction errors and corre-
sponding GCs can then be effectively calculated from the re-
duced refined TVARX models. For example, Li et al. em-
ployed multiwavelet basis functions with regularized orthog-
onal least squares (ROLS) to approximate the time-varying 
parameters of TVARX models, which were applied in suc-
cessfully detecting both rapid and slow varying causalities 
between two nonstationary signals [21]. 

Despite the multiwavelet expansion approach with ROLS 
algorithm provides a general parametric method for time 
-varying GC detection, two defects are remained in this 
scheme. First, although the ROLS algorithm enables better 
generalization in model construction than the conventional 
OLS i.e. OFR (orthogonal forward regression) and works well 
even in the presence of severe noise [28, 29], the method may 
produce suboptimal model with possible spurious or insuffi-
cient model terms when the signals are not persistently exciting 
or contaminated by different levels of noise [30, 31]. In this 
case, the resulting under-fitting TVARX models might produce 
incorrect and low precision GC distributions. Second, this 
pairwise time-domain GC approach ignores frequency infor-
mation which is crucial for the analysis of neurophysiological 
signals with abundant oscillatory content, like EEG, and it 
cannot distinguish direct and indirect effects among systems 
with more than two simultaneously acquired signals. Thus, the 
conventional ROLS method may fail to reveal dynamic con-
nectivity in coupled oscillatory brain networks. Currently, be-
cause of its non-invasive nature, good temporal resolution and 
low cost, EEG technique is often used for studying brain ac-
tivities [32-34]. However, there is still lack of high resolution 

time-frequency causality method for EEG-based connectivity 
analysis even in recent researches due to the high nonstation-
arity and complexity of EEG signals. 

In this paper, we propose a new TF-CGC (time-frequency 
conditional Granger causality) method for analyzing dynamic 
connectivity among multivariate coupling nonstationary sig-
nals over time and frequency domain, where a powerful ultra 
-regularized orthogonal least squares (UROLS) algorithm is 
employed to measure the time-frequency conditional causali-
ties. Specifically, the time-varying parameters in TVARX 
models are firstly expanded by a finite number of multiwavelet 
basis functions for tracking both the global trend and local 
changes in nonstationary signals [31, 35]. Then the UROLS 
algorithm, which improves the classical ROLS in using not 
only the residuals between the observed signals and the pre-
dicted values but also the associated weak derivatives to 
measure the model fitness [30], is applied to determine the 
parsimonious model structure and associated parameters. In the 
proposed UROLS algorithm, a modified cross-validation cri-
terion named adjustable prediction error sum of squares 
(APRESS) is incorporated to facilitate the monitoring of the 
forward orthogonal search procedure and the determination of 
the model complexity [36, 37]. Finally, a high resolution 
TF-CGC representation is established by combining the accu-
rately identified TVARX models with the statistically 
-explicable mathematical framework of Geweke’s spectral 
CGC [38]. Our proposed TF-CGC method is firstly tested on 
two simulated nonstationary coupling systems, and then ap-
plied to source EEG data acquired from MI tasks. Experimental 
results demonstrate the efficiency of the proposed TF-CGC 
method in detecting dynamic interaction activities among 
nonstationary and oscillatory brain systems. A main contribu-
tion of this study is that the newly developed multiwavelet 
-based UROLS-APRESS algorithm is innovatively introduced 
to reveal dynamic connection patterns in TF domain based on 
the CGC decomposition. It is expected that the novel imple-
mentation of the UROLS with multiwavelets to TF-CGC 
analysis can provide important insights into the neural mecha-
nisms underlying perceptual and cognitive functions, and in-
spire further development of more powerful approaches for 
dynamic connectivity analysis. 

II. METHODS 

The classical GC is formulated based on univariate AR or 
bivariate ARX models. A TF-CGC decomposition method, 
which combines a time-varying system identification approach 
with Geweke’s spectral CGC measure, is proposed in this work. 
The TF-CGC decomposition for multivariate time series is built 
on the TVARX modeling, thus the newly introduced nonsta-
tionary model identification method is first discussed in this 
section. The discussion focuses on three time series, but it can 
easily be extended to more than three sets of time series. 

A. TVARX model identification using multiwavelets for TF- 
CGC analysis 

Consider three stochastic processes ܺ ൌ ሼݔሺݐሻሽ , ܻ ൌ ሼݕሺݐሻሽ 
and ܼ ൌ ሼݖሺݐሻሽ, with sampling index ݐ ൌ ͳǡʹǡ ڮ ǡ ܰ, where the 
TF-CGC relations from ܻ to ܺ conditional on ܼ is to be evalu-
ated. Let the joint TVARX representations of ݔሺݐሻ and ݖሺݐሻ be 
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Denote the joint TVARX model of all three processes ݔሺݐሻ, 
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where ൛ܽଵଵǡ௜ሺݐሻǡ ڮ ǡ ܽଶଶǡ௜ሺݐሻǡ ܾଵଵǡ௜ሺݐሻǡ ڮ ǡ ܾଷଷǡ௜ሺݐሻൟ  are time- 
varying parameters to be estimated, and ሼ݁ଵሺݐሻǡ ڮ ǡ ݁ହሺݐሻሽ are 
independent and normal distributed noise sequences with zero 
means. An efficient solution when identifying these TVARX 
models is to expand the time-varying parameters onto a set of 
basis functions ሼ߮௠ሺݐሻǣ ݉ ൌ ͳǡʹǡ ڮ ǡ  ሽ, for example, for theܯ
trivariate TVARX process with respect to signal ݔሺݐሻ in (2) 
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where ݔሺݐሻ, ݕሺݐሻ, ݖሺݐሻ are the system output and input with 
maximum lags Iଵ, Iଶ and Iଷ, respectively, ܸ ൌ ͵ is the number 
of input variables; ܿ௡ǡ௜ሺݐሻ (i.e. ܾଵଵǡ௜ሺݐሻǡ ܾଵଶǡ௜ሺݐሻǡ ܾଵଷǡ௜ሺݐሻ) denote 
the time-varying parameters, and ,n i  represent ݔሺݐ െ݅ሻǡ ݐሺݕ െ ݅ሻǡ ݊ െ݅ሻ, when ݐሺݖ ൌ ͳǡ ʹǡ ͵, respectively. Then the 
model can be expanded as 
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where ߙ௡ǡ௜ǡ௠ denote the time-invariant expansion parameters of 
basis functions ߮௠ሺݐሻ, ܯ is the number of the basis sequences, ߰ሺݐሻ ൌ ሾ߯௑ሺݐሻǡ ߯௒ሺݐሻǡ ߯௓ሺݐሻሿ்  is a ሺIଵ ൅ Iଶ ൅ Iଷሻ ൈ ܯ ൈ ͳ  di-
mensional regression vector, in which ߯௑ሺݐሻ ൌ ሾݔሺݐ െͳሻ߶ሺݐሻ் ǡ ݐሺݔ െ ʹሻ߶ሺݐሻ் ǡ ڮ ǡ ݐሺݔ െ Iଵሻ߶ሺݐሻ்ሿ , ߯௒ሺݐሻ ൌሾݕሺݐ െ ͳሻ߶ሺݐሻ் ǡ ݐሺݕ െ ʹሻ߶ሺݐሻ் ǡ ڮ ǡ ݐሺݕ െ Iଶሻ߶ሺݐሻ்ሿ , and ߯௓ሺݐሻ ൌ ሾݖሺݐ െ ͳሻ߶ሺݐሻ் ǡ ݐሺݖ െ ʹሻ߶ሺݐሻ் ǡ ڮ ǡ ݐሺݖ െ Iଷሻ߶ሺݐሻ்ሿ  
with ߶ሺݐሻ ൌ ሾ߮ଵሺݐሻǡ ߮ଶሺݐሻǡ ڮ ǡ ߮ெሺݐሻሿ், the expansion coeffi-

cient vector is ߠ ൌ ଵǡଵǡଵǡߙൣ ڮ ǡ ଵǡ୍భǡெߙ ǡ ڮ ǡ ௏ǡଵǡଵǡߙ ڮ ௏ǡ୍ೇǡெ൧்ߙ
, 

and the upper script ܶ represents the transpose of a vector. The 
initial time-varying model then becomes a time-invariant re-
gression problem, since all ߙ௡ǡ௜ǡ௠ are now time invariant. 

In practice, a proper selection of the basis functions is vital to 
ensure the identified model performance. A good suggestion is 
to use multiple wavelet basis functions to effectively track both 
rapid and slow parameter variations in time-varying processes 
[27]. Thus, in this work, multi-wavelet basis functions are ap-
plied to approximate the time-varying parameters in (3) as 
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where ߦ௞ǡ௝௥ ሺڄሻ are wavelet basis functions, with the shift indices ݇ א Ȟ௥ ǡ Ȟ௥ ൌ ሼ݇ǣ െݎ ൑ ݇ ൑ ʹ௝ െ ͳሽ and wavelet scale ݆, ߚ௡ǡ௜ǡ௞௥  
are the associated expanded basis function parameters which 
are time invariant, ݎ denotes the order of the basis functions, 
and the function variable ݐȀܰ is normalised within ሾͲǡͳሿ. 

Cardinal B-splines are an important class of wavelet basis 
functions that simultaneously possess three remarkable prop-

erties, namely compactly supported, analytically formulated 
and multiresolution analysis oriented, which enable the opera-
tion of the wavelet decomposition to be more convenient [39]. 
Taking the cardinal B-splines as the basis function, the ߦ௞ǡ௝௥ ሺڄሻ 
can be expressed by the ݎ-th order B-spline ܤ௥  as ߦ௞ǡ௝௥ ሺݑሻ ൌʹ௝Ȁଶܤ௥ሺʹ௝ݑ െ ݇ሻ, where ݆, ݇ are the dilated and shifted ver-
sions of wavelet ܤ௥ . Generally ݆ is chose to be 3 or a larger 
number in many B-splines applications [35], and a practical 
selection of the wavelets are ൛ߦ௞ǡ௝௥ ǣ ݎ ൌ ͵ǡͶǡͷൟ, the detail descrip-
tion of B-splines properties can be found in [40]. The decom-
position (5) can easily be transformed into the form of (4), 
where the collection ሼ߮௠ሺݐሻǣ ݉ ൌ ͳǡʹǡ ڮ ǡ ሽܯ  is replaced by 
the union of multi-B-splines families σ σ ௞ǡ௝௥ߦ ሺݑሻ௞א୻ೝ௥ , then the 
TVARX model is rewritten by 
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where Ȳ்ሺݐሻ is the expanded term vector at time ݐ and ߜ is the 
corresponding time-invariant parameter vector. 

Equation (6) indicates that the multi-wavelet basis function 
expansion method converts the identification of the time 
-varying model (3) into a time-invariant regression problem. 
However, the number of candidate model terms in Ȳ்ሺݐሻ can 
be very large if the number of involved wavelet basis functions ݎ, the wavelet scale ݆ or the maximum lags Iଵǡ Iଶǡ Iଷ are large; as 
a consequence, the initial full regression model (6) is often 
redundant, ill-conditioned and not ready for direct use. Thus, 
selecting significant terms from the pool of the expanded re-
gressors and building a sparse model structure is highly re-
quired, and this will be introduced in the next section. 

B. The UROLS algorithm for TVARX model identification in 
TF-CGC analysis 

The identification of the TVARX model includes two steps: 
determining the model structure and estimating the associated 
parameters. In this section, a new method, referred to as ultra- 
regularized orthogonal least squares (UROLS), is proposed for 
time-varying model identification; it incorporates the following 
three approaches: the ultra-least squares (ULS) metric, the 
regularized orthogonal least squares (ROLS) algorithm, and 
adjustable prediction error sum of squares (APRESS). 

For generic regression problems, the least squares loss 
function aims to achieve the best model fitting on the Lebesgue 
space ܮଶሺሾͲǡ ܶሿሻ, where ሾͲǡ ܶሿ is the time span of signals, and 
the model that minimizes the square of the ܮଶ norm is to be 
identified. The ܮଶ norm, only measures the similarity of two 
functions as a whole, cannot characterize the local distribution 
difference at each time instance, thus neglects some important 
information of details in shape [30]. The absence of this crucial 
information might lead to a model structure which cannot suf-
ficiently represent the inherent dynamics of the data (and 
therefore the associated system) especially when the system is 
not persistently excited. It is known that most physical systems 
behave mainly as a low-pass filter, and are actually defined on 
the subspace of ܮଶሺሾͲǡ ܶሿሻ , that is, the Sobolev space ܪௗሺሾͲǡ ܶሿሻ ൌ ሼݑሺݐሻ א ଶሺሾͲǡܮ ܶሿሻȁܦజݑ א ଶሺሾͲǡܶሿሻǡܮ  ߭ ൌͳǡʹǡ ڮ ǡ ݀ሽ, where the weak derivatives ܦజݑ up to ݀-th are also ܮଶ  integrable [31]. Thus, a stricter metric defined as ݑு೏ ൌටσ ԡܦజݑԡଶଶௗజୀଵ  [30], which can reveal the entire useful infor-

mation of observations realized in the Sobolev space, is used in 
this study. 

Based on the stricter norm, a new ULS criterion for identi-
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fying model (6) can be expressed by 
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where ݑ௡ǡ௜ǡ௞௥ ሺݐሻ ൌ ௞ǡ௝௥ߦ ሺݐȀܰሻ ,n i  are the expanded terms, ݔҧజ 

and ൫ݑത௡ǡ௜ǡ௞௥ ൯జ
 represent weak derivative expressions of the 

signal and model terms, respectively. Given sampled data with 
discrete time ݐ ൌ ͳǡʹǡ ڮ ǡ ܰ , the discrete form of ݔҧజ and ൫ݑത௡ǡ௜ǡ௞௥ ൯జ

 can be denoted as ݔҧజሺ݌ሻ ൌ σ ሻݐሺݔ ഥ߱ሺజሻሺݐ െ ሻ௣ା௡బ௧ୀ௣݌  

and ൫ݑത௡ǡ௜ǡ௞௥ ൯జሺ݌ሻ ൌ σ ௡ǡ௜ǡ௞௥ݑ ሺݐሻ ഥ߱ሺజሻሺݐ െ ሻ௣ା௡బ௧ୀ௣݌ , where ഥ߱ሺజሻሺݐሻ 
is the ߭-th derivative of a normalized test function, ݊଴ is the 
support of the test function and ݌ ൌ ͳǡʹǡ ڮ ǡ ܰ െ ݊଴. This study 
uses the ሺ݀ ൅ ͳሻ-th order B-splines which have finite support 
and continuous ݀-th order derivatives as the test functions. The 
detailed deducing process of (7) is illustrated in Supplementary 
material-A. 

As presented in (7), the loss function of ULS contains two 
parts: the first part is the standard least squares criterion which 
focuses on the similarity over the whole data, while the second 
part describes the identity of the weak derivatives which es-
sentially emphases the unity in shape. The second part, which 
fully takes into account the agreement in shape of signals, 
makes this new criterion different to most traditional methods 
for model structure detection. Any detailed difference in the 
distribution can be characterized in the second part of the new 
cost function (7). Thus, the criterion ܬ௎௅ௌ is a more effective 
metric for model identification than the conventional least 
squares criterion. The regression problem (6) can then be 
converted to solve a new ULS problem, and the matrix form 
can be represented as 
 ULS ULSX e   (8) 

where 

        1

01 , , , 1 , ,
Td

ULSX x x N x x N n     (9) 

 

   

   

       

       

1, , , ,

1, , , ,

1 1

1, , , ,

1, , , ,

1 1

1 1

r r

i k V i k

r r

i k V i k

r rULS
i k V i k

d dr r

i k V i k

u u

u N u N

u u

u N u N

 

 
 
 
 
 
 
 
 
 
  

 (10) 

 1, , , ,, ,
Tr r

i k V i k       (11) 

and ݁ is the approximation error vector. 
Now the TVARX model (3) is transformed into another 

problem of constructing model (8), which can be solved by 
means of a model structure detection method such as the well- 
known OLS (or OFR) algorithm [41, 42]. Although the OLS 
has proven to be an efficient procedure for model construction 
and refinement, the use of the parsimonious principle alone 
cannot entirely avoid overfitting since small-sized models 
constructed may still fit to the noise when the systems are 
highly noisy [29]. In addition, the ULS criterion may ignore the 
interference of overlapping information that might lead to an 
ill-conditioned problem during the forward regression process 
[43]. In order to alleviate such a dilemma, an effective ze-
ro-order ROLS (ܴܱܵܮ଴) technique combining the zero-order 
regularization with the OLS [28, 29] is used in this work, where 

a sparse model structure with good generalization performance 
and low computational cost can be constructed. 

In (8), ܺ௎௅ௌ is a vector of system outputs and Ȱ௎௅ௌ is a ma-
trix formed by candidate terms (regressors). Denote all the 
candidate bases by a dictionary ܦ ൌ ൛ߞ௡ǡ௜ǡ௠ǣ ݊ ൌ ͳǡ ڮ ܸǢ ݅ ൌͳǡ ڮ IǢ ݉ ൌ ͳǡ ڮ ሻݐ௡ǡ௜ǡ௠ሺߞ ൟ, whereܯ ൌ ௡ǡ௜ǡ௞௥ݑ ሺݐሻ, and the term 
selection procedure is to find a full dimensional subset ܦఎ ൌቄߞ௅ംǣ ߛ ൌ ͳǡʹǡ ڮ ǡ Ǣߟ ఊܮ א ሼͳǡʹǡ ڮ ሺIଵ ൅ Iଶ ൅ Iଷሻ ൈ ሽቅܯ ሺߟ ا ሺIଵ ൅ Iଶ  ൅Iଷሻ ൈ -ሻ, so that ܺ can be approximated via a linear combiܯ
nation of ߞ௅ം as ܺ ൌ ௅భߨ௅భߞ ൅ ڮ ൅ ௅ആߨ௅ആߞ ൅ ݁ or in a compact 
matrix form ܺ ൌ ȯȫ ൅ ݁ , where the regression matrix ȯ ൌቂߞ௅భ ǡ ௅మߞ ǡ ڮ ǡ ௅ആቃߞ , and ȫ ൌ ቂߨ௅భ ǡ ௅మߨ ǡ ڮ ǡ ௅ആቃ்ߨ

 is the associated 
parameter vector. Assume that the matrix Ȱ௎௅ௌ is full column 
rank and can be orthogonally decomposed as Ȱ௎௅ௌ ൌ ߉ܪ , 
where ܪ ൌ ሾ݄ଵǡ ݄ଶǡ ڮ ݄ࣧሿ  is a matrix with ࣧ  orthogonal 
columns satisfying ݄௜் ௝݄ ൌ Ͳ  when ݅ ് ݆ , ࣧ ൌ ሺIଵ ൅ Iଶ ൅Iଷሻ ൈ  is an upper triangular matrix [28]. The model (8) ߉ and ,ܯ
can then be expressed as ܺ௎௅ௌ ൌ ߉ܪ ή ȣ ൅ ݁ ൌ ܹܪ ൅ ݁, where ܹ ൌ ሾݓଵǡ ଶǡݓ ڮ ǡ ሿ்ࣧݓ  is the orthogonal regression weight 
vector which satisfies the relation ܹ ൌ ߉ ή ȣ. 

For constructing a parsimonious model structure, here we 
further propose an ultra-regularized least squares (URLS) error 
criterion to improve the generalization capacity 

 2
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 (12) 

where ߤ ൒ Ͳ is the regularization parameter, which can be se-
lected by adopting a Bayesian interpretation via an iterative 
procedure [28]. This study randomly sets an initial value ߤ (൒Ͳ), and chooses an appropriate ߤ value after a number of itera-
tions. Practically the inclusion of the ULS element in the URLS 
metric can help improve the dynamic detection precision, and 
the inclusion of the regularization error helps alleviate overfit-
ting and eliminate the overlapping information. The criterion 
(12) can be normalized by ܺ௎௅ௌ் ܺ௎௅ௌ and further simplified to 
obtain the zero-order regularized error reduction ratio (ܴܴܴܧ଴) 
below [28] to determine significant terms 

    
2

0 ,
,

, ,
m

m
m m

X h
RERR X h

X X h h 



 (13) 

where the symbol ڄۃǡۄڄ denotes the inner product of two vectors. 
Furthermore, a modified cross-validation criterion named ad-
justable prediction error sum of squares (APRESS) is inte-
grated into the UROLS algorithm to decide the termination of 
the term search process [36, 37] 

     2
/gAPRESS g p g r N    

 (14) 

where pሺgሻ ൌ ͳȀሺͳ െ g߸Ȁܰሻଶ with adjustable parameter ߸ ൒ͳ is the penalty function, ฮݎ୥ฮଶ ൌ ԡܺԡଶ െ σ ൫௥ഒషభ೅ ௛ഒ൯మ௛ഒ೅௛ഒ୥చୀଵ ǡ ଴ݎ ൌ ܺ is 

the residual sum of squares, and ฮݎ୥ฮଶȀܰ  denotes the 
mean-squared-errors (MSE) obtained from the associated g-term model. The term selection process is terminated when 
the APRESS statistic reaches the minimum at g ൌ  and yields ,ߟ
a ߟ-term model. The effect of ߸ on the results is detailed in [36, 
37]. The pseudocode for the UROLS-APRESS and the detailed 
selection procedure is presented in Supplementary material-B. 

As for the model order (lags of system variables) determi-
nation problem, a possible solution is to minimize a metric that 
balances the residual error caused by the model against the 
number of effective coefficients. In this study, the appropriate 
model order size is determined by minimizing the Akaike in-
formation criterion (AIC) defined as [44] 
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where ȭ௜  is the variance of the model residuals calculated from 
the corresponding ݅-order model, and ܸ denotes the number of 
input variables as before. 

Finally, the selected regression matrix ȯ ൌ ቂߞ௅భ ǡ ௅మߞ ǡ ڮ ǡ  ௅ആቃߞ
can be orthogonally decomposed as ȯ ൌ ఎܱܴఎ, where ఎܱ is a 
matrix with ߟ orthogonal columns and ܴఎ is a ߟ ൈ  unit upper ߟ
triangular matrix. The corresponding parameter vector ȫ ൌቂߨ௅భ ǡ ௅మߨ ǡ ڮ ǡ ௅ആቃ்ߨ

 can be calculated from the formula ܴఎȫ ൌ ܷ, 

where ܷ ൌ ൫ ఎ்ܱ ఎܱ൯ିଵܴఎ் ܺ, and the time-varying coefficients in 
the TVARX model (3) can thus be recovered using the resultant 
estimates. Similar to (3), other multivariate TVARX processes 
expressed in (1)-(2) can also be identified by using the pro-
posed multiwavelet-based UROLS-APRESS method. 

C. The formulation of TF-CGC analysis 

The proposed UROLS method can provide more accurate 
TVARX models for nonstationary time series with respect to ݔሺݐሻ, ݕሺݐሻ and ݖሺݐሻ given in (1)-(2), and this is the most con-
siderable basis of TF-CGC analysis. The formulation of 
TF-CGC from ܻ to ܺ conditional on ܼ denoted as ܥܩ௒՜௑ȁ௓ሺݐǡ ݂ሻ 
is provided in this section. 

In (1), the initial noise terms ݁ଵሺݐሻ and ݁ଶሺݐሻ can be corre-
lated with each other and their time-varying covariance matrix 

is ઱ଵ ൌ ቂ൫ȭଵሺݐሻ  ȟଵሺݐሻ൯் ǡ ൫ȟଵሺݐሻ  ȭଶሺݐሻ൯்ቃ்
, specifically ȭଵሺݐሻ ൌݎܽݒ൫݁ଵሺݐሻ൯, ȭଶሺݐሻ ൌ ሻݐሻ൯ and ȟଵሺݐ൫݁ଶሺݎܽݒ ൌ ሻǡݐ൫݁ଵሺݒ݋ܿ ݁ଶሺݐሻ൯ are 

calculated using a recursive expression ߪଶሺݐ ൅ ͳሻ ൌሺͳ െ ሻݐଶሺߪሻߩ ൅ ሻ with Ͳݐଶሺݑሻݐଵሺݑߩ ൑ ߩ ൏ ͳ [18]. Generally, 
selecting ͲǤͲͳ ൑ ߩ ൑ ͲǤͲͷ  can well balance the adaptation 
speed and the variance of the estimation when modelling EEG 
data [32]. Setting ݑଵሺݐሻ ൌ ሻݐଶሺݑ ൌ ݁ଵሺݐሻ ሻݐଵሺݑ , ൌ ሻݐଶሺݑ ൌ݁ଶሺݐሻ, and ݑଵሺݐሻ ൌ ݁ଵሺݐሻǡ ሻݐଶሺݑ ൌ ݁ଶሺݐሻ, yields time-varying 
variances and covariance of the corresponding prediction errors ȭଵሺݐሻ, ȭଶሺݐሻ and ȟଵሺݐሻ, respectively. Define the lag operator ߣ 
to be ݔߣሺݐሻ ൌ ݐሺݔ െ ͳሻ, then ߣ௜ݔሺݐሻ ൌ ݐሺݔ െ ݅ሻ and the asso-
ciated time-varying lag polynomial is ܽሺߣǡ ሻݐ ൌ σ ܽ௜ሺݐሻߣ௜௜୍ୀ଴ , 
where I is the lag index of ܽሺݐሻ. Equation (1) can be rewritten 
as 
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with ܽଵଵǡ଴ሺݐሻ ൌ ܽଶଶǡ଴ሺݐሻ ൌ ͳ , ܽଵଶǡ଴ሺݐሻ ൌ ܽଶଵǡ଴ሺݐሻ ൌ Ͳ . The 
independence of ݁ଵሺݐሻ and ݁ଶሺݐሻ is necessary for the definition 
of spectral domain causality [4]. Thus the normalization pro-
cedure introduced by Geweke [38] is exploited and developed 
to remove the correlation and further make the identification of 
an intrinsic part and a causal part possible in time-varying 
cases. The transformation consists of left-multiplying ܲሺݐሻ ൌሾሺͳ  Ͳሻ் ǡ ሺെȟଵሺݐሻȀȭଵሺݐሻ   ͳሻ்ሿ் on both sides of (16) at each 
time index [45], and the resulting normalized form is given as 
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with ܣଵଵǡ଴ሺݐሻ ൌ ሻݐଶଶǡ଴ሺܣ ൌ ͳ, ܣଵଶǡ଴ሺݐሻ ൌ Ͳ, ܣଶଵǡ଴ሺݐሻ generally 
not being zero. Now cov൫ߝଵሺݐሻǡ ሻ൯ݐଶሺߝ ൌ Ͳ (the noise terms are 
independent), and note that var൫ߝଵሺݐሻ൯ ൌ ȭଵሺݐሻ. 

In (2), the time-varying covariance matrix of the noise terms 
can be estimated by the recursive computation similarly as ઱ଵ, 

and is ઱ଶ ൌ ൤ቀȭ௫௫ሺݐሻǡ ȭ௫௬ሺݐሻǡ ȭ௫௭ሺݐሻቁ் ǡ ቀȭ௬௫ሺݐሻǡ ȭ௬௬ሺݐሻǡ ȭ௬௭ሺݐሻቁ் ǡ ቀȭ௭௫ሺݐሻǡ ȭ௭௬ሺݐሻǡ ȭ௭௭ሺݐሻቁ்൨்
. The explicit formula of the trans-

formation matrix (ܳሺݐሻ) to normalize TVARX model (2) is 
given in Supplementary material-C. Then the associated nor-
malized equations for (2) can be expressed as 
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where the noise terms are now independent to each other, and 
their time-varying variances are ȭ෨௫௫ሺݐሻ , ȭ෨௬௬ሺݐሻ  and ȭ෨௭௭ሺݐሻ , 
respectively. According to the following crucial relations of 
conditional causality in the time and frequency domain derived 
by Geweke based on the relations of different variances [38] 
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the problem of measuring the time-dependent spectral causal 
connectivity ܥܩ௒՜௑ȁ௓ሺݐǡ ݂ሻ can be converted to the calculation 
of the causal influence from ܻߝଶ  to ߝଵ , i.e. ܥܩ௒ఌమ՜ఌభሺݐǡ ݂ሻ . In 
order to obtain ܥܩ௒ఌమ՜ఌభሺݐǡ ݂ሻ, the variance of ߝଵ  is next de-
composed in the time and frequency domain. Time-frequency 
transforming both sides of (17) leads to 
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where the components of the coefficient matrix ࡭ሺݐǡ ݂ሻ are 
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with ݆଴ ൌ ξെͳ and ௦݂ being the sampling frequency. Similarly, 
calculating the time-varying spectral decomposition of (18) and 
representing it as 
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Recasting (20) and (21) into the transfer function format below 
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 (23) 

where the TF transfer function ࡳሺݐǡ ݂ሻ and ࡷሺݐǡ ݂ሻ are the in-
verse of the normalized coefficient matrix  ࡭ሺݐǡ ݂ሻ and ࡮ሺݐǡ ݂ሻ, 
that is, ࡳሺݐǡ ݂ሻ ൌ ǡݐଵሺି࡭ ݂ሻ and ࡷሺݐǡ ݂ሻ ൌ ǡݐଵሺି࡮ ݂ሻ. 

Assuming ܺሺݐǡ ݂ሻ and ܼሺݐǡ ݂ሻ from (22) are identical to that 
from (23) [45], equations (22) and (23) are combined to yield 
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 (24) 

where বሺݐǡ ݂ሻ ൌ ǡݐଵሺିࡳ ݂ሻࡷሺݐǡ ݂ሻ. The time-dependent spectrum 
of ߝଵ, i.e. ܧଵሺݐǡ ݂ሻ, can thus be decomposed into the following 
three parts based on (24) [45] 
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  
 (25) 

where the upper script ‘ * ’ denotes complex conjugate and 
transpose of a matrix, the first term can be regarded as the in-
trinsic power, and the remaining two terms represent the com-
bined causal relations from ܻ and ߝଶ. Hence the causality from ܻߝଶ to ߝଵ, namely the final expression for time-varying spectral 
causality ܥܩ௒՜௑ȁ௓ሺݐǡ ݂ሻ is 
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, , ln
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S t f
GC t f GC t f

t f t t f
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  
 (26) 

Note that the spectral function in (26) is a continuous function 
of frequency ݂ , and can be applied to measure the spectral 
causality at any desired frequency from 0 up to the Nyquist 
frequency ௦݂Ȁʹ. Generally the frequency resolution is not infi-
nite, but relevant to the associated parameter approximations 
and underlying model order [22]. A hypothesis test is required 
to determine whether the causal interaction in the stochastic 
processes is significant. The thresholds for statistical signifi-
cance are computed from surrogate data by a permutation 
procedure under a null hypothesis of no interdependence at the 
significance level ݌ ൏ ͳͲି଺. 

The new proposed method for TF-CGC decomposition can 
now be summarized as follows: 

1) Set up the multivariate TVARX models (1) and (2), which 
are to be identified for TF-CGC analysis; expand all the 
time-varying parameters in each model using multiple B-spline 
basis functions and construct the corresponding time-invariant 
regression models (6). 

2) Calculate ሼݔҧజሽజୀଵௗ  and ቄ൫ݑത௡ǡ௜ǡ௞௥ ൯జቅజୀଵௗ
 by modulating the 

output signals and expanded terms with the normalized test 

functions ൛ ഥ߱ሺజሻൟజୀଵௗ
 and then get the ULS problem (8). 

3) Select the significant term with the largest ܴܴܴܧ଴ value as 
the first term and remove the selected expanded terms from the 
candidate dictionary; repeat the process and choose the ߫-th 
term by orthogonalizing all remained expanded terms with the ߫ െ ͳ  selected terms and calculating the associated ܴܴܴܧ଴ 
value, and the term with the largest value is selected. 

4) Terminating the term search process via APRESS statistic 
in (14), and the model orders are decided through AIC in (15). 

5) Approximate the coefficients of the selected model terms, 
and estimate the initial time-varying parameters using formula 
(5), hence the essential TVARX models for TF-CGC decom-
position can now be established. 

6) Normalize the bivariate and trivariate TVARX models by ܲሺݐሻ and ܳሺݐሻ respectively to make the noise variables inde-
pendent with each other, and calculate the spectrum represen-

tation of these normalized models. 
7) Achieve the calculation of TF-CGC according to (25) and 

(26), and the statistical GC threshold is also estimated to get the 
significant TF-CGC relations. 

 

III. SIMULATIONS AND EXPERIMENTS 

In this section, the performance of the proposed multiwavelet 
-based UROLS-APRESS TF-CGC approach is firstly demon-
strated by using two simulation examples with various feature 
dimensions relative to cortical activities, and the effectiveness 
is compared with the state-of-the-art methods including the 
short windowing, adaptive RLS, OLS, UOLS and ROLS algo-
rithms. The proposed method is further applied to real EEG 
signals at source-level. Specifically, the EEG source wave-
forms reconstructed at significant MI related cortical regions of 
interest (ROIs) are studied to detect oscillatory dynamic causal 
activities in the neocortical sensorimotor network. 

A. Simulations and results 

1) TF-CGC detection with various causality changes 

Consider the following TVARX processes 
               
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        

    

    

  (27) 

where ݁௫ሺݐሻ, ݁௬ሺݐሻ, ݁௭ሺݐሻ are three independent Gaussian dis-
tributed white noises ݁௫ሺݐሻ̱ܰሺͲǡ ௫ଶሻߪ , ݁௬ሺݐሻ̱ܰ൫Ͳǡ ௬ଶ൯ߪ , ݁௭ሺݐሻ̱ܰሺͲǡ ௫ଶߪ ௭ଶሻ withߪ ൌ ͲǤͲͳ, ߪ௬ଶ ൌ ͲǤͲͳ, ߪ௭ଶ ൌ ͲǤͲͲͳ, re-
specticely. The discrete time index ݐ is set to be equivalent to a 
sampling rate of 200 Hz, and each process consists of 2000 data 
points (i.e. ௦݂ ൌ ʹͲͲ Hzǡ ͳ ൑ ݐ ൑ ʹͲͲͲǡ ͳ ௦݂Τ ൑ Ȁݐ ௦݂ ൑ ͳͲ s ). ܽଵሺݐሻ and ܽଶሺݐሻ are time-varying coupling strengths (CS) of 
interactions shown in Fig. 1 (a) and given as 
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 (28) 

 
Fig. 1(b) is the theoretical values of TF-CGC in this example, 
which are calculated based on model (27) with true values of ܽଵሺݐሻ and ܽଶሺݐሻ and the TF-CGC formulas. It is obvious that 
the process ݔሺݐሻ is influenced by ݕሺݐሻ through ܽଵሺݐሻ with fast 
oscillating strength, and is also interacted by ݖሺݐሻ with con-
tinuously increasing intensity in the first half of the process and 
decreasing intensity in the second half. Note that apart from the 
non-null causal interactions (i.e. ܥܩ௒՜௑ȁ௓ሺݐǡ ݂ሻ  and ܥܩ௓՜௑ȁ௒ሺݐǡ ݂ሻ), the measurements for null connections between 
the processes are not displayed, because no indirect causal re-
lations are involved in this model. This example aims to 
demonstrate the effectiveness of the proposed method in de-
tecting dynamic causalities with both slow and fast changes in 
TF domain, and the efficiency to identify indirect influences is 
separately illustrated in the next example. 

The ͵̱͸-th order B-splines (i.e. ߦ௞ǡ௝௥ ǣ ݎ ൌ ͵ǡͶǡͷǡ͸) with scale 
index ݆ ൌ Ͷ are used to estimate the oscillating and continuous 
varying parameters of the model. The output signal and all the 
expanded terms are modulated with the first and second order 
derivatives of the cubic B-splines as test functions. Then the 
UROLS algorithm aided by APRESS is applied to construct the 
parsimonious model structure and recover the associated pa-
rameters. Based upon the identified TVARX models, 
time-varying causal influences from ݕሺݐሻ and ݖሺݐሻ to ݔሺݐሻ in 
TF domain are calculated by means of the proposed parametric 
TF-CGC method. The detected TF-CGC distributions are given 
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in Fig. 2(f). For comparison, the model in (27) is also estimated 
by using the following algorithms: the sliding short-window 
spectral analysis with window length of 50 samples, the RLS 
with forgetting factor 0.94, the OLS, UOLS and ROLS with 
B-splines; and the corresponding TF-CGC detection results are 
shown in Fig. 2(a)-(e), respectively. 

 

 
(a) 

 
(b) 

Fig. 1.  Description for model (27). (a) The time courses of dynamic coupling 
strengths (CS). (b) The corresponding theoretical TF-CGC values. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 2.  The comparison of the TF-CGC results for model (27) using different 
methods. (a) Short-windowing. (b) RLS. (c) OLS with B-splines. (d) UOLS 
with B-splines. (e) ROLS with B-splines. (f) UROLS-APRESS with B-splines 

. 

The TF-CGC estimates by the short-window spectral method 
are presented in Fig. 2(a), where the causality changes along the 
time course can be roughly measured, but the results of the 

causal spectral estimation are not very well this indicates  the 
resolution in time and frequency domain cannot be ensured 
simultaneously. Fig. 2(b) shows that the RLS method reflects 
monotonous changing interaction from ݖሺݐሻ to ݔሺݐሻ but fails to 
track oscillatory varying connectivity from ݕሺݐሻ to ݔሺݐሻ. Fig. 
2(c) indicates that the parametric TF-CGC measure using OLS 
with B-splines can detect the oscillating as well as ramp-shaped 
variations in causal influences but also produces false positive 
values at the wrong frequency without a desirable TF precision. 
The causal interactions detected by multiwavelet-based UOLS 
in Fig. 2(d) provides more precise TF causal results than the 
OLS for both the constructed changing interactions, but there 
still exist false positive values. Fig. 2(e) gives the causality 
obtained from ROLS with B-splines. The designed two types of 
varying influences are reflected in the results with almost no 
false positive values, but the causalities at some TF points are 
not detected and the measurements are much smaller than the 
theoretical values. The results shown in Fig. 2(d) and (e) shows 
the results produced by the UOLS and ROLS, which can be 
explained as a result of low specificity (over-fitting) and low 
sensitivity (under-fitting) in GC detection respectively. In 
contrast, the proposed method using UROLS with B-splines 
aided by APRESS (Fig. 2(f)), can better reveal the dynamic 
interactions containing both fast oscillating and smooth con-
tinuous causal variations at almost all time and frequency 
points with high temporal and spectral precision. 

In order to validate the effectiveness of the proposed method 
quantitatively, the mean absolute error (MAE), root mean 
squared error (RMSE) and peak signal to noise ratio (PSNR) of 
the TF-CGC measurements with respect to the corresponding 
theoretical values are defined below 
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  1020log /PSNR MAX RMSE  (31) 

where ܥመሺݐǡ ݂ሻ is the measurements of TF-CGC ܥሺݐǡ ݂ሻ at each 
time and frequency point, ܰ  is the data length and ܨ  is the 
frequency range, ܺܣܯ denotes the maximum strength of the 
corresponding theoretical GC distribution. The associated re-
sults are given in Table I. It is obvious that the calculated MAE, 
RMSE values of the proposed method are smaller than other 
five methods and the corresponding PSNR values are the 
largest one among all approaches, which statistically validate 
that the proposed scheme possesses better ability for tracking 
dynamic connectivity in both temporal and spectral domain. 
 

TABLE I 
A COMPARISON OF THE DETECTION RESULTS FOR EXAMPLE (1) 

TF-CGC Method MAE RMSE PSNR 

ǡݐ௒՜௑ȁ௓ሺܥܩ ݂ሻ 

Short-windowing 0.3104 0.6380 22.8912 
RLS 0.3357 0.8212 20.6469 
OLS with B-splines 0.2179 0.5705 23.8114 
UOLS with B-splines 0.1959 0.4440 25.9890 
ROLS with B-splines 0.1816 0.4997 24.9615 
UROLS with B-splines 0.1642 0.4269 26.3295 

ǡݐ௓՜௑ȁ௒ሺܥܩ ݂ሻ 

Short-windowing 0.3494 0.5565 19.7380 
RLS 0.2057 0.4541 21.5172 
OLS with B-splines 0.1936 0.4209 22.1777 
UOLS with B-splines 0.1739 0.3765 23.1451 
ROLS with B-splines 0.1630 0.4016 22.5839 
UROLS with B-splines 0.1578 0.3438 23.9337 

Note: bold values indicate the best results. 
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TABLE II 
ANOVA F TEST FOR EXAMPLE (1) 

TF-CGC Method Ave MAEേStd ݌ଵ F ݌ଶ 

ǡݐ௒՜௑ȁ௓ሺܥܩ ݂ሻ 

Short-windowing 0.3033േ0.0176 <0.01 

105.15 <0.01 

RLS 0.3344േ0.0069 <0.01 
OLS with B-splines 0.2508േ0.0192 <0.01 
UOLS with B-splines 0.2400േ0.0229 <0.01 
ROLS with B-splines 0.2381േ0.0168 0.047 
UROLS with B-splines 0.2263േ0.0229 / 

ǡݐ௓՜௑ȁ௒ሺܥܩ ݂ሻ 

Short-windowing 0.3437േ0.0218 <0.01 

118.80 <0.01 

RLS 0.2845േ0.0132 <0.01 
OLS with B-splines 0.2514േ0.0170 <0.01 
UOLS with B-splines 0.2295േ0.0204 0.011 
ROLS with B-splines 0.2265േ0.0254 0.037 
UROLS with B-splines 0.2131േ0.0201 / 

Note: ݌ଵ refers to p-values obtained from the pairwise comparison between the 
proposed method and other five methods; ݌ଶ denotes p-values obtained from 
the comparison between all the six methods; bold values denote the best results. 

 
The efficiency of the proposed method shown in Table I is 

further confirmed by a statistical Analysis of Variance 
(ANOVA). Specifically, 20 different datasets, which satisfy the 
data size requirement for a high level reliability study [46], are 
generated according to model (27) with random selected noise 
seeds. Time-frequency causalities can be measured by all six 
comparing algorithms on each produced dataset, and the esti-
mation results are statistically tested to check the significance 
of effectiveness of the proposed algorithm. The corresponding 
analysis results are given in Table II. It can be observed that the 
ANOVA F-test value between methods are much larger than 
the threshold value under 99% confidence interval (݌ଶ ൏ ͲǤͲͳ), 
and the p-values of the proposed method vs. other methods are 
all less than 0.05 (݌ଵ ൏ ͲǤͲͷ), indicating significant excellent 
causality detection power of the proposed method. 
 
 

2) TF-CGC detection with indirect interactions 
Consider a three-node network with nonstationary stochastic 

processes jointly described by the following system 
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 (32) 

where ݁௫ሺݐሻ , ݁௬ሺݐሻ  and ݁௭ሺݐሻ  are Gaussian distributed noise 
with zero means and variances ͲǤͲͳ , ܾଵሺݐሻ  and ܾଶሺݐሻ  are 
time-varying coupling strengths from ݔሺݐሻ  to ݕሺݐሻ  and from ݕሺݐሻ to ݖሺݐሻ respectively, and the time index ݐ is assumed to be 
equivalent to ௦݂ ൌ ʹͲͲ Hz. Setting the coupling strengths vary 
according to the profiles shown in Fig. 3(a) and given by (32), 
20 trials of data with each trial containing 1000 points (i.e. ͳ ൑ݐ ൑ ͳͲͲͲ) are produced in this case. Fig. 3(a) also illustrates 
the diagram of connectivity among the simulated three nodes. 
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 (33) 

According to Fig. 3(a) and (33), ݔሺݐሻ has a causal relation on ݕሺݐሻ in the first half of the simulation time interval, and ݕሺݐሻ 
drives ݖሺݐሻ in the second half in turn, moreover the dashed ar-
row means that ݔሺݐሻ has an indirect effect on ݖሺݐሻ mediated by ݕሺݐሻ . The corresponding theoretical values of TF-CGC are 
shown in Fig. 3(b). In the ideal case, except the piece-wise 
varying immediate impacts of ݔሺݐሻ  to ݕሺݐሻ  and ݕሺݐሻ  to ݖሺݐሻ 
with nonzero values, the other influences should be zero. Fig. 
4(a) and (b) shows the CGC analysis results in TF domain using 
the short-window analysis method with a window size of 40 
samples and the RLS with forgetting factor 0.90. The TF-CGC 
results detected by the B-splines based OLS, UOLS, ROLS, 
and the proposed UROLS-APRESS are displayed in Fig. 
4(c)-(f), respectively. 

 
(a) 

 
(b) 

Fig. 3.  Description for TVARX systems (32). (a) The time courses of dynamic 
coupling strengths (CS) and the diagram of interactions. (b) The corresponding 
theoretical TF-CGC values. 
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(f) 

Fig. 4.  The comparison of the TF-CGC results for system (32) using different 
methods. (a) Short-windowing. (b) RLS. (c) OLS with B-splines. (d) UOLS 
with B-splines. (e) ROLS with B-splines. (f) UROLS-APRESS with B-splines. 
 

TABLE III 
A COMPARISON OF THE DETECTION RESULTS FOR EXAMPLE (2) 

TF-CGC Method MAE RMSE PSNR 

ǡݐ௑՜௒ȁ௓ሺܥܩ ݂ሻ 

Short-windowing 0.1598 0.2152 19.3630 
RLS 0.2783 0.3431 15.3117 
OLS with B-splines 0.2050 0.2744 17.2535 
UOLS with B-splines 0.1320 0.2012 19.9496 
ROLS with B-splines 0.0933 0.2016 19.9310 
UROLS with B-splines 0.0743 0.1616 21.8529 

ǡݐ௑՜௓ȁ௒ሺܥܩ ݂ሻ 

Short-windowing 0.1329 0.1649 21.6761 
RLS 0.2511 0.2996 16.4902 
OLS with B-splines 0.1917 0.2738 17.2714 
UOLS with B-splines 0.1253 0.2072 19.6922 
ROLS with B-splines 0.0437 0.0647 29.8067 
UROLS with B-splines 0 0   

ǡݐ௒՜௑ȁ௓ሺܥܩ ݂ሻ 

Short-windowing 0.1108 0.1463 22.7133 
RLS 0.2402 0.3007 16.4568 
OLS with B-splines 0.1711 0.2600 17.7201 
UOLS with B-splines 0.1074 0.1852 20.6688 
ROLS with B-splines 0.0399 0.0624 30.1166 
UROLS with B-splines 0 0   

ǡݐ௒՜௓ȁ௑ሺܥܩ ݂ሻ 

Short-windowing 0.1301 0.1948 19.2307 
RLS 0.2744 0.3440 15.2885 
OLS with B-splines 0.2289 0.3188 15.9510 
UOLS with B-splines 0.1600 0.2506 18.0414 
ROLS with B-splines 0.0969 0.2060 19.7442 
UROLS with B-splines 0.0858 0.1853 20.6628 

ǡݐ௓՜௑ȁ௒ሺܥܩ ݂ሻ 

Short-windowing 0.1344 0.1879 19.5412 
RLS 0.2592 0.3264 15.7450 
OLS with B-splines 0.1882 0.2881 16.8296 
UOLS with B-splines 0.1232 0.2185 19.2335 
ROLS with B-splines 0.0513 0.0833 27.6080 
UROLS with B-splines 0 0   

ǡݐ௓՜௒ȁ௑ሺܥܩ ݂ሻ 

Short-windowing 0.1112 0.1580 21.0490 
RLS 0.2330 0.2928 16.6892 
OLS with B-splines 0.1688 0.2506 18.0422 
UOLS with B-splines 0.1169 0.1995 20.0212 
ROLS with B-splines 0.0386 0.0643 29.8595 
UROLS with B-splines 0 0   

 

The short-window spectral approach (Fig. 4(a)) gets unde-
sirable frequency distributions with low spectrum resolution for 
the non-null dynamic interactions (ܥܩ௑՜௒ȁ௓ሺݐǡ ݂ሻ and ܥܩ௒՜௓ȁ௑ ሺݐǡ ݂ሻ), and the estimated causal values for the null influences 
( ǡݐ௑՜௓ȁ௒ሺܥܩ ݂ሻǡ ǡݐ௒՜௑ȁ௓ሺܥܩ ݂ሻǡ ǡݐ௓՜௑ȁ௒ሺܥܩ ݂ሻǡ  and  ܥܩ௓՜௒ȁ௑ሺݐǡ ݂ሻ ) 
are not accurate as well. The classical RLS method (Fig. 4(b)) 
also generates incorrect reflections of the non-zero connectivity 
in addition to the spurious information leakages [47] among 
other signal pairs predicted to be zero, which is sensitive to 
noise and unable to overcome the effect of mutual sources due 
to the limited convergence speed. This problem is partly solved 
by the OLS algorithm (Fig. 4(c)), but spurious interactions as-
cribed to model fitting errors and leakages caused by mutual 
sources remain apparent. The UOLS method (Fig. 4(d)), alt-
hough obtains more accurate causalities than the OLS in TF 
domain, the over-fitting issue still cannot be well solved. The 
ROLS detection (Fig. 4(e)) alleviates the leakage issue to a 
negligible level, but the connection strengths from ݔሺݐሻ to ݕሺݐሻ 
and from ݕሺݐሻ to ݖሺݐሻ are much smaller than the theoretical 
values due to under fitting in models. By comparison, the 
proposed UROLS procedure (Fig. 4(f)) can exactly detect the 

indirect impacts with zero strengths and well reflect the 
piece-wise variations in causality. All these results show that 
the proposed approach appears to provide the most desired 
presentation of the transient causal connectivity. 

Similar to the previous example, the MAE, RMSE and PSNR 
of the TF-CGC estimates are presented in Table III. Obviously, 
the proposed scheme has a better measuring performance for 
both abruptly changing direct impacts and indirect influences 
compared with other five approaches, indicating the advantage 
of the proposed TF-CGC method in detecting time-varying 
causality changes for the coupled nonstationary systems. 

Table IV gives the ANOVA results of the proposed TF-CGC 
method and other five compared methods on the 20 single trial 
datasets. The smaller detection errors and significant p-values 
indicate that the proposed algorithm can achieve better detec-
tion performance than other five methods; this statistically 
demonstrates that the proposed algorithm can be an effective 
tool for multivariate time-varying directed connection analysis. 

To more explicitly demonstrate the TF resolution and 
pre-cision of the proposed method in detecting both direct and 
indirect connectivity, the time and frequency domain causality 
functions are compared with the mutual information and con-
ditional TE (time domain, see Fig. 5), Geweke spectral causal-
ity and dDTF (frequency domain, see Fig. 6) respec-tively. It is 
obvious that the proposed method outperforms the mutual in-
formation (no direction) and TE in terms of higher temporal 
resolution and more accurate causal strengths. The novel 
method is also superior to the Geweke spectral method and 
dDTF in that the proposed method completely eliminates in-
direct influences and more precise spectrum connection 
re-lations. These results further validate the efficiency of our 
proposed method for analyzing dynamic direct and indirect 
causal interactions in TF domain. 

TABLE IV 
ANOVA F TEST FOR EXAMPLE (2) 

TF-CGC Method Ave MAEേStd ݌ଵ F ݌ଶ 

ǡݐ௑՜௒ȁ௓ሺܥܩ ݂ሻ 

Short-windowing 0.2121േ0.0178 <0.01 

470.05 <0.01 

RLS 0.3359േ0.0113 <0.01 
OLS with B-splines 0.2576േ0.0284 <0.01 
UOLS with B-splines 0.1830േ0.0192 <0.01 
ROLS with B-splines 0.1250േ0.0098 0.025 
UROLS with B-splines 0.1125േ0.0098 / 

ǡݐ௑՜௓ȁ௒ሺܥܩ ݂ሻ 

Short-windowing 0.1329േ0.0134 <0.01 

400.50 <0.01 

RLS 0.2511േ0.0214 <0.01 
OLS with B-splines 0.1917േ0.0345 <0.01 
UOLS with B-splines 0.1253േ0.0258 <0.01 
ROLS with B-splines 0.0437േ0.0081 <0.01 
UROLS with B-splines 0 / 

ǡݐ௒՜௑ȁ௓ሺܥܩ ݂ሻ 

Short-windowing 0.1108േ0.0138 <0.01 

328.87 <0.01 

RLS 0.2402േ0.0284 <0.01 
OLS with B-splines 0.1711േ0.0351 <0.01 
UOLS with B-splines 0.1074േ0.0197 <0.01 
ROLS with B-splines 0.0399േ0.0067 <0.01 
UROLS with B-splines 0 / 

ǡݐ௒՜௓ȁ௑ሺܥܩ ݂ሻ 

Short-windowing 0.1822േ0.0106 <0.01 

504.65 <0.01 

RLS 0.3308േ0.0164 <0.01 
OLS with B-splines 0.2830േ0.0244 <0.01 
UOLS with B-splines 0.2070േ0.0207 <0.01 
ROLS with B-splines 0.1308േ0.0093 0.023 
UROLS with B-splines 0.1186േ0.0137 / 

ǡݐ௓՜௑ȁ௒ሺܥܩ ݂ሻ 

Short-windowing 0.1344േ0.0158 <0.01 

437.40 <0.01 

RLS 0.2592േ0.0189 <0.01 
OLS with B-splines 0.1882േ0.0357 <0.01 
UOLS with B-splines 0.1232േ0.0202 <0.01 
ROLS with B-splines 0.0513േ0.0089 <0.01 
UROLS with B-splines 0 / 

ǡݐ௓՜௒ȁ௑ሺܥܩ ݂ሻ 

Short-windowing 0.1112േ0.0107 <0.01 

382.44 <0.01 

RLS 0.2330േ0.0149 <0.01 
OLS with B-splines 0.1688േ0.0361 <0.01 
UOLS with B-splines 0.1169േ0.0233 <0.01 
ROLS with B-splines 0.0386േ0.0079 <0.01 
UROLS with B-splines 0 / 

Note: bold values indicate the best results 
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B. Applications to MI-EEG data at source-level 
1) EEG data preprocessing 

To illustrate applicability of the proposed method for real 
EEG data connectivity analysis, the proposed method is applied 
to real MI-EEG source signals. The EEG dataset used in this 
work is available publicly from the Physiobank Motor/ Mental 
Imagery database [48], which consists of 109 subjects per-
forming different MI tasks while 64-channel EEGs were rec-
orded based 10-10 systems, sampled at 160 Hz. The blocks that 
subjects imagined movements of left- and right-hand are se-
lected. Subjects performed a total of 45 trials and imagined one 
of the two tasks for a duration of 4 s in chosen blocks. 

The EEGs were notch filtered to remove 60 Hz AC-line 
noises. For each trial, the mean of the pre-stimulus samples 
with duration of 2 s are subtracted for baseline correction, and 
the stimulus-triggered ensemble average is removed to mitigate 
the effect of inter-trial variations and the nonstationarity em-
bodied in the mean [49]. Three electrodes (T9, T10 and Iz) are 
discarded in the following source analysis, since they are spa-
tial outliers relative to the other 61 electrodes which cover the 
scalp in an approximate uniformly distributed manner [50]. 
2) EEG source reconstruction 

EEG-sources are firstly reconstructed based on event-related 
potentials (ERPs), and the TF-CGC decomposition is then 
performed on the estimated single-trial source waveforms to 
find the directed connectivity patterns in the neocortical sen-
sorimotor networks. The preprocessed 61-channel EEG data 
from each participant are respectively averaged across trials to 
arrive at ERPs for left- and right-hand MI of 109 subjects. The 
109 ERPs of two MI conditions are used in the exact low res-
olution electromagnetic tomography (eLORETA) to recon-
struct EEG sources on the cortical surface [50]. The computa-
tions for inverse solution in eLORETA are implemented in a 
realistic head model based on the MNI152 (Montreal Neuro-
logical Institute) template, with the three -dimensional solution 
space restricted to cortical gray matter, as determined by the 
probabilistic Talairach (TAL) atlas. An entire 6239 cortical 
gray matter voxels with 5 mm spatial resolution constitute the 
solution space. EEG-source reconstruction at the whole brain 
level (all 6239 cortical voxels) is calculated, and a voxel by 
voxel comparison between left- and right-hand MI conditions is 
performed to determine the source information consisting the cor-
tical sensorimotor network. 

According to the results of the statistical comparison, cortical 
activities at five different sites are significant (with extreme ݌ ൏ ͲǤͲͷ in the t-test), and are selected as the sources. Thus 
ROIs (see Table V in Supplementary material-D), which 
formed by the single voxel nearest to the location of these sig-
nificant areas, are marked as the network nodes for the next 
connectivity analysis. It shows that the source level network 
contains four active nodes symmetrically distributed on the left 
and right sides of the primary somatosensory cortex (BA3.L1, 
BA3.L2, BA3.R1, BA3.R2) and a limbic area node (BA 23). 
Note that the influence from limbic system on motor behavior 
are widespread which can range from the beginning of action to 
the motivational pace of motor output [51]. Thus, the inclusion 
of these nodes in the causal network is reasonable and neces-
sary for this MI study. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5.  The comparison of time domain causality results for system (32) using 
different methods. (a) Mutual information. (b) Conditional TE. (c) 
UROLS-APRESS TF-CGC, obtained by spectral averaging of the corre-
sponding frequency range values. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 6.  The comparison of frequency domain causality results for system (32) 
using different methods. (a) Geweke spectral method. (b) dDTF. (c) 
UROLS-APRESS TF-CGC, obtained by temporal averaging of the corre-
sponding time-varying values. 
 

For convenience, denote ROI 1 as Limbic Lobe or BA23, 
ROI 2 as Parietal Lobe.L1 or BA3.L1, ROI 3 as Parietal 
Lobe.R1 or BA3.R1, ROI 4 as Parietal Lobe.L2 or BA3.L2, and 
ROI 5 as Parietal Lobe.R2 or BA3.R2 in the following analysis. 
Time series of each trial electric neuronal activity at these five 
ROIs are estimated with eLORETA from the single-trial EEG 
data. Based on the obtained single-trial source signal wave-
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forms, the TF causal activities under different MI conditions 
are then analyzed by the TF-CGC method. 
 

3) TF-CGC analysis of MI-EEG source signals 
TF-CGCs between the source waveforms of five ROIs for 

left- and right-hand MI responses are all computed by the 
proposed method. The TVARX models for EEG source signals 
from five ROIs are first constructed. Then the ͵̱͸-th order 
B-splines with a scale index ݆ ൌ Ͷ are adopted to expand the 
time-varying parameters, and the cubic B-spline basis functions 
are employed as the modulate function. For each trial source 
data, the optimal model order can be determined by minimizing 
the AIC criterion in (15) with the range of ͳ ൑ ݅ ൑ ͳͷ [32]. 
Similar to [21], the selected model orders are no more than 8 in 
this study. After identifying the TVARX models applying the 
proposed UROLS- APRESS algorithm, the TF-CGCs among 
the five ROIs composed sensorimotor network can be detected 
by (28) and (29). 

As the power density of EEG roughly follows power-law 
decay as frequency increases [52], spectral causality are typi-
cally small in magnitude at higher frequencies. Also consider-
ing that the reaction for MI tasks generally happens in the pre-
vious seconds after the stimulation, the significant TF-CGCs in 
0-40 Hz during 0-2  s  (with the stimulus time as 0  s ) for 
left-hand MI are shown in Fig. 7(b), with dashed boxes indexed 
by 1 and 2 to outline the influences from the regions located in 
left hemisphere to those in right hemisphere and from right to 
left respectively, and the performance is compared with the 
short window method with duration of 200 samples (Fig. 7(a)). 
The corresponding results for right-hand MI are given in Fig. 8. 

From Fig. 7(a) and Fig. 8(a), the short window method can 
roughly detect the general causal trends between left and right 
regions under left- and right-hand MI tasks [53], i.e. causalities 
from the contralateral areas to the ipsilateral are relatively more 
apparent than those in the opposite direction (mainly see rela-
tions in dashed box 1 and 2). However, the temporal and spec-
tral resolutions are not desired, and specific interaction patterns 
cannot be clearly observed. Additionally, the optimal window 
size levels obtained are notably high and spread across the 
whole TF plane with emphasis on low frequency components 
(lower than alpha band), which may be associated with the re-
sidual mutual contents of the MI-EEG source signals [47, 54]. 
By contrast, the proposed UROLS method can provide more 
explicit TF causal distributions with a high TF resolution and 
negligible mutual components in low frequency range. 

Specifically, Fig. 7(b) displays the following observations 
for left-hand MI with the proposed method: (i) the conditional 
causal influences from right regions to left (dashed box 2) are 
stronger than that from left to right (dashed box 1) especially 
after around 0.5 s; (ii) the enhancement of causal relations over 
the ipsilateral areas (ܥܩ஻஺ଷǤ௅ଵ֎஻஺ଷǤ௅ଶሺݐǡ ݂ሻ) and the blocking of 
interactions over the contralateral scalp (ܥܩ஻஺ଷǤோଵ֎஻஺ଷǤோଶሺݐǡ ݂ሻ) 
are detected along with the timeframe; and (iii) the causalities 
out of Limbic Lobe are more obvious than interactions input to 
it, and Limbic Lobe exerts greater causal influences on left re-
gions (ipsilateral, i.e. BA3.L1 and BA3.L2) than right areas 
(contralateral, i.e. BA3.R1 and BA3.R2). In addition, the cor-
responding causal patterns for right-hand conditions (Fig. 8(b)) 
show that: the causalities from left areas to right (dashed box 1) 
are more significant than that from right to left (dashed box 2) 
after approximately 0.25 s; the ipsilateral increase and contra-
lateral decrease are also reflected in strong ܥܩ஻஺ଷǤோଵ֎  ஻஺ଷǤோଶሺݐǡ ݂ሻ and small ܥܩ஻஺ଷǤ௅ଵ֎஻஺ଷǤ௅ଶሺݐǡ ݂ሻ; and Limbic Lobe 
outputs more evident causal influences to the ipsilateral sites 
(BA3.R1 and BA3.R2) than contralateral regions (BA3.L1 and 
BA3.L2). 

Given that alpha (8-14 Hz) and beta (14-30 Hz) bands are the 
most studied frequency bands when investigating the oscilla-
tory cortical activity during motor operations [54], the dynamic 

causal interactions in 8-30 Hz are particularly studied to esti-
mate network connectivity patterns during MI tasks. By setting 
the five ROIs as the sensorimotor network nodes, the net causal 
flows are computed using the formula ܨܥ௡௢ௗ௘ ൌσ ൫ܩ௡௢ௗ௘՜௜೎ െ ௜೎՜௡௢ௗ௘൯ே೙௜೎ୀଵܩ , where ௡ܰ is the total number of 
nodes in a network and ܩ is the 8-30 Hz integrated Granger 
causality, with self-causality assumed to be zero [52]. The 
positive ܨܥ denotes the net outgoing causal information flow 
away from the node (causal source), and the negative ܨܥ refers 
to the net incoming flow towards the node (causal sink). The 
results are presented in Fig. 9(a) and (b) for left- and right-hand 
MI respectively; besides, Fig. 10(a) and (b) give the CGCs 
averaged across 8-30 Hz plotted as functions of time for bidi-
rectional influences between left and right regions, aiming to 
access a high-resolution time response. 

Fig. 9(a) shows that in left-hand MI, the ipsilateral regions 
(BA3.L1 and BA3.L2) function mostly as targets whereas the 
contralateral sites (BA3.R1 and BA3.R2) become dominant 
sources with no significant changes over time and frequency. 
For right-hand MI (Fig. 9(c)), BA3.R1 and BA3.R2 located at 
ipsilateral areas function predominantly as targets, and BA3.L1 
and BA3.L2 in contralateral areas function as sources. Addi-
tionally, Limbic Lobe is the prominent source in both left- and 
right-hand MI conditions within the mainly entire timeframe 
and frequency range. From  Fig. 10 (a) and (b) in, the decrease 
of band averaged CGC from the ipsilateral regions to contra-
lateral regions and the increase of CGC in the opposite direc-
tions are observed in both MI tasks, where the differences 
between the bidirectional influences enhanced apparently dur-
ing 0.25-0.45 s in left-hand conditions, while the corresponding 
discrepancies occurred in 0-0.25 s for right-hand MI. The dy-
namic brain network representations for TF-CGC are given in 
Supplementary material-E, and the significant high-resolution 
causal patterns obtained via the proposed method are concluded 
in Supplementary material-F. 

 

 
(a) 

 
(b) 

Fig. 7.  TF-CGC results of left-hand MI-EEG source signals using different 
methods. (a) Short-windowing. (b) The proposed UROLS-APRESS. 
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(a) 

 
(b) 

Fig. 8.  TF-CGC results of right-hand MI-EEG source signals using different 
methods. (a) Short-windowing. (b) The proposed UROLS-APRESS. 
 

  

 
Fig. 9.  Dynamic TF net causal flows of MI-EEG source signals in 8-30 Hz. (a) 
left-hand MI. (b) right-hand MI. 
 
\\\\        

IV. DISCUSSION 
A. Significance of results 

The key findings of our causality analysis are summarized as 
follows: (i) the ultra-least squares and APRESS criterion for 
TVARX model structure construction improve the precision 
and resolution of dynamic TF-CGC analysis; (ii) the zero-order 
regularization increases the ability for nonstationary causality 
detection; (iii) the parametric conditional causal measure based 
on accurately identified time-varying models can effectively 
differentiate between direct and indirect interactions; (iv) the 
precise independent estimation of TVARX models for source 
EEG signals can alleviate the distorting effect of volume con-
duction within multichannel EEGs. The proposed method 
outperforms the conventional short window spectral method, 
the adaptive RLS, and the other parametric causality ap-
proaches based on OLS, UOLS and ROLS in both simulations 
and real source EEG data analysis. The detection results in time 
and frequency domain are also superior to the Geweke spectral 
causality, dDTF, mutual information and TE with a higher 
time-frequency resolution and precision for both direct and in-
direct influences. An advantage of the proposed algorithm over 
the sliding short-time window or adaptive recursive approaches 
is that it does not need to assume window lengths or stochastic 
model types for  underlying TVARX models, and the dynamic 

 

 
Fig. 10.  Averaged time-varying CGCs of MI- EEG source signals in 8-30 Hz. 
(a) left-hand MI. (b) right-hand MI. 

causalities can be calculated by just specifying a number of 
basis functions that can be used to estimate TVARX models. 
Furthermore, in comparison with similar existing functional 
series expansion methods (i.e. multiwavelet-based OLS, UOLS, 
ROLS), the proposed approach can produce more accurate 
causal patterns by making use of regularized extra information 
characterized by the regularization and weak derivatives of 
nonstationary signals. 
B. Efficacy of the ULS metric 

As demonstrated in simulations (see panel (d) UOLS vs. (c) 
OLS, and (f) UROLS vs. (e) ROLS in Fig. 2 and Fig. 4), the 
ultra-least squares metric for dynamic causality analysis im-
proves the TF accuracy in detecting various time-varying in-
teraction processes. The metric is more efficient than conven-
tional OLS in that it evaluates not only the classical dependent 
relation of the desired signal on the potential explanatory var-
iables, but also takes advantage of the dependent relation of the 
associated weak derivatives. The inclusion of weak derivatives, 
which considers the relative relations between data points of 
signals (emphasizes the agreement in signal shape [30]), can 
construct more accurate TVARX models for time-varying 
systems and further enhance the efficiency to track rapidly and 
sharply changing TF causalities especially when the signals are 
not persistently excited. The proposed method is thus more 
suitable for high-resolution time-frequency connectivity anal-
ysis of inherently nonstationary coupled systems. 
C. Efficacy of regularization 

From the results of simulations (see panel (e) ROLS vs. (c) 
OLS, and (f) UROLS vs. (d) UOLS in Fig. 2 and Fig. 4), the 
regularization operation increases the noise-resistibility and 
robustness of the method for causality detection. Incorporating 
the zero-order regularization into the parsimonious principle of 
the OFR, i.e. the regularized ERR criterion, can reflect the po-
tential overlapped information in candidate regressors that ul-
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timately helps to precisely identify the TVARX processes with 
improved generalization performance. Therefore, the obtained 
causality distributions are of good robustness, enabling the 
regularized method to capture dynamic causal relations well 
even when the signals data are contaminated with high noise. 
D. Efficacy of the APRESS criterion 

For the novel UROLS algorithm used in the TF-CGC anal-
ysis for TVARX model identification, the APRESS criterion 
works more effectively for model term selection. This newly 
incorporated criterion modifies generalized cross-validation 
criterion LOO (leave-one -out) by using an adjustable penalty 
function, thus is more applicable in model determination for 
nonstationary systems. The redundant model terms confused by 
the traditional OLS type algorithms become less significant 
under the new criterion and can then be excluded from the 
original regressor model. This enables the proposed method to 
exactly distinguish indirect interactions and obtain completely 
true null values over the whole TF plane for them. 
E. The effect of volume conduction 

As illustrated in the TF-CGC results of MI-EEG source 
signals (Figs. 7-8), the proposed UROLS-APRESS method has 
the potential to attenuate spurious correlations caused by the 
volume conduction effects in causality analysis of EEG data. 
The effect of volume conduction is a significant challenge in 
connectivity analysis for scalp EEG where a given brain source 
is often reflected in several EEG signals, and consequently, 
their similarity may be falsely perceived as connectivity by the 
analysis procedures [55]. Two primary approaches have been 
suggested to deal with this problem: one is to analyze EEG 
connectivity at the source level [56]; and the other is to identify 
information in the correlation structure that is unlikely to be 
explained by common sources, such as the partial coherence 
and phase lag index methods [55]. Therefore, based on these 
approaches, this paper first calculates single-trial source signals 
from scalp EEGs, and then estimates accurate time-varying 
EEG models using the proposed multiwavelet-based 
UROLS-APRESS algorithm, which can efficiently avoid spu-
rious coupling relations due to similarity of signals. Finally 
source-level CGCs are measured precisely using the accurate 
EEG models, and thus the volume conduction issue can be well 
solved. Specifically, compared to the short window plots (Fig. 
7(a), Fig. 8(a)) which show strikingly high levels towards both 
higher and lower frequency components, the experiment results 
by the proposed method (Fig. 7(b), Fig. 8(b)) show the domi-
nant contents at around 8-30 Hz, which indicates the incorrect 
spectral components which mainly represent the volume con-
duction effects [47] are effectively reduced through the accu-
rate independent approximation for source data. In conclusion, 
our proposed method can mitigate the volume conduction im-
pact by source level conditional causality analysis with 
high-precision TVARX models for nonstationary EEG signals. 
F. Limitations and future directions 

Though achieving good dynamic TF causality detection 
performance, the proposed UROLS-APRESS method still 
possesses two major limitations. The first is its heavy compu-
tational load, which may be much higher than traditional dy-
namic connectivity analysis methods. The main reason is that, 
when identifying each underlying TVARX model, the multi-
wavelet-based ultra-regularized algorithm involves the iterative 
selection procedure from a number of expanded candidate 
terms, and the number of simultaneous equations to be calcu-
lated are also increased. Another main limitation is that the 
TF-CGC method is developed only based on the linear TVARX 
models and the nonlinear TF connectivity among nonstationary 
systems is not considered in this early stage. Similar to [57], our 
previous work has also studied time-varying nonlinear Granger 
causality detection method which was applied that to MI-EEG 
signals in the time domain [21]. However, it should be noted 

that the dynamic nonlinear causality analysis in time-frequency 
domain can be much more complicated than that only in the 
time domain, especially for the nonlinear ARX (NARX) model 
based analysis. Our future work would focus on improving the 
performance of the proposed method from the following two 
aspects. One is to extend the TVARX model to a nonlinear case 
(e.g. TV-NARX model), and another is to develop and adapt 
fast algorithms for model term selection which can either re-
duce the computational load or significantly improve the in-
terative model selection procedure. 

V. CONCLUSION 

A new parametric TF-CGC method is proposed for multi-
variate time-varying connectivity analysis in TF domain, where 
the UROLS-APRESS with multiwavelets is employed in gen-
eralized spectral CGC measure to achieve a high-resolution 
causality detection. Analyses on the simulation data show that 
the proposed approach can well detect both rapidly varying 
direct causalities and indirect effects among coupling systems 
over time and frequency. For real source MI-EEG data, the 
obtained connectivity patterns are physiologically and ana-
tomically interpretable, and yield important insights into the 
dynamical organization of 8-30 Hz cortical activities. An ob-
vious advantage of the proposed method lies in its ability to 
track fast changing causal influences and eliminate indirect 
effects caused by mutual sources; these are mainly attributed to 
the use of UROLS-APRESS algorithm. The novel real appli-
cation of the TF-CGC analysis to EEG signals can provide 
quantified and more detailed information of the underlying 
dynamic activities in oscillatory networks. Thus, the procedure 
that, how oscillating networks coordinate activity between 
neocortical regions mediating sensory processing to arrive at 
motor perceptual decisions, can be better understood through 
this study. 
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