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A Parametric Time Frequency-Conditional
Granger Causality Method Using Ultra-regularized
Orthogonal Least Squares and Multiwavelets for
Dynamic Connectivity Analysis in EEGs

Yang Li, Mengying Lei", Weigang Cui, Y uzhu Guo, and Hua-Liang Wei

Abstract— Objective: This study proposes a new para-
metric TF-CGC (time-frequency conditional Granger
causality) method for high-precision connectivity analysis
over time and frequency domain in multivariate coupling
nonstationary systems, and appliesit to source EEG signals
to reveal dynamic interaction patterns in oscillatory neo-
cortical sensorimotor networks. Methods: The Geweke’s
spectral measure is combined with the TVARX
(time-varying autor egr essive with exogenous input) model-
ling approach, which uses multiwavelet-based ul-
tra-regularized orthogonal least squares (UROLS) algo-
rithm aided by APRESS (adjustable prediction error sum
of squares), to obtain high-resolution time-varying CGC
representations. The UROLS-APRESS algorithm, which
adoptsboth theregularization technique and the ultra-least
squares criterion to measur e not only the signal themselves
but also the weak derivatives of them, is a novel powerful
method in constructing time-varying models with good
generalization performance, and can accurately track
smooth and fast changing causalities. The generalized
measurement based on CGC decomposition is able to
eliminate indirect influences in multivariate systems. Re-
sults: The proposed method isvalidated on two simulations
and then applied to source level motor imagery (M1) EEGs,
where the predicted distributions are well recovered with
high TF precision, and the detected connectivity patter ns of
MI-EEGs are physiologically interpretable and yield new
insights into the dynamical organization of oscillatory cor-
tical networks. Conclusion: Experimental results confirm
the effectiveness of the TF-CGC method in tracking rapidly
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varying causalities of EEG-based oscillatory networks.
Significance: The novel TF-CGC method is expected to
provide important information of neural mechanisms of
per ception and cognition.

Index Terms—EEG, time-frequency (TF) conditional
Granger causality (CGC), multiwavelets, ultra-regularized
orthogonal least squares (UROLS), adjustable prediction
error sum of squares (APRESS), motor imagery (M1), dy-
namic connectivity.

I. INTRODUCTION

YNAMIC interactions within brain regions enable syn-

chronization of neuronal oscillations, which is a suggested
mechanism underlying the perceptua and cognitive functions
. Analyzing time-varying interaction patterns of oscillatory
brain networks is a considerably important and challenging
research topic in the neuroscience field [2]. The traditional
measures for quantifying interdependencies among neural
systems in the time and frequency domain are mainly based on
correlation and coherence, respectively . The two measures
hold asignificant share in functional network analysis, but both
omit the direction information of interaction. Based on Granger
causality , several methods, for example, directed coherence
and directed transfer function (DTF) [3] have been proposed to
infer directed influences between signals. These methods,
however, cannot distinguish between direct and indirect causa
effects in multivariate coupling systems effectively. This fur-
ther boosted the development of partial directed coherence
(PDC) and direct DTF (dDTF) [6] to dea with the
drawback. In addition, mutual information [7] is another ap-
proach exploited to reveal causa dependence, and the original
symmetric estimates led to a directed measure called condi-
tional transfer entropy (TE) [7][8].

The widely known measures discussed above previously
assume the underlying signals are stationary and the interac-
tions are constant over time, such an assumption restricts he
application of these methods in some degree for dealing with
time-varying neural signals especialy EEGs with high nonsta-
tionarity. Recently, dynamic Granger causality (GC) analysis
has emerged as a powerful technique to detect directed inter-
actions among coupled nonstationary systems, and has been
extensively investigated in neurophysiological studies [9][10].
The key in dynamic GC detection is the identification of the
time-varying autoregressive with exogenous input (TVARX)
models for nonstationary signals. Several methods have been
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developed for assessmg dynamic GC relations in time or fre-
domain [11], mainly including nonparametric method

h , diding wi ndow approach [14], adaptive multivariate

esti mat|on [10] and parametric modelling approach [15-18].

In the nonparametric GC detection method [12], the time-
frequency (TF) causality analysis was based on nonparametric
wavelet transforms and the performance was validated by
monkey local field potentials. Nevertheless, for this method, it
is difficult to select desirable initial parameters of wavelets,
including the number of tapers, wavelet prototype and the res-
olution trade-off factor, to ensure both good time and frequency
resolution simultaneously [12]; and thus the estimates may not
be reliable when only a few trials of short length data sets are
available. In the sliding window approach [19], the temporal
functions of spectral GC can be roughly extracted by analyzing
traditional time-invariant GC influences for each single win-
dow through ARX modelling algorithm. However, the time
resolution of this approach is smeared and the detection per-
formance depends on the window size, which limits its practi-
cal applicability for nonstationary systems. In the adaptive
multivariate strategy, the recursive least squares (RLS) and
Kaman filtering algorithms are commonly used for estimating
time-varying parameters [10][20]. These adaptive methods can
detect slow varying interaction relations, but they are sensitive
to noise and may fail to track rapid changing connectivity due
to the deficiency of slow convergence speed [21][22].

Compared with the above mentioned methods, the paramet-
ric approaches, based upon TVARX model identification using
abasis function expansion and regression scheme, can provide
better performance for dynamic GC detection [16][21]. In such
a detection framework, the basic time-varying models of sig-
nals are firstly estimated by applying a set of pre-defined basis
functions with good representation properties and
running an efficient model structure determination algorithm
such as the orthogonal forward regression [27;
time-varying variances of model prediction errors and corre-
sponding GCs can then be effectively calculated from the re-
duced refined TVARX models. For example, Li et al. em-
ployed multiwavelet basis functions with regularized orthog-
onal least squares (ROLS) to approximate the time-varying
parameters of TVARX models, which were applied in suc-
cessfully detecting both rapid and slow varying causalities
between two nonstationary signals [21].

Despite the multiwavelet expansion approach with ROLS
algorithm provides a genera parametric method for time
-varying GC detection, two defects are remained in this
scheme. First, athough the ROLS algorithm enables better
generaization in model construction than the conventional
OLSi.e. OFR (orthogonal forward regression) and works well
even in the presence of severe noise [28][29], the method may
produce suboptimal model with possible spurious or insuffi-
cient model terms when the signals are not persistently exciting
or contaminated by different levels of noise 31]. In this
case, the resulting under-fitting TVARX models might produce
incorrect and low precision GC distributions. Second, this
pairwise time-domain GC approach ignores frequency infor-
mation which is crucia for the analysis of neurophysiological
signals with abundant oscillatory content, like EEG, and it
cannot distinguish direct and indirect effects among systems
with more than two simultaneously acquired signals. Thus, the
conventional ROLS method may fail to reveal dynamic con-
nectivity in coupled oscillatory brain networks. Currently, be-
cause of its non-invasive nature, good temporal resolution and
low cost, EEG technique is often used for studying brain ac-
tivities [32-34]. However, there is still lack of high resolution

time-frequency causality method for EEG-based connectivity
analysis even in recent researches due to the high nonstation-
arity and complexity of EEG signals.

In this paper, we propose a new TF-CGC (time-frequency
conditional Granger causality) method for analyzing dynamic
connectivity among multivariate coupling nonstationary sig-
nals over time and frequency domain, where a powerful ultra
-regularized orthogonal least squares (UROLS) algorithm is
employed to measure the time-frequency conditional causali-
ties. Specifically, the time-varying parameters in TVARX
models are firstly expanded by a finite number of multiwavel et
basis functions for tracking both the global trend and local
changes in nonstationary signals [31][35]. Then the UROLS
algorithm, which improves the classical ROLS in using not
only the residuals between the observed signals and the pre-
dicted values but aso the associated weak derivatives to
measure the mode! fitness [30], is applied to determine the
parsimonious model structure and associated parameters. In the
proposed UROLS algorithm, a modified cross-validation cri-
terion named adjustable prediction error sum of sguares
(APRESS) is incorporated to facilitate the monitoring of the
forward orthogonal search procedure and the determination of
the model complexity [36] [37]. Findly, a high resolution
TF-CGC representation is established by combining the accu-
rately identified TVARX models with the statistically
-explicable mathematical framework of Geweke’s spectral
CGC [38]. Our proposed TF-CGC method is firstly tested on
two simulated nonstationary coupling systems, and then ap-
plied to source EEG data acquired from M1 tasks. Experimental
results demonstrate the efficiency of the proposed TF-CGC
method in detecting dynamic interaction activities among
nonstationary and oscillatory brain systems. A main contribu-
tion of this study is that the newly developed multiwavelet
-based UROL S-APRESS algorithm is innovatively introduced
to reveal dynamic connection patterns in TF domain based on
the CGC decomposition. It is expected that the novel imple-
mentation of the UROLS with multiwavelets to TF-CGC
analysis can provide important insights into the neural mecha-
nisms underlying perceptual and cognitive functions, and in-
spire further development of more powerful approaches for
dynamic connectivity analysis.

II. METHODS

The classical GC is formulated based on univariate AR or
bivariate ARX models. A TF-CGC decomposition method,
which combines a time-varying system identification approach
with Geweke’s spectral CGC measure, is proposed in thiswork.
The TF-CGC decomposition for multivariate time seriesis built
on the TVARX modeling, thus the newly introduced nonsta-
tionary model identification method is first discussed in this
section. The discussion focuses on three time series, but it can
easily be extended to more than three sets of time series.

A. TVARX modd identification using multiwavelets for TF-
CGC analysis

Consider three stochastic processes X = {x(t)}, Y = {y(t)}
and Z = {z(t)}, with sampling index t = 1,2,---, N, where the
TF-CGC relations from Y to X conditional on Z isto be evalu-
ated. Let thejoint TVARX repreﬁentations of x(t) and z(t) be

::leau,i t_l Za12| t" +el()
z t):ilz;:am (t)x( zazz t-i)+e(t)

Denote the joint TVARX model of al three processes x(t),

)
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y(t) and z(t) as
X(t) = Zb (t)x(t—i)+lzbm (t)y(t—i)+ibm ) 2(t-1)+e (1)

y(t) = zb (t)x(t—i)+‘z;bm (t)y(t_i)ﬁgbm ©)2(t-i)+e, (1)

2(t) = Zb () x(t-i)+ Zb ©)y(t 4)@% O)2(t-i)+e (1)

2
where {a;1,;(t),, a,4(t), by, (£), -+, b33, (£)} are time-
varying parameters to be estimated, and {e, (t), -+, es(t)} are
independent and normal distributed noise sequences with zero
means. An efficient solution when identifying these TVARX
models is to expand the time-varying parameters onto a set of
basis functions {¢,,(t):m = 1,2,---, M}, for example, for the
trivariate TVARX process with respect to signa x(t) in (2)

x(t)= gbm (t)x(t ‘i)+ilz_21:blz,i (t)y(t-i)
-3 (02lt-1) e 1) ®
=33 (K, e )

where x(t), y(t)i, é(t) are the system output and input with
maximum lags1,, I, and I3, respectively, V = 3 is the number
of input variables; ¢, ;(¢) (i.€. by ;(t), b1y (t), by3;(t)) denote
the time-varying parameters, and «,; represent x(t —
D),y —1i),z(t —i), whenn =1, 2,3, respectively. Then the
model can be expanded as

v I, M
X(1)= 222 i () 5n,; +&5(1)
=1 i=1 m-1 4
=y (1) O+e(t)
where a,, ; ,, denote the time-invariant expansion parameters of
basis functions ¢, (t), M isthe number of the basis sequences,
P = Dex O, 0y (O, 22O is @y + 1, +15) X M x 1 di-

mensional regression vector, in which yy(t) = [x(t —
Do, x(t = 2)p@O)7, -, x(t - 1Dp®O"] .  xy(t) =
[yt = D@7, y(t = 2)p@®)7, -, y(t - 1)p®)"] , and

xz(®) = [z(t = Dp @), 2(t = 2)¢p@)", -+, z(t — 1) ()]
with ¢ (t) = [@1(t), @, (), -, e (®)]T, the expansion coeffi-
cient vector is 6 = [y, @y, Ay Ofv,IV,M]T ,
and the upper script T represents the transpose of avector. The
initial time-varying model then becomes a time-invariant re-
gression problem, since al a,, ; ,,, e now time invariant.

In practice, aproper selection of the basisfunctionsisvital to
ensure the identified model performance. A good suggestion is
to use multiple wavelet basis functions to effectively track both
rapid and slow parameter variations in time-varying processes
. Thus, in this work, multi-wavelet basis functions are ap-
plied to approximate the time-varying parametersin (3) as

t
G (t) = Z Z ﬂrzlkglzj (_) ©)
r kel N
where i ;(+) are wavelet basis functions, with the shift indices
k €T, T, = {k:—r < k <2/ — 1} and wavelet scalej, B},
are the associated expanded basis function parameters which
are time invariant, r denotes the order of the basis functions,
and the function variable t/N is normalised within [0,1].
Cardina B-splines are an important class of wavelet basis
functions that simultaneously possess three remarkable prop-

erties, namely compactly supported, analytically formulated
and multiresolution analysis oriented, which enable the opera-
tion of the wavelet decomposition to be more convenient .
Taking the cardinal B-splines as the basis function, the & ;(+)
can be expressed by the r-th order B-spline B, as & j(u) =
2/2B.(2/u — k), where j, k are the dilated and shifted ver-
sions of wavelet B,. Generdly j is chose to be 3 or a larger
number in many B-splines applications [35], and a practical
selection of the wavelets are {¢} ;:7 = 3,4,5}, the detail descrip-
tion of B-splines properties can be found in [40]. The decom-
position (5) can easily be transformed into the form of (4),
where the collection {¢,,(t):m = 1,2,---,M} is replaced by
the union of multi-B-splinesfamilies ¥, ¥xer, &k, ;(w), then the
TVARX model isrewritten by

v Iy
X(t) = Zzz Z ﬂé-kékrj [%j K +%(t)
n=li=1 r kel,
=¥ (t)5+e(t)
where WT (t) isthe expanded term vector at time t and § isthe
corresponding time-invariant parameter vector.

Equation (6) indicates that the multi-wavelet basis function
expansion method converts the identification of the time
-varying model (3) into a time-invariant regression problem.
However, the number of candidate model terms in W7 (t) can
be very largeif the number of involved wavelet basis functions
r, thewavelet scale j or themaximumlags 1y, I,, I; arelarge; as
a consequence, the initial full regression model (6) is often
redundant, ill-conditioned and not ready for direct use. Thus,
selecting significant terms from the pool of the expanded re-
gressors and building a sparse model structure is highly re-
quired, and thiswill be introduced in the next section.

B. The UROLSalgorithm for TVARX model identification in
TF-CGC analysis

The identification of the TVARX model includes two steps:
determining the model structure and estimating the associated
parameters. In this section, a new method, referred to as ultra-
regularized orthogonal least squares (UROLYS), is proposed for
time-varying model identification; it incorporates the following
three approaches. the ultra-least squares (ULS) metric, the
regularized orthogonal least squares (ROLS) algorithm, and
adjustable prediction error sum of squares (APRESS).

For generic regression problems, the least squares loss
function aims to achieve the best model fitting on the Lebesgue
space L2([0, T]), where [0, T] is the time span of signals, and
the model that minimizes the sgquare of the L? norm is to be
identified. The L? norm, only measures the similarity of two
functions as a whole, cannot characterize the local distribution
difference at each time instance, thus neglects some important
information of details in shape [30]. The absence of this crucial
information might lead to a model structure which cannot suf-
ficiently represent the inherent dynamics of the data (and
therefore the associated system) especially when the system is
not persistently excited. It is known that most physical systems
behave mainly as a low-pass filter, and are actually defined on
the subspace of L?([0,T]), that is, the Sobolev space
H([0,T]) = {u(t) € L>([0, TD)|DYu € L*([0,T]), V=
1,2,---,d}, where the weak derivatives D¥u up to d-th are also
L? integrable [31]. Thus, a stricter metric defined as uy« =

I a_,IDvu|? E which can reveal the entire useful infor-

mation of observations realized in the Sobolev space, isused in
this study.
Based on the stricter norm, a new ULS criterion for identi-

(6)
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fying model (6) can be expressed by

X~ ZZZZﬂn.kun.k

n=li=1 r keI,

|

n=1i=1 r Kkel,
where uy, ;. (t) = & ;(t/N) k,; are the expanded terms, x”

ULS -

) @)

and (@ ,)’ represent weak derivative expressions of the
signal and model terms, respectively. Given sampled data with
discrete time t = 1,2,---,N, the discrete form of xV and
(@ :x)° can be denoted as 2V (p) = X7 x(@V (¢ — p)
and ()" (p) = S020° (@@ (t — p), where @@ (t)
is the v-th derivative of a normalized test function, n, is the
support of thetest functionand p = 1,2,---, N — n,. Thisstudy
uses the (d + 1)-th order B-splines which have finite support
and continuous d-th order derivatives as the test functions. The
detailed deducing process of (7) isillustrated in Supplementary
material-A.

As presented in (7), the loss function of ULS contains two
parts: the first part is the standard least squares criterion which
focuses on the similarity over the whole data, while the second
part describes the identity of the weak derivatives which es-
sentially emphases the unity in shape. The second part, which
fully takes into account the agreement in shape of signals,
makes this new criterion different to most traditional methods
for model structure detection. Any detailed difference in the
distribution can be characterized in the second part of the new
cost function (7). Thus, the criterion J;, s is a more effective
metric for model identification than the conventional least
squares criterion. The regression problem (6) can then be
converted to solve a new ULS problem, and the matrix form
can be represented as

Xys =Py O0+e (8)
where

Xas =[X(D) - X(N). R (D) X (N=n,) 9)

IEICEECN
RIS .
el @) - (@, )1(1) (0

_(U;w,k)d(N) (W,I,K)d(N)_
®:|:ﬂ£i,k""'ﬂ\;,l,k:|T (11)

and e isthe approximation error vector.

Now the TVARX model (3) is transformed into another
problem of constructing model (8), which can be solved by
means of a model structure detection method such as the well-
known OLS (or OFR) agorithm [41][42]. Although the OLS
has proven to be an efficient procedure for model construction
and refinement, the use of the parsimonious principle alone
cannot entirely avoid overfitting since small-sized models
constructed may still fit to the noise when the systems are
highly noisy . In addition, the UL S criterion may ignore the
interference of overlapping information that might lead to an
ill-conditioned problem during the forward regression process
[43]. In order to alleviate such a dilemma, an effective ze-
ro-order ROLS (ROLS?) technique combining the zero-order
regularization withthe OLS isused in thiswork, where

a sparse model structure with good generalization performance
and low computational cost can be constructed.

In (8), Xy isavector of system outputs and @, isama
trix formed by candidate terms (regressors). Denote all the
candidate bases by a dictionary D = {{;min=1,-V;i=
;o Lm =1, M}, where ¢y (£) = uly (), and the term
selection procedure is to find a full dimensional subset D, =
{67 =12, m Ly € (12, Uy + 1, +15) X M3} ( < 1y +1
+I3) x M), so that X can be approximated via a linear combi-
nation of (i, 88X =¢q,m, +-+{, m, +eor in a compact
matrix form X = YII + e, where the regresson matrix Y =
[{Ll,(LZ,---,(Ln], and I = [TELlranr""T[L"]T is the associated
parameter vector. Assume that the matrix &y, s is full column
rank and can be orthogonally decomposed as &, = HA,
where H = [hy, hy, - hy] is a matrix with M orthogonal
columns satisfying h{h; =0 when i #j, M = (I, +1, +
I;) x M, and A isan upper triangular matrix [28]. The model (8)
canthen beexpressed as X, = HA-© + e = HW + e, where
W = [wy,w,, -, w7 is the orthogonal regression weight
vector which satisfiestherelation W = A - 0.

For constructing a parsimonious model structure, here we
further propose an ultra-regularized least squares (URLS) error
criterion to improve the generalization capacity

M
Jurs =Jdus + ZIU\Nan =e'e+ ,U\NTW
m=1
where u > 0 is the regularization parameter, which can be se-
lected by adopting a Bayesian interpretation via an iterative
procedure [28]. This study randomly sets an initial value pu (>
0), and chooses an appropriate u value after a number of itera-
tions. Practically theinclusion of the ULS element in the URLS
metric can help improve the dynamic detection precision, and
the inclusion of the regularization error helps aleviate overfit-
ting and eliminate the overlapping information. The criterion
(12) can be normalized by X7, <Xy .s and further simplified to
obtain the zero-order regularized error reduction ratio (RERR®)
below to determine significant terms

(X.hy)*
(X X) (s ) + 12)
where the symbol (:,-) denotesthe inner product of two vectors.
Furthermore, a modified cross-validation criterion named ad-
justable prediction error sum of sguares (APRESS) is inte-
grated into the UROLS algorithm to decide the termination of
the term search process

APRESS(g) = p(g)[HrgH2 / N}

(U

(12)

RERR’(X,h,) = (13)

(14)

where p(g) = 1/(1 — gw/N)? with adjustable parameter w >
g (TcT—lhc)Z
”XHZ T Lig=1 h;fhc
the residual sum of squares, and |lr,[|°/N denotes the
mean-squared-errors (MSE) obtained from the associated
g-term model. The term selection process is terminated when
the APRESS statistic reachesthe minimum at g = n, and yields
an-termmodel. The effect of @ ontheresultsisdetailed in
. The pseudocode for the UROL S-APRESS and the detailed
selection procedure is presented in Supplementary material-B.
As for the model order (lags of system variables) determi-
nation problem, a possible solution isto minimize a metric that
balances the residua error caused by the model against the
number of effective coefficients. In this study, the appropriate
model order size is determined by minimizing the Akaike in-
formation criterion (AIC) defined as

1 isthe penalty function, ||r,||* =

o =X 1S
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AIC(i) =In(det(x, ))+2iTV2

(15
where ¥; isthe variance of the model residuals calculated from
the corresponding i-order model, and V' denotes the number of
input variables as before.

Finaly, the selected regression matrix Y = [Ql'(Lz"”'(Ln]
can be orthogonally decomposed asY = O,R,,, where 0, is a
matrix with n orthogonal columns and R, isan X n unit upper
triangular matrix. The corresponding parameter vector Il =

T
m,,m,,,m, | can be caculated from the formular,Il = U,
1 2 n n

where U = (070,) " RTX, and the time-varying coefficients in
the TVARX model (3) can thus be recovered using the resultant
estimates. Similar to (3), other multivariate TVARX processes
expressed in (1)-(2) can also be identified by using the pro-
posed multiwavel et-based UROL S-APRESS method.

C. Theformulation of TF-CGC analysis

The proposed UROLS method can provide more accurate
TVARX models for nonstationary time series with respect to
x(t), y(t) and z(t) given in (1)-(2), and this is the most con-
siderable basis of TF-CGC anaysis. The formulation of
TF-CGCfromY to X conditional on Z denoted as GCy_x;(t, f)
isprovided in this section.

In (1), the initial noise terms e, (t) and e, (t) can be corre-
lated with each other and their time-varying covariance matrix

T
is 2, = [(2:(0) A,(0)", (4,0 %) , specifically 5,(t) =
var(91 (t)), 2,(t) = var(ez (t)) and A, () = cov(31 (), e, (t)) are
calculated using a recursive expresson o?(t+1) =
(1 = p)a?(t) + puy (Hu,(t) with 0 < p < 1 [18]. Generally,
selecting 0.01 < p < 0.05 can well balance the adaptation
speed and the variance of the estimation when modelling EEG
data [32]. Setting u,(t) = u,(t) = e, (t), uy(t) = u,(t) =
e,(t), and u, (t) = e (t), u,(t) = e,(t), yidds time-varying
variances and covariance of the corresponding prediction errors
T, (1), Z,(t) and A, (t), respectively. Define the lag operator A
to be Ax(t) = x(t — 1), then A'x(t) = x(t — i) and the asso-
ciated time-varying lag polynomia isa(,t) = ¥!_, a;(t) A},
wherel is the lag index of a(t). Equation (1) can be rewritten

as

(au(ﬂ,t) alz(i,t)][X(t)j:[el(t)J

au(18) (L0 2() (&)

With aq10(t) = azp0(t) =1, ag20(t) = az0(t) =0. The
independence of e, (t) and e, (t) is necessary for the definition
of spectral domain causality Thus the normalization pro-
cedure introduced by Geweke is exploited and developed
to remove the correlation and further make the identification of
an intrinsic part and a causal part possible in time-varying
cases. The transformation consists of left-multiplying P(t) =
[(1 0)T,(=A,(£)/2,(t) 1)T]T on both sides of (16) at each
time index [45], and the resulting normalized form is given as

[Al(ﬂ,t) Az(irt)][x(t)j:(%(t)]
A(At) A (A z(t)) (&t
With A1 0(t) = Azz0(t) =1, Ag50(t) = 0, Ayq0(t) generaly
not being zero. Now cov(g (t), &,(t)) = 0 (the noiseterms are
independent), and note that var(e; (t)) = £,(t).

In (2), the time-varying covariance matrix of the noise terms
can be estimated by the recursive computation similarly as X,

(16)

(17)

T T
) )

and is %, = [(3ee(0), 5y (0, 20() | (a0, 23y (0,350

T
(sz(t), 2.y (), Zzz(t))T] . The explicit formula of the trans-

formation matrix (Q(t)) to normalize TVARX model (2) is
given in Supplementary material-C. Then the associated nor-
malized equations for (2) can be expressed as

Bu(4t) By(4t) By(4t))x(t) &(t)

Bu(A.t) By(A.t) Byg(At) || y(t) |=| (t)

By (A1) By(4t) By(4t))2(t) &(t)
where the noise terms are now independent to each other, and
their time-varying variances are £,,(t), £,,(t) and £,,(t),
respectively. According to the following crucial relations of
conditional causality in the time and frequency domain derived
by Geweke based on the relations of different variances

chqu (t) = chgﬁsl (t)

GCYAX|Z ( f ) = GCYL-ﬁsl ( f )
the problem of measuring the time-dependent spectral causal
connectivity GCy_z(t, f) can be converted to the calculation
of the causal influence from Ye, t0 ¢, i.€. GCy,e, (t,f). IN
order to obtain GCy,, (t,f), the variance of ¢, is next de-

composed in the time and frequency domain. Time-frequency
transforming both sides of (17) leads to

et meolzen-Een)

AL, f)
where the components of the coefficient matrix A(t, f) are

All(t, f ) zl_me (t)e—jnzﬂif/fs, A.Z(t’ f ) _ _2 A,, (t)efjosz/fs

(18)

(19)

(20)

Aﬂ(t’ f ) - _ZAZM (t)eﬂ'oz;rif/fs’ Azz(t1 f ) zl_ZAzz,i (t)e—josz/fs

with j, = V=1 and f; being the sampling frequency. Similarly,
calculating the time-varying spectral decomposition of (18) and
representing it as

Bu(t.f) Byu(t,f) Bu(t,f)) X(t.f)) [E(t.f)

B,(t,f) By(t,f) Byt f E,(t.f)

Bu(t,) Buftf) Ba(tf))2(t1)) (E(t1)
B(t,f)

Recasting (20) and (21) into the transfer function format below

) S

~
<
—_
—
—
~
|

(1)

(22)
G(t,f)
X(6f)) [Ke(tf) Ky(tf) K (tf))E(tf)
Y(tf)|=| K, (tf) K, (tf) K (tLf)[E(tf)] (23)
Z(t,f)) \Ku(tf) Ky(tf) K (tf)\E(tf)

K(tf)
where the TF transfer function G(¢, ) and K(¢, f) are the in-
verse of the normalized coefficient matrix A(t, f) and B(t, f),
thatis, G(t,f) = A7(t, f) and K(t, f) = B~1(¢, f).
Assuming X(t, f) and Z(¢, f) from (22) are identica to that
from (23) , equations (22) and (23) are combined to yield
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E(t,f) Go(t.f) 0 G,(t.f)
Y(tf)|]=| 0o 1 0
E(t,f)) (G,(t.f) 0 G,(t,f)
Ko(tf) Ky (tf) K (tf))Et.f)
x| K, (6 f) K, (tf) K, (tf)] E(t.f)]| (24
Ky(tf) Ky(tf) K(tf)) E(t.f)
R (tf) Ry () Ro(tf))E(t.f)
= R, () R, (LF) R,(6LF)] Ef(t.T)
R,(LF) Ry(tf) Ryt ) E(tf)
w(t,f)

where R(¢t, f) = G~1(t, f)K(t, f). The time-dependent spectrum
of g, i.e. E (¢, f), can thus be decomposed into the following
three parts based on (24)

S (6 F) =R, (6L F)Z, ()R, (4 )+ R (8 F)Z, ()R, (t.F)

PR (4 1)L ()W, (4 1)

where the upper script < ** denotes complex conjugate and
transpose of a matrix, the first term can be regarded as the in-
trinsic power, and the remaining two terms represent the com-
bined causal relations from Y and ¢,. Hence the causality from
Ye, to &, namely the final expression for time-varying spectral
causality GCy_xz(t, f) is

(25)

_ _ ‘851 (t’ f )‘
GCY~>>(|Z (t’ f ) - chfzﬁfl (t’ f ) =In ‘S{XX(L f )ixx(t)m;x (t, f )‘

Note that the spectral function in (26) is a continuous function
of frequency f, and can be applied to measure the spectral
causality at any desired frequency from O up to the Nyquist
frequency f;/2. Generaly the frequency resolution is not infi-
nite, but relevant to the associated parameter approximations
and underlying model order [22]. A hypothesis test is required
to determine whether the causal interaction in the stochastic
processes is significant. The thresholds for statistical signifi-
cance are computed from surrogate data by a permutation
procedure under a null hypothesis of no interdependence at the
significance level p < 107°.

The new proposed method for TF-CGC decomposition can
now be summarized as follows:

1) Set up the multivariate TVARX models (1) and (2), which
are to be identified for TF-CGC andysis, expand &l the
time-varying parameters in each model using multiple B-spline
basis functions and construct the corresponding time-invariant
regression models (6).

2) Calculate (x°}_, and {(;)")’ by modulating the
output signals and expanded terms with the normalized test
functions {6(")}11 and then get the ULS problem (8).

3) Select the significant term with the largest RERR® value as
the first term and remove the selected expanded terms from the
candidate dictionary; repeat the process and choose the ¢-th
term by orthogonalizing all remained expanded terms with the
¢—1 selected terms and calculating the associated RERR®
value, and the term with the largest value is selected.

4) Terminating the term search process via APRESS statistic
in (14), and the model orders are decided through AIC in (15).

5) Approximate the coefficients of the selected model terms,
and estimate the initial time-varying parameters using formula
(5), hence the essential TVARX models for TF-CGC decom-
position can now be established.

6) Normalize the bivariate and trivariate TV ARX models by
P(t) and Q(t) respectively to make the noise variables inde-
pendent with each other, and calculate the spectrum represen-

(26)

tation of these normalized models.

7) Achieve the calculation of TF-CGC according to (25) and
(26), and the statistical GC threshold is also estimated to get the
significant TF-CGC relations.

I1l. SIMULATIONS AND EXPERIMENTS

In this section, the performance of the proposed multiwavel et
-based UROLS-APRESS TF-CGC approach is firstly demon-
strated by using two simulation examples with various feature
dimensions relative to cortical activities, and the effectiveness
is compared with the state-of-the-art methods including the
short windowing, adaptive RLS, OLS, UOLS and ROLS algo-
rithms. The proposed method is further applied to real EEG
signals at source-level. Specifically, the EEG source wave-
forms reconstructed at significant M1 related cortical regions of
interest (ROIs) are studied to detect oscillatory dynamic causal
activities in the neocortical sensorimotor network.

A. Smulations and results

1) TF-CGC detection with various causality changes
Consider the following TVARX processes
x(t) =0.59x(t -1) - 0.2x(t - 2) + & (t) y(t 1) + &, (t) z(t 1) + e (t)
y(t)=1.58y(t-1)-0.96y(t - 2) +e (t)
z(t) =0.60z(t -1) - 0.91z(t - 2) + &, (t)
where e, (t), e, (t), e,(t) are three independent Gaussian dis-
tributed white noises e,(t)~N(0,02) , e,(t)~N(0,07) ,
e,(t)~N(0,07) with 0 = 0.01, o7 = 0.01, g7 = 0.001, re-
specticely. The discrete timeindex t is set to be equivaent to a
sampling rate of 200 Hz, and each process consists of 2000 data
points (i.e. f; =200 Hz,1 <t <2000,1/f;, <t/f; <10s).
a,(t) and a,(t) are time-varying coupling strengths (CS) of
interactions shown in Fig. 1 (@) and given as
t/fg
a(t)=e © sin(4t/f,), Yf <t/f <10s,
0.2t/ f, 1f,<t/f <5s,
aZ(t)_{—O.Zt/ f.+2, 5<t/f <10s

Fig. 1(b) is the theoretical values of TF-CGC in this example,
which are calculated based on model (27) with true values of
a,(t) and a,(t) and the TF-CGC formulas. It is obvious that
the process x(t) is influenced by y(t) through a, (t) with fast
oscillating strength, and is also interacted by z(t) with con-
tinuously increasing intensity in thefirst half of the process and
decreasing intensity in the second half. Note that apart from the
non-null  causal interactions (i.e. GCy_xz(t,f) and
GCzx v (¢, f)), the measurements for null connections between
the processes are not displayed, because no indirect causal re-
lations are involved in this model. This example aims to
demonstrate the effectiveness of the proposed method in de-
tecting dynamic causalities with both slow and fast changes in
TF domain, and the efficiency to identify indirect influencesis
separately illustrated in the next example.

The 3~6-th order B-splines (i.e. & ;: v = 3,4,5,6) with scale
index j = 4 are used to estimate the oscillating and continuous
varying parameters of the model. The output signal and all the
expanded terms are modulated with the first and second order
derivatives of the cubic B-splines as test functions. Then the
UROL S algorithm aided by APRESS is applied to construct the
parsimonious model structure and recover the associated pa-
rameters. Based upon the identified TVARX models,
time-varying causal influences from y(t) and z(t) to x(t) in
TF domain are calculated by means of the proposed parametric
TF-CGC method. The detected TF-CGC distributions are given

(@7

(28)
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inFig. 2(f). For comparison, the model in (27) is also estimated
by using the following algorithms. the diding short-window
spectral analysis with window length of 50 samples, the RLS
with forgetting factor 0.94, the OLS, UOLS and ROLS with
B-splines; and the corresponding TF-CGC detection results are
shown in Fig. 2(a)-(e), respectively.

ay(t) at)

7

ln y 1
0.5 0.75
s D AAAAAA 8 G

0123456 78910
Timels

01234567 8910
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Fig. 1. Description for model (27). (a) The time courses of dynamic coupling
strengths (CS). (b) The corresponding theoretical TF-CGC values.
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Fig. 2. The comparison of the TF-CGC results for model (27) using different
methods. () Short-windowing. (b) RLS. (c) OLS with B-splines. (d) UOLS
with B-splines. (€) ROLS with B-splines. (f) UROLS-APRESS with B-splines

The TF-CGC estimates by the short-window spectral method
are presented in Fig. 2(a), where the causality changes along the
time course can be roughly measured, but the results of the

causal spectral estimation are not very well this indicates the
resolution in time and frequency domain cannot be ensured
simultaneoudly. Fig. 2(b) shows that the RLS method reflects
monotonous changing interaction from z(t) to x(t) but failsto
track oscillatory varying connectivity from y(t) to x(t). Fig.
2(c) indicates that the parametric TF-CGC measure using OLS
with B-splines can detect the oscillating as well as ramp-shaped
variations in causal influences but also produces false positive
values at the wrong frequency without adesirable TF precision.
The causal interactions detected by multiwavelet-based UOLS
in Fig. 2(d) provides more precise TF causal results than the
OLS for both the constructed changing interactions, but there
still exist false positive values. Fig. 2(e) gives the causality
obtained from ROL S with B-splines. The designed two types of
varying influences are reflected in the results with almost no
false positive values, but the causalities at some TF points are
not detected and the measurements are much smaller than the
theoretical values. Theresults shown in Fig. 2(d) and (€) shows
the results produced by the UOLS and ROLS, which can be
explained as a result of low specificity (over-fitting) and low
sengitivity (under-fitting) in GC detection respectively. In
contrast, the proposed method using UROLS with B-splines
aided by APRESS (Fig. 2(f)), can better reveal the dynamic
interactions containing both fast oscillating and smooth con-
tinuous causal variations at amost all time and frequency
points with high temporal and spectral precision.

In order to validate the effectiveness of the proposed method
quantitatively, the mean absolute error (MAE), root mean
squared error (RMSE) and peak signal to noise ratio (PSNR) of
the TF-CGC measurements with respect to the corresponding
theoretical values are defined below

1 N F
MAE:EEZ; )‘ (29)
RMSE = J $$ewn-cqn| @)

PS\NR = 20log,, (MAX / RMSE) (3D

where C(t, f) is the measurements of TF-CGC C(t, f) at each
time and frequency point, N is the data length and F is the
frequency range, MAX denotes the maximum strength of the
corresponding theoretical GC distribution. The associated re-
sultsaregivenin Tablel. It isobviousthat the calculated MAE,
RMSE values of the proposed method are smaller than other
five methods and the corresponding PSNR values are the
largest one among all approaches, which statistically validate
that the proposed scheme possesses better ability for tracking
dynamic connectivity in both temporal and spectral domain.

TABLEI

A COMPARISON OF THE DETECTION RESULTS FOR EXAMPLE (1)
TF-CGC Method MAE RMSE PSNR
Short-windowing 0.3104 0.6380 22.8912
RLS 0.3357 0.8212 20.6469
Gc @ f) OLS with B-splines 0.2179 0.5705 23.8114
Y=x123>7 7 yOoLS with B-splines 0.1959 0.4440 25.9890
ROLS with B-splines 0.1816 0.4997 24.9615
UROL Swith B-splines  0.1642 0.4269 26.3295
Short-windowing 0.3494 0.5565 19.7380
RLS 0.2057 0.4541 21.5172
Gc & f) OLS with B-splines 0.1936 0.4209 221777
Z=XIyA-J 7 YOLS with B-splines 0.1739 0.3765 23.1451
ROLS with B-splines 0.1630 0.4016 22.5839
UROL Swith B-splines  0.1578 0.3438 23.9337

Note: bold values indicate the best results.
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TABLE I
ANOVA F TEST FOR EXAMPLE (1)
TF-CGC Method Ave MAE+Std 12 F P,
Short-windowing 0.3033+0.0176 <0.01
RLS 0.334440.0069 <0.01
OLS with B-splines 0.2508+0.0192 <0.01
GCy-xiz(tf) UOLS with Bs?splin&s 0.2400+0.0229 <0.01 10515 <001
ROLS with B-splines 0.2381+0.0168 0.047

UROL Swith B-splines 0.226340.0229 /

Freq./Hz

Short-windowing 0.343740.0218 <0.01
RLS 0.2845+0.0132 <0.01
OLSwithB-splines ~ 0.2514+0.0170 <0.01

GCrxiv (1) Yo Swith B-splines 02295400204 0011 11880 <001
ROLSwith B-splines  0.2265+0.0254 0.037

UROL Swith B-splines 0.2131+0.0201 /

Freq./Hz

Note: p, refersto p-values obtained from the pairwise comparison between the
proposed method and other five methods; p, denotes p-values obtained from
the comparison between all the six methods; bold values denote the best results.

The efficiency of the proposed method shown in Table | is
further confirmed by a datistical Analysis of Variance
(ANOVA). Specifically, 20 different datasets, which satisfy the
data size requirement for a high level reliability study [46], are
generated according to model (27) with random selected noise
seeds. Time-frequency causalities can be measured by al six
comparing algorithms on each produced dataset, and the esti-
mation results are statistically tested to check the significance
of effectiveness of the proposed algorithm. The corresponding
analysisresultsare givenin Table 1. It can be observed that the
ANOVA F-test value between methods are much larger than
the threshold val ue under 99% confidenceinterval (p, < 0.01),
and the p-values of the proposed method vs. other methods are
all less than 0.05 (p; < 0.05), indicating significant excellent
causality detection power of the proposed method.

2) TF-CGC detection with indirect interactions
Consider athree-node network with nonstationary stochastic
processes jointly described by the following system

x(t)=0.53x(t —1) - 0.8x(t—2) + g (t)

y(t)=0.53y(t-1)-0.8y(t-2)+b (t)x(t-1)+e,(t)

z(t)=053z(t—1)-0.8z(t - 2) + b, (t) y(t —1) +,(t)
where e, (t), e, (t) and e,(t) are Gaussian distributed noise
with zero means and variances 0.01, b,(t) and b,(t) are
time-varying coupling strengths from x(t) to y(t) and from
y(t) to z(t) respectively, and thetimeindex t is assumed to be
equivalent to f; = 200 Hz. Setting the coupling strengths vary
according to the profiles shown in Fig. 3(a) and given by (32),
20 trials of datawith each trial containing 1000 points (i.e. 1 <
t < 1000) are produced in this case. Fig. 3(a) also illustrates
the diagram of connectivity among the simulated three nodes.

05 1<t<500, 0, 1<t<500,
b(t)= by(t) =
0, 50L<t<1000. 05, 501<t<1000.

According to Fig. 3(a) and (33), x(t) hasacausal relation on
y(t) in the first half of the simulation time interval, and y(t)
drives z(t) in the second half in turn, moreover the dashed ar-
row means that x(t) has an indirect effect on z(t) mediated by
y(t). The corresponding theoretical values of TF-CGC are
shown in Fig. 3(b). In the ideal case, except the piece-wise
varying immediate impacts of x(t) to y(t) and y(t) to z(t)
with nonzero values, the other influences should be zero. Fig.
4(a) and (b) showsthe CGC analysisresultsin TF domain using
the short-window analysis method with a window size of 40
samples and the RLS with forgetting factor 0.90. The TF-CGC
results detected by the B-splines based OLS, UOLS, ROLS,
and the proposed UROLS-APRESS are displayed in Fig.

4(c)-(f), respectively.

(32

(33)

Timels

(b)
Fig. 3. Description for TVARX systems (32). (8) Thetime courses of dynamic
coupling strengths (CS) and the diagram of interactions. (b) The corresponding

theoretical TF-CGC values.
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Fig. 4. The comparison of the TF-CGC results for system (32) using different
methods. (a) Short-windowing. (b) RLS. (c) OLS with B-splines. (d) UOLS
with B-splines. (€) ROLS with B-splines. (f) UROLS-APRESS with B-splines.

TABLE Il
A COMPARISON OF THE DETECTION RESULTSFOR EXAMPLE (2)

TF-CGC Method MAE RMSE PSNR
Short-windowing 0.1598  0.2152 19.3630
RLS 0.2783 0.3431 15.3117
Gc “f OLS with B-splines 0.2050 0.2744 17.2535
XovizAY UOLS with B-splines 0.1320 0.2012 19.9496
ROLS with B-splines 0.0933 0.2016 19.9310
UROL Swith B-splines 0.0743 0.1616 21.8529
Short-windowing 0.1329 0.1649 21.6761
RLS 0.2511 0.2996 16.4902
GC ) OLS with B-splines 0.1917 0.2738 17.2714
XozZly e UOLS with B-splines 0.1253 0.2072 19.6922
ROLS with B-splines 0.0437  0.0647 29.8067

UROL Swith B-splines 0 0 o]
Short-windowing 0.1108  0.1463 22.7133
RLS 0.2402 0.3007 16.4568
GC ) OLS with B-splines 0.1711 0.2600 17.7201
yoxizis UOLS with B-splines 0.1074  0.1852 20.6688
ROLS with B-splines 0.0399  0.0624 30.1166

UROL Swith B-splines 0 0 00
Short-windowing 0.1301  0.1948 19.2307
RLS 0.2744 0.3440 15.2885
cc &f OLS with B-splines 0.2289  0.3188 15.9510
Yozix UOLS with B-splines 01600 02506  18.0414
ROLS with B-splines 0.0969 0.2060 19.7442
UROL Swith B-splines 0.0858  0.1853 20.6628
Short-windowing 0.1344 0.1879 19.5412
RLS 0.2592 0.3264 15.7450
Gc “ OLS with B-splines 0.1882 0.2881 16.8296
22XV UOLS with B-splines 0.1232 0.2185 19.2335
ROLS with B-splines 0.0513 0.0833 27.6080

UROL Swith B-splines 0 0 ©
Short-windowing 01112  0.1580 21.0490
RLS 0.2330 0.2928 16.6892
Gc & OLS with B-splines 0.1688 0.2506 18.0422
ZoYIX RS UOLS with B-splines 01169  0.1995 20.0212
ROLS with B-splines 0.0386 0.0643 29.8595

UROL Swith B-splines 0 0 [e )

The short-window spectral approach (Fig. 4(a)) gets unde-
sirable frequency distributions with low spectrum resolution for
the non-null dynamic interactions (GCx-yz(t,f) and GCy_zx
(t, /), and the estimated causal values for the null influences
(GCxoziy (6, f), GCyoxiz(t, ), GCryy(t, f), and GCryx(t,f))
are not accurate as well. The classical RLS method (Fig. 4(b))
also generatesincorrect reflections of the non-zero connectivity
in addition to the spurious information leakages [47] among
other signal pairs predicted to be zero, which is sensitive to
noise and unable to overcome the effect of mutual sources due
to the limited convergence speed. This problem is partly solved
by the OLS agorithm (Fig. 4(c)), but spurious interactions as-
cribed to model fitting errors and leakages caused by mutual
sources remain apparent. The UOLS method (Fig. 4(d)), alt-
hough obtains more accurate causalities than the OLS in TF
domain, the over-fitting issue still cannot be well solved. The
ROLS detection (Fig. 4(e)) aleviates the leakage issue to a
negligible level, but the connection strengths from x(t) to y(t)
and from y(t) to z(t) are much smaller than the theoretical
values due to under fitting in models. By comparison, the
proposed UROLS procedure (Fig. 4(f)) can exactly detect the

indirect impacts with zero strengths and well reflect the
piece-wise variations in causality. All these results show that
the proposed approach appears to provide the most desired
presentation of the transient causal connectivity.

Similar to the previous example, the MAE, RMSE and PSNR
of the TF-CGC estimates are presented in Table I11. Obvioudly,
the proposed scheme has a better measuring performance for
both abruptly changing direct impacts and indirect influences
compared with other five approaches, indicating the advantage
of the proposed TF-CGC method in detecting time-varying
causality changes for the coupled nonstationary systems.

TablelV givesthe ANOVA results of the proposed TF-CGC
method and other five compared methods on the 20 single tria
datasets. The smaller detection errors and significant p-values
indicate that the proposed algorithm can achieve better detec-
tion performance than other five methods; this statistically
demonstrates that the proposed algorithm can be an effective
tool for multivariate time-varying directed connection analysis.

To more explicitly demonstrate the TF resolution and
pre-cision of the proposed method in detecting both direct and
indirect connectivity, the time and frequency domain causality
functions are compared with the mutual information and con-
ditional TE (time domain, see Fig. 5), Geweke spectral causal-
ity and dDTF (frequency domain, see Fig. 6) respec-tively. Itis
obvious that the proposed method outperforms the mutual in-
formation (no direction) and TE in terms of higher temporal
resolution and more accurate causal strengths. The novel
method is also superior to the Geweke spectral method and
dDTF in that the proposed method completely eliminates in-
direct influences and more precise spectrum connection
re-lations. These results further validate the efficiency of our
proposed method for analyzing dynamic direct and indirect

causal interactionsin TF domain.

TABLE IV
ANOVA F TEST FOR EXAMPLE (2)

TF-CGC Method AveMAE+Std  p, F s

Short-windowing 0.2121+0.0178  <0.01
RLS 0.3359+0.0113 <0.01
OLS with B-splines 0.2576+0.0284 <0.01

GCenz(BF) GoLSwith B-splines  0.1830+0.0192 <001 27005 <001
ROLS with B-splines 0.12504+0.0098  0.025
UROL Swith B-splines  0.1125+0.0098 /
Short-windowing 0.1329+0.0134  <0.01
RLS 0.2511+0.0214  <0.01
OLS with B-splines 0.1917+0.0345 <0.01

GCozv (6 F) JOLS with B-splines  0.1253+0.0258 <oo1 20050 <001
ROLS with B-splines 0.043740.0081  <0.01
UROL Swith B-splines 0 /
Short-windowing 0.1108+0.0138  <0.01
RLS 0.2402+0.0284 <0.01
OLS with B-splines 0.171140.0351  <0.01

GCroxizBF) GoLSwith B-splines  0.1074+0.0197 <001 52887 <001
ROLS with B-splines 0.0399+0.0067 <0.01
UROL Swith B-splines 0 /
Short-windowing 0.1822+0.0106  <0.01
RLS 0.3308+0.0164 <0.01
OLS with B-splines 0.2830+0.0244 <0.01

v F) Yol Swith B-splines  02070£0.0207 <001 0465 <001
ROLS with B-splines 0.1308+0.0093  0.023
UROL Swith B-splines  0.1186+0.0137 /
Short-windowing 0.134440.0158 <0.01
RLS 0.2592+0.0189 <0.01
OLS with B-splines 0.18824+0.0357 <0.01

GCooxv (B ) JOLS with B-splines  0.1232£0.0202 <001 3740 <001
ROLS with B-splines 0.0513+0.0089 <0.01
UROL Swith B-splines 0 /
Short-windowing 0.1112+0.0107 <0.01
RLS 0.2330+0.0149 <0.01
OLS with B-splines 0.1688+0.0361 <0.01

GCrnx (1) oL S with S‘Eso-splines 01160100233 <001 38244 <001
ROLS with B-splines 0.0386+0.0079  <0.01
UROL Swith B-splines 0 /

Note: bold values indicate the best results
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B. Applicationsto MI-EEG data at source-level
1) EEG data preprocessing

To illustrate applicability of the proposed method for real
EEG data connectivity analysis, the proposed method is applied
to real MI-EEG source signals. The EEG dataset used in this
work is available publicly from the Physiobank Motor/ Mental
Imagery database [48], which consists of 109 subjects per-
forming different M1 tasks while 64-channel EEGs were rec-
orded based 10-10 systems, sampled at 160 Hz. The blocks that
subjects imagined movements of left- and right-hand are se-
lected. Subjects performed atotal of 45 trials and imagined one
of the two tasks for aduration of 4 s in chosen blocks.

The EEGs were notch filtered to remove 60 Hz AC-line
noises. For each tria, the mean of the pre-stimulus samples
with duration of 2 s are subtracted for baseline correction, and
the stimulus-triggered ensemble average isremoved to mitigate
the effect of inter-trial variations and the nonstationarity em-
bodied in the mean [49]. Three electrodes (T9, T10 and 12) are
discarded in the following source analysis, since they are spa-
tial outliers relative to the other 61 electrodes which cover the
scalp in an approximate uniformly distributed manner .

2) EEG source reconstruction

EEG-sources are firstly reconstructed based on event-related
potentials (ERPs), and the TF-CGC decomposition is then
performed on the estimated single-trial source waveforms to
find the directed connectivity patterns in the neocortical sen-
sorimotor networks. The preprocessed 61-channel EEG data
from each participant are respectively averaged across trials to
arrive at ERPs for left- and right-hand M1 of 109 subjects. The
109 ERPs of two MI conditions are used in the exact low res-
olution electromagnetic tomography (eLORETA) to recon-
struct EEG sources on the cortical surface [50]. The computa-
tions for inverse solution in eLORETA are implemented in a
realistic head model based on the MNI152 (Montreal Neuro-
logical Institute) template, with the three -dimensional solution
space restricted to cortical gray matter, as determined by the
probabilistic Talairach (TAL) atlas. An entire 6239 cortical
gray matter voxels with 5 mm spatial resolution constitute the
solution space. EEG-source reconstruction at the whole brain
level (all 6239 cortical voxels) is calculated, and a voxel by
voxel comparison between left- and right-hand MI conditions is
performed to determine the source information consisting the cor-
tical sensorimotor network.

According to the results of the statistical comparison, cortical
activities at five different sites are significant (with extreme
p < 0.05 in the t-test), and are selected as the sources. Thus
ROIs (see Table V in Supplementary material-D), which
formed by the single voxel nearest to the location of these sig-
nificant areas, are marked as the network nodes for the next
connectivity analysis. It shows that the source level network
contains four active nodes symmetrically distributed on the left
and right sides of the primary somatosensory cortex (BA3.L1,
BA3.L2, BA3.R1, BA3.R2) and a limbic area node (BA 23).
Note that the influence from limbic system on motor behavior
are widespread which can range from the beginning of action to
the motivational pace of motor output [51]. Thus, the inclusion
of these nodes in the causal network is reasonable and neces-
sary for this M1 study.
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UROLS-APRESS TF-CGC, obtained by spectral averaging of the corre-
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For convenience, denote ROI 1 as Limbic Lobe or BA23,
ROl 2 as Parietal LobelL1l or BA3.L1, ROl 3 as Parieta
Lobe.R1 or BA3.R1, ROI 4 as Parietal Lobe.L2 or BA3.L2, and
ROI 5 asParietal Lobe.R2 or BA3.R2 in thefollowing analysis.
Time series of each trial electric neuronal activity at these five
ROls are estimated with eLORETA from the single-trial EEG
data. Based on the obtained single-trial source signal wave-
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forms, the TF causal activities under different M1 conditions
are then analyzed by the TF-CGC method.

3) TF-CGC analysis of MI-EEG source signals

TF-CGCs between the source waveforms of five ROIs for
left- and right-hand MI responses are all computed by the
proposed method. The TVARX models for EEG source signals
from five ROIs are first constructed. Then the 3~6-th order
B-splines with a scale index j = 4 are adopted to expand the
time-varying parameters, and the cubic B-spline basis functions
are employed as the modulate function. For each trial source
data, the optimal model order can be determined by minimizing
the AIC criterion in (15) with the range of 1 < i < 15 [32].
Similar to [21], the selected model orders are no morethan 8 in
this study. After identifying the TVARX models applying the
proposed UROLS- APRESS algorithm, the TF-CGCs among
the five ROI's composed sensorimotor network can be detected
by (28) and (29).

As the power density of EEG roughly follows power-law
decay as frequency increases [52], spectral causality are typi-
cally small in magnitude at higher frequencies. Also consider-
ing that the reaction for M1 tasks generally happensin the pre-
vious seconds after the stimulation, the significant TF-CGCsin
0-40 Hz during 0-2 s (with the stimulus time as 0's) for
left-hand M1 are shown in Fig. 7(b), with dashed boxes indexed
by 1 and 2 to outline the influences from the regions located in
left hemisphere to those in right hemisphere and from right to
left respectively, and the performance is compared with the
short window method with duration of 200 samples (Fig. 7(a)).
The corresponding results for right-hand M1 aregivenin Fig. 8.

From Fig. 7(a) and Fig. 8(a), the short window method can
roughly detect the general causal trends between left and right
regions under left- and right-hand M1 tasks [53], i.e. causalities
from the contralateral areasto theipsilateral arerelatively more
apparent than those in the opposite direction (mainly see rela-
tions in dashed box 1 and 2). However, the temporal and spec-
tral resolutions are not desired, and specific interaction patterns
cannot be clearly observed. Additionally, the optimal window
size levels obtained are notably high and spread across the
whole TF plane with emphasis on low frequency components
(lower than alpha band), which may be associated with the re-
sidual mutual contents of the MI-EEG source signals [47][54].
By contrast, the proposed UROLS method can provide more
explicit TF causal distributions with a high TF resolution and
negligible mutual components in low frequency range.

Specificaly, Fig. 7(b) displays the following observations
for left-hand M1 with the proposed method: (i) the conditional
causal influences from right regions to left (dashed box 2) are
stronger than that from left to right (dashed box 1) especialy
after around 0.5 s; (ii) the enhancement of causal relations over
theipsilateral areas (GCgas 11254312 (t, f)) and the blocking of
interactions over the contralateral scalp (GCp a3 r1=p43.82(t, f))
are detected along with the timeframe; and (iii) the causalities
out of Limbic Lobe are more obvious than interactions input to
it, and Limbic Lobe exerts greater causal influences on left re-
gions (ipsilateral, i.e. BA3.L1 and BA3.L2) than right areas
(contralateral, i.e. BA3.R1 and BA3.R2). In addition, the cor-
responding causal patterns for right-hand conditions (Fig. 8(b))
show that: the causalities from left areasto right (dashed box 1)
are more significant than that from right to left (dashed box 2)
after approximately 0.25 s; the ipsilateral increase and contra-
lateral decrease are aso reflected in strong GCpazpie
az.rz(t, f) and small GCpa3112p43.2(t, f); and Limbic Lobe
outputs more evident causal influences to the ipsilateral sites
(BA3.R1 and BA3.R2) than contralateral regions (BA3.L1 and
BA3.L2).

Given that alpha (8-14 Hz) and beta (14-30 Hz) bands are the
most studied frequency bands when investigating the oscilla
tory cortical activity during motor operations , the dynamic

causal interactions in 8-30 Hz are particularly studied to esti-
mate network connectivity patterns during M| tasks. By setting
the five ROI s as the sensorimotor network nodes, the net causal
flows are computed wusing the formula CF, 4. =

Yo (Guodeoic = Gigomode)» Where Ny, is the total number of

nodes in a network and G is the 8-30 Hz integrated Granger
causality, with self-causality assumed to be zero [52]. The
positive CF denotes the net outgoing causa information flow
away from the node (causal source), and the negative CF refers
to the net incoming flow towards the node (causal sink). The
results are presented in Fig. 9(a) and (b) for left- and right-hand
MI respectively; besides, Fig. 10(a) and (b) give the CGCs
averaged across 8-30 Hz plotted as functions of time for bidi-
rectional influences between left and right regions, aiming to
access a high-resolution time response.

Fig. 9(a) shows that in left-hand MI, the ipsilateral regions
(BA3.L1 and BA3.L2) function mostly as targets whereas the
contralateral sites (BA3.R1 and BA3.R2) become dominant
sources with no significant changes over time and frequency.
For right-hand M1 (Fig. 9(c)), BA3.R1 and BA3.R2 located at
ipsilateral areas function predominantly as targets, and BA3.L1
and BA3.L2 in contralateral areas function as sources. Addi-
tionaly, Limbic Lobe is the prominent source in both left- and
right-hand M1 conditions within the mainly entire timeframe
and frequency range. From Fig. 10 (a) and (b) in, the decrease
of band averaged CGC from the ipsilateral regions to contra-
lateral regions and the increase of CGC in the opposite direc-
tions are observed in both MI tasks, where the differences
between the bidirectiona influences enhanced apparently dur-
ing 0.25-0.45 sin left-hand conditions, while the corresponding
discrepancies occurred in 0-0.25 s for right-hand MI. The dy-
namic brain network representations for TF-CGC are given in
Supplementary material-E, and the significant high-resolution
causal patterns obtained viathe proposed method are concluded
in Supplementary material-F.
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IV. DISCUSSION

A. Sgnificance of results

The key findings of our causality analysis are summarized as
follows: (i) the ultra-least squares and APRESS criterion for
TVARX model structure construction improve the precision
and resolution of dynamic TF-CGC analysis; (ii) the zero-order
regularization increases the ability for nonstationary causality
detection; (iii) the parametric conditional causal measure based
on accurately identified time-varying models can effectively
differentiate between direct and indirect interactions; (iv) the
precise independent estimation of TVARX models for source
EEG signals can dleviate the distorting effect of volume con-
duction within multichannel EEGs. The proposed method
outperforms the conventional short window spectral method,
the adaptive RLS, and the other parametric causality ap-
proaches based on OLS, UOLS and ROLS in both simulations
and real source EEG dataanalysis. The detection resultsin time
and frequency domain are al so superior to the Geweke spectral
causdlity, dDTF, mutual information and TE with a higher
time-frequency resolution and precision for both direct and in-
direct influences. An advantage of the proposed algorithm over
the dliding short-time window or adaptive recursive approaches
isthat it does not need to assume window lengths or stochastic
model types for underlying TVARX models, and the dynamic
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Fig. 10. Averaged time-varying CGCs of MI- EEG source signalsin 8-30 Hz.
(a) left-hand M. (b) right-hand M.
causalities can be calculated by just specifying a number of
basis functions that can be used to estimate TVARX models.
Furthermore, in comparison with similar existing functional
series expansion methods (i.e. multiwavel et-based OLS, UOLS,
ROLYS), the proposed approach can produce more accurate
causal patterns by making use of regularized extra information
characterized by the regularization and weak derivatives of
nonstationary signals.
B. Efficacy of the ULS metric

As demonstrated in simulations (see panel (d) UOLSvs. (¢)
OLS, and (f) UROLS vs. (e) ROLS in Fig. 2 and Fig. 4), the
ultra-least squares metric for dynamic causality anaysis im-
proves the TF accuracy in detecting various time-varying in-
teraction processes. The metric is more efficient than conven-
tional OLSin that it evaluates not only the classical dependent
relation of the desired signal on the potential explanatory var-
iables, but also takes advantage of the dependent relation of the
associated weak derivatives. Theinclusion of weak derivatives,
which considers the relative relations between data points of
signals (emphasizes the agreement in signal shape ), can
construct more accurate TVARX models for time-varying
systems and further enhance the efficiency to track rapidly and
sharply changing TF causalities especially when the signals are
not persistently excited. The proposed method is thus more
suitable for high-resolution time-frequency connectivity anal-
ysis of inherently nonstationary coupled systems.
C. Efficacy of regularization

From the results of simulations (see panel (€) ROLS vs. (c)
OLS, and (f) UROLS vs. (d) UOLS in Fig. 2 and Fig. 4), the
regularization operation increases the noise-resistibility and
robustness of the method for causality detection. Incorporating
the zero-order regularization into the parsimonious principle of
the OFR, i.e. the regularized ERR criterion, can reflect the po-
tential overlapped information in candidate regressors that ul-
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timately helps to precisely identify the TVARX processes with
improved generalization performance. Therefore, the obtained
causality distributions are of good robustness, enabling the
regularized method to capture dynamic causal relations well
even when the signal s data are contaminated with high noise.
D. Efficacy of the APRESScriterion

For the novel UROLS algorithm used in the TF-CGC anal-
ysis for TVARX model identification, the APRESS criterion
works more effectively for model term selection. This newly
incorporated criterion modifies generalized cross-validation
criterion LOO (leave-one -out) by using an adjustable penalty
function, thus is more applicable in model determination for
nonstationary systems. The redundant model terms confused by
the traditional OLS type algorithms become less significant
under the new criterion and can then be excluded from the
original regressor model. This enables the proposed method to
exactly distinguish indirect interactions and obtain completely
true null values over the whole TF plane for them.
E. The effect of volume conduction

As illustrated in the TF-CGC results of MI-EEG source
signals (Figs. 7-8), the proposed UROL S-APRESS method has
the potential to attenuate spurious correlations caused by the
volume conduction effects in causality analysis of EEG data.
The effect of volume conduction is a significant challenge in
connectivity analysis for scalp EEG where a given brain source
is often reflected in several EEG signals, and consequently,
their similarity may be falsely perceived as connectivity by the
analysis procedures [55]. Two primary approaches have been
suggested to deal with this problem: one is to anayze EEG
connectivity at the source level ; and the other isto identify
information in the correlation structure that is unlikely to be
explained by common sources, such as the partial coherence
and phase lag index methods [55]. Therefore, based on these
approaches, this paper first cal culates single-trial source signals
from scalp EEGs, and then estimates accurate time-varying
EEG models using the proposed multiwavelet-based
UROLS-APRESS algorithm, which can efficiently avoid spu-
rious coupling relations due to similarity of signals. Finaly
source-level CGCs are measured precisely using the accurate
EEG models, and thus the volume conduction issue can be well
solved. Specifically, compared to the short window plots (Fig.
7(a), Fig. 8(a)) which show strikingly high levels towards both
higher and lower frequency components, the experiment results
by the proposed method (Fig. 7(b), Fig. 8(b)) show the domi-
nant contents at around 8-30 Hz, which indicates the incorrect
spectral components which mainly represent the volume con-
duction effects are effectively reduced through the accu-
rate independent approximation for source data. In conclusion,
our proposed method can mitigate the volume conduction im-
pact by source level conditional causdlity analysis with
high-precision TVARX models for nonstationary EEG signals.
F. Limitations and future directions

Though achieving good dynamic TF causality detection
performance, the proposed UROLS-APRESS method still
possesses two major limitations. The first is its heavy compu-
tational load, which may be much higher than traditional dy-
namic connectivity analysis methods. The main reason is that,
when identifying each underlying TVARX model, the multi-
wavel et-based ultra-regularized algorithm involvestheiterative
selection procedure from a number of expanded candidate
terms, and the number of simultaneous equations to be calcu-
lated are aso increased. Another main limitation is that the
TF-CGC method isdeveloped only based onthelinear TVARX
models and the nonlinear TF connectivity among nonstationary
systemsisnot considered in thisearly stage. Similar to [57], our
previous work has also studied time-varying nonlinear Granger
causality detection method which was applied that to MI-EEG
signals in the time domain [21]. However, it should be noted

that the dynamic nonlinear causality analysisin time-frequency
domain can be much more complicated than that only in the
time domain, especialy for the nonlinear ARX (NARX) model
based analysis. Our future work would focus on improving the
performance of the proposed method from the following two
aspects. Oneisto extend the TVARX model to anonlinear case
(e.g. TV-NARX model), and another is to develop and adapt
fast algorithms for model term selection which can either re-
duce the computational load or significantly improve the in-
terative model selection procedure.

V. CONCLUSION

A new parametric TF-CGC method is proposed for multi-
variate time-varying connectivity analysisin TF domain, where
the UROL S-APRESS with multiwavelets is employed in gen-
eralized spectral CGC measure to achieve a high-resolution
causality detection. Analyses on the ssimulation data show that
the proposed approach can well detect both rapidly varying
direct causalities and indirect effects among coupling systems
over time and frequency. For real source MI-EEG data, the
obtained connectivity patterns are physiologically and ana
tomically interpretable, and yield important insights into the
dynamical organization of 8-30 Hz cortical activities. An ob-
vious advantage of the proposed method lies in its ability to
track fast changing causal influences and eliminate indirect
effects caused by mutual sources; these are mainly attributed to
the use of UROLS-APRESS agorithm. The novel real appli-
cation of the TF-CGC analysis to EEG signals can provide
quantified and more detailed information of the underlying
dynamic activitiesin oscillatory networks. Thus, the procedure
that, how oscillating networks coordinate activity between
neocortical regions mediating sensory processing to arrive at
motor perceptual decisions, can be better understood through
this study.
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