8 research outputs found

    On the Runtime of Randomized Local Search and Simple Evolutionary Algorithms for Dynamic Makespan Scheduling

    Get PDF
    Evolutionary algorithms have been frequently used for dynamic optimization problems. With this paper, we contribute to the theoretical understanding of this research area. We present the first computational complexity analysis of evolutionary algorithms for a dynamic variant of a classical combinatorial optimization problem, namely makespan scheduling. We study the model of a strong adversary which is allowed to change one job at regular intervals. Furthermore, we investigate the setting of random changes. Our results show that randomized local search and a simple evolutionary algorithm are very effective in dynamically tracking changes made to the problem instance.Comment: Conference version appears at IJCAI 201

    A parameterized runtime analysis of simple evolutionary algorithms for makespan scheduling

    Get PDF
    We consider simple multi-start evolutionary algorithms applied to the classical NP-hard combinatorial optimization problem of Makespan Scheduling on two machines. We study the dependence of the runtime of this type of algorithm on three different key hardness parameters. By doing this, we provide further structural insights into the behavior of evolutionary algorithms for this classical problem.Andrew M. Sutton and Frank Neuman

    A Parameterized Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms

    Full text link
    Bi-level optimisation problems have gained increasing interest in the field of combinatorial optimisation in recent years. With this paper, we start the runtime analysis of evolutionary algorithms for bi-level optimisation problems. We examine two NP-hard problems, the generalised minimum spanning tree problem (GMST), and the generalised travelling salesman problem (GTSP) in the context of parameterised complexity. For the generalised minimum spanning tree problem, we analyse the two approaches presented by Hu and Raidl (2012) with respect to the number of clusters that distinguish each other by the chosen representation of possible solutions. Our results show that a (1+1) EA working with the spanning nodes representation is not a fixed-parameter evolutionary algorithm for the problem, whereas the global structure representation enables to solve the problem in fixed-parameter time. We present hard instances for each approach and show that the two approaches are highly complementary by proving that they solve each other's hard instances very efficiently. For the generalised travelling salesman problem, we analyse the problem with respect to the number of clusters in the problem instance. Our results show that a (1+1) EA working with the global structure representation is a fixed-parameter evolutionary algorithm for the problem

    Performance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem

    Get PDF
    Some experimental investigations have shown that evolutionary algorithms (EAs) are efficient for the minimum label spanning tree (MLST) problem. However, we know little about that in theory. As one step towards this issue, we theoretically analyze the performances of the (1+1) EA, a simple version of EAs, and a multi-objective evolutionary algorithm called GSEMO on the MLST problem. We reveal that for the MLSTb_{b} problem the (1+1) EA and GSEMO achieve a b+12\frac{b+1}{2}-approximation ratio in expected polynomial times of nn the number of nodes and kk the number of labels. We also show that GSEMO achieves a (2ln(n))(2ln(n))-approximation ratio for the MLST problem in expected polynomial time of nn and kk. At the same time, we show that the (1+1) EA and GSEMO outperform local search algorithms on three instances of the MLST problem. We also construct an instance on which GSEMO outperforms the (1+1) EA

    Parameterized Complexity Analysis of Randomized Search Heuristics

    Full text link
    This chapter compiles a number of results that apply the theory of parameterized algorithmics to the running-time analysis of randomized search heuristics such as evolutionary algorithms. The parameterized approach articulates the running time of algorithms solving combinatorial problems in finer detail than traditional approaches from classical complexity theory. We outline the main results and proof techniques for a collection of randomized search heuristics tasked to solve NP-hard combinatorial optimization problems such as finding a minimum vertex cover in a graph, finding a maximum leaf spanning tree in a graph, and the traveling salesperson problem.Comment: This is a preliminary version of a chapter in the book "Theory of Evolutionary Computation: Recent Developments in Discrete Optimization", edited by Benjamin Doerr and Frank Neumann, published by Springe

    A Parameterized Runtime Analysis of Evolutionary Algorithms for the Euclidean Traveling Salesperson Problem

    No full text
    We contribute to the theoretical understanding of evolutionary algorithms and carry out a parameterized analysis of evolutionary algorithms for the Euclidean traveling salesperson problem (Euclidean TSP). We exploit structural properties related to the optimization process of evolutionary algorithms for this problem and use them to bound the runtime of evolutionary algorithms. Our analysis studies the runtime in dependence of the number of inner points kk and shows that simple evolutionary algorithms solve the Euclidean TSP in expected time O(nk(2k-1)!).  Moreover, we show that, under reasonable geometric constraints, a locally optimal 2-opt tour can be found by randomized local search in expected time $O(n2kk!)
    corecore