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Abstract
Evolutionary algorithms have been frequently used
for dynamic optimization problems. With this pa-
per, we contribute to the theoretical understanding
of this research area. We present the first compu-
tational complexity analysis of evolutionary algo-
rithms for a dynamic variant of a classical com-
binatorial optimization problem, namely makespan
scheduling. We study the model of a strong adver-
sary which is allowed to change one job at regular
intervals. Furthermore, we investigate the setting of
random changes. Our results show that randomized
local search and a simple evolutionary algorithm
are very effective in dynamically tracking changes
made to the problem instance.

1 Introduction
Optimization problems in real-world applications often
change due to a changing environment. Evolutionary al-
gorithms, ant colony optimization and other bio-inspired
search heuristics have been frequently applied to dynamically
changing problems.

An important approach to gain a theoretical understand-
ing of evolutionary algorithms and other types of bio-inspired
computation methods is the computational complexity anal-
ysis of these algorithms. During the last 20 years, a large
body of results and methods has been built up. This includes
the development of methods for the analysis of bio-inspired
computing [4, 6, 7, 25] and results for some of the best-known
combinatorial optimization problems such as the traveling
salesperson problem [21], set cover [5, 26], and makespan
scheduling [22, 23] as well as different multi-objective prob-
lems [8, 17, 19]. These studies often consider the algorithms
called Randomized Local Search (RLS) and (1+1) EA, which
we also investigate in this paper. Although these algorithms
seem to be relatively simple, it should be noted that upper
bounds on the expected optimization time of these algorithms
can often be translated to population-based evolutionary al-
gorithms with more complicated variation operators, e. g.,
crossover by increasing the upper bounds by only a linear fac-
tor with respect to population and problem size [7]. We refer
the reader to [1, 11, 16] for comprehensive presentations of
this research area.

In recent years, the computational complexity analysis
of these algorithms on dynamically changing problems has
gained increasing interest [9, 12, 14, 15, 18, 20]. We study
one of the classical combinatorial optimization problems,
namely makespan scheduling on two machines. We consider
RLS and (1+1) EA and analyze how they are able to keep
track of changes that occur to the processing times of the
given jobs. In our investigations, we examine two models
of dynamic changes where in each iteration at most the pro-
cessing time of one job can be changed. In the adversary
model, an adversary is able to change the processing time
pi ∈ [L,U ] of an arbitrary job i, possibly repeated at regular
intervals. First, we show that even for very frequent and ar-
bitrary changes, the algorithms are able to obtain solutions
of discrepancy at most U frequently during the run of the al-
gorithm. Afterwards, we show that RLS and (1+1) EA can
maintain solutions of discrepancy at most U if the period of
changes is not too small. In the random model, processing
times are from the set {1, . . . ,n} and an adversary is able to
pick the job i to be changed. The processing time pi of the
chosen job is undergoing a random change and is either in-
creased or decreased by 1. For the random model, we show
that the (1+1) EA obtains solutions of discrepancy O(logn) in
time O(n4 logn) regardless of the initial solution and that the
expected ratio between discrepancy and makespan is at most
6/n at least once in a phase of O(n3/2) iterations.

The outline of the paper is as follows. We introduce the
dynamic makespan problem and the algorithms under inves-
tigation in Section 2. Our analyses for the adversary model is
presented in Section 3 and the random model is investigated
in Section 4. Finally, we finish with some conclusions.

2 Preliminaries

We investigate the performance of randomized local search
and a simple evolutionary algorithm for a dynamic version
of the classical makespan problem. Given n jobs and their
processing times pi > 0, 1≤ i≤ n, the goal is to assign each
job to one of two machines M1 and M2 such that the makespan
is minimized. A candidate solution is given by a vector x ∈
{0,1}n, where job i is assigned to machine M1 if xi = 0 and
assigned to machine M2 if xi = 1, 1≤ i≤ n.



The makespan of a candidate solution x is given by

f (x) = max

{
n

∑
i=1

pi(1− xi),
n

∑
i=1

pixi

}
and the goal is to find a solution x∗ which minimizes f . We
denote by |M j| the load of machine j = 1,2. We consider
the dynamic version of the problem where exactly one job
changes. We will also allow such changes to be repeated at
regular intervals. We assume pi ∈ [L,U ], 1 ≤ i ≤ n, where L
is a lower bound on the processing time of any job and U is
an upper bound. We denote by R = U/L the ratio between
upper and lower bound.

Algorithm 1: RLS.
choose x ∈ {0,1}n;
while stopping criteria not fullfilled do

y← x;
flip one bit of y chosen uniformly at random;
if f (y)≤ f (x) then x← y;

Algorithm 2: (1+1) EA.
choose x ∈ {0,1}n;
while stopping criteria not fullfilled do

y← x;
flip each bit of y independently with prob. 1/n;
if f (y)≤ f (x) then x← y;

Randomized local search (RLS) (see Algorithm 1) starts
with a candidate solution x and produces in each iteration
a new solution y by flipping one randomly chosen bit of
x. (1+1) EA (see Algorithm 2) works with a more flexible
mutation operator which flips each bit with probability 1/n.
The two introduced algorithms are standard benchmark algo-
rithms in the area of runtime analysis of evolutionary com-
putation [1, 11, 16]. While evolutionary algorithms usually
work with a larger population and potentially also a crossover
operator, usually positive statements on (1+1) EA transfer
to elitist population-based evolutionary algorithms by losing
only a polynomial factor dependent on the problem and popu-
lation size [7]. This holds for all results obtained in this paper
as well as long as there is in each iteration an inverse poly-
nomial probability of selecting each individual of the parent
population, selection does not accept worsenings of the worst
fitness value from the population, and only the variation op-
erator of (1+1) EA is applied.

We study the runtime behaviour of RLS and (1+1) EA on
the introduced dynamic makespan scheduling problem and
their ability to obtain solutions of good discrepancy. For our
theoretical investigations, we do not consider any stopping
criteria and measure runtime by the number of iterations of
the while-loop to achieve a solution of desired quality. The
expected number of iterations is referred to as the expected

time to reach the desired goal. In our investigations, we de-
note by

d(x) =

∣∣∣∣∣
(

n

∑
i=1

pi(1− xi)

)
−

(
n

∑
i=1

pixi

)∣∣∣∣∣ ,
the discrepancy of the solution x. We will study the expected
time, for different scenarios, until RLS and (1+1) EA have
produced solutions of small discrepancy.

We state an important property on the number of jobs on
the fuller machine (i. e., the heavier loaded machine, which
determines the makespan), which can easily be derived by
taking into account the upper (U) and lower (L) bound on the
processing times.

• Every solution has at least d(P/2)/Ue ≥
d(n/2)(L/U)e = d(n/2) · R−1e jobs on the fuller
machine.

3 Adversary Model
In this section, we consider the case of a strong adversary.
In one change, the adversary is allowed to pick one job i to
be changed and is able to choose an arbitrary new processing
time pi ∈ [L,U ].

3.1 Obtaining a discrepancy of at most U
We start our analysis by presenting upper bounds for RLS
and (1+1) EA to obtain a discrepancy of at most U from any
starting solution.

RLS
We first consider RLS and show that the algorithm ob-
tains a solution of discrepancy at most U in expected time
O(nmin{logn, logR}). This bound holds independently of
the initial solution and the number of changes made by the
adversary. The only requirement is that the adversary makes
at most one change at a time. The proof uses the fact that
for RLS the number of jobs on the fuller machine does not
increase until the fuller machine switches.

Theorem 1 The expected time until RLS has obtained a solu-
tion x with d(x) ≤U is O(nmin{logn, logR}) independently
of the initial solution and the number of changes made by the
adversary.

Proof. We assume that we are starting with an arbitrary so-
lution assigning the jobs to the two machines. Let x be the
current solution and consider in each point in time the fuller
machine. The number of jobs on the fuller machine does not
increase as this would lead to a larger discrepancy.

We claim that if the fuller machine switched (either by
moving a single job or by a single change of the adversary)
then a solution of discrepancy at most U has been obtained
in the step before and after the switch. Note that moving one
job to another machine changes the load on each machine by
at most U and that the adversary can change the load on each
machine by at most U −L. So, the step switching the fuller
machine (accepted or rejected) reduces the load on the fuller
machine from P/2+α , where P = ∑

n
i=1 pi, to P/2−β where

α +β ≤U . This implies min{α,β} ≤U/2 and therefore a



discrepancy of at most U directly before and/or after the fuller
machine has switched. Note, that such a step is only accepted
by RLS iff β ≤ α and that a discrepancy of at most U has
been obtained if the step is accepted. On the other hand, the
case α < β which is rejected by RLS implies a discrepancy
of at most U before the switch.

The fuller machine has at least d(n/2) ·R−1e jobs. Let k
be the number of jobs on the fuller machine. Then the prob-
ability to reduce the number of jobs on the fuller machine is
k
n and the expected waiting time for such a step is n/k. Sum-
ming up, the expected time to switch the fuller machine is at
most

n

∑
k=max{d(n/2)·R−1e,1}

n
k

We have two cases. If R ≥ n/2, the sum is at most nHn =
O(n logn), where Hn is the n-th Harmnoic number. If R <
n/2, the sum is at most n lnn+1−n ln(n/(2R)) = O(n logR).
Altogether, after at most O(nmin{logn, logR}) steps a solu-
tion of discrepancy at most U has been obtained.

(1+1) EA
In Theorem 1, we exploited that accepted steps of RLS cannot
increase the number of jobs on the fuller machines. In con-
trast, the (1+1) EA may move few big jobs from the fuller to
the emptier machine and many small jobs the other way round
if the accumulated effect of the step decreases the discrep-
ancy. Such multiple-bit flips, which may increase the num-
ber of jobs on the fuller machine, arise in a similar way in
the analysis of the (1+1) EA on linear functions, where they
complicate the analysis considerably [24]. However, it is also
known that the number of incorrectly set bits in the (1+1) EA
(corresponding to the number of jobs on the fuller machine)
has a drift towards 0. We are going to show that this drift
leads in time O(n3/2) to the situation that the fuller machine
switches, which was analyzed in Theorem 1. We cannot show
the bound O(n logn) using the advanced drift techniques from
[24] since the dynamics of the job sizes do not allow us to use
the potential function from the literature.

Theorem 2 The expected time until the (1+1) EA has ob-
tained a solution x with d(x) ≤ U is O(n3/2) independently
of the initial solution and the number of changes made by the
adversary.

Proof. We start with a given search point x0, where the time
index w. l. o. g. is 0. W. l. o. g., M1 is the fuller machine
w. r. t. x0. We write `t to denote the load of M1 after t steps.
Now, let T denote the first point in time where `t ≤ P/2+
U/2. At this time, M1 might still be the fuller machine, which
implies a discrepancy at most U . Only if `T < P/2−U/2, the
discrepancy is greater than U . Note that `T−1 > P/2+U/2
and each job size is at most U . Each step resulting in
`T < P/2−U/2 must flip at least 2 bits and can be converted
into a step resulting in `T ∈ [P/2−U/2,P/2+U/2] by con-
ditioning on that a certain subset of bits do not flip. Note that
the step defined by the stopping time T may be required to
flip already more than one bit to reach `T ≤ P/2+U/2 or
even no bits may flip at all if the adversary is responsible for

reaching `T ≤ P/2+U/2; in the latter case, already discrep-
ancy at most U has been obtained. Note also that flipping bits
in addition to the ones required to reach `T ≤ P/2+U/2 may
result in a rejected step. If we condition on the step flipping
as few additional bits as possible, we are guaranteed to enter
the interval [P/2−U/2,P/2+U/2] for the load of the fuller
machine, resulting in an accepted step. The probability of not
flipping a certain subset of bits is at least (1− 1/n)n ≥ e−2.
Hence, if the step leading to time T flips more than the re-
quired bits, we repeat the following analysis and increase the
expected time by a factor of at most e2.

We denote by N1(xt) the number of jobs on M1 with respect
to xt , the current search point after t steps. Based on this, we
define the potential function

d(xt) :=
{

N1(xt) if t < T
0 otherwise.

Hence, the potential function reflects the number of jobs on
the fuller machine before time T and is set to 0 afterwards.
As we have argued, the discrepancy at time T is at most U
with probabiblity at least e−2.

The aim now is to bound E[T ], which is achieved by
bounding E[d(xt)−d(xt+1) | xt ; t < T ] from below and per-
forming drift analysis. In what follows, we use the notation
Xt := d(xt).

Since it is necessary to move at least one job from the fuller
machine to change the d-value, which happens with probabil-
ity at least 1/(en) for each of these jobs, and each job on the
emptier machine switches machine with probability at most
1/n, we get the bound on the drift

E[Xt −Xt+1 | Xt ; t < T ]≥ Xt

en

(
1− n−Xt

n

)
=

X2
t

en2 , (1)

which is at least 1/(en2). Hence, despite the fact that the
number of jobs on the fuller may increase, its decreases in
expectation. Since the maximal d-value is n, we get E[T ] =
O(n3) by additive drift analysis [6]. However, the pessimistic
process analyzed here has already been more closely inves-
tigated in the literature. It has been (apart from irrelevant
differences in details) modeled by a process called PO-EA by
[10], which was recently revisited by [2]. Using this analysis,
the bound can be improved to O(n3/2).

In the following, we present a self-contained proof of the
O(n3/2) bound using a novel potential function that is easier
to handle than the one proposed in the literature. Intuitively,
our potential function exploits that the process mostly moves
due to the variance of the one-step change (instead of the very
small drift) in the regime Xt ≤

√
n whereas it is governed by

the actual drift E[Xt −Xt+1 | Xt ] when Xt is above
√

n.
For x≥ 0, let the potential function be

g(x) :=
{

x(ln(
√

n)+2− ln(x)) if x≤
√

n,
3
√

n− n
x otherwise.

We note that g(x) is monotone increasing and continuous on
[0,n]. Moreover, the derivative satisfies

g′(x) :=
dg
dx

=

{
ln(
√

n)+1− ln(x) if x≤
√

n,
n
x2 otherwise.



and is non-increasing and continuous as well. Hence, g(x) is
a concave function. The second derivative equals

g′′(x) :=
d2g
dx2 =

{
−1/x if x≤

√
n,

− 2n
x3 otherwise.

and satisfies g′′(x)≤−1/x for x≤ n.
By the mean-value theorem, we get for all x ≤ n and for

y≥ 0 that
g(x)−g(x− y)≥ yg′(x)≥ g(x+ y)−g(x). (2)

Moreover, by developing Taylor expansions of g(x− y) and
g(x+ y) up to terms of fourth order, it is easy to see that

(g(x)−g(x− y))− (g(x+ y)−g(x))≥−d2g
dx2 ≥

1
x
. (3)

We are now going to analyze the drift of the process defined
by Yt := g(Xt). To this end, it is useful to decompose the drift
into a positive and negative part. Define

∆
−
X := (Xt −Xt+1) ·1{Xt+1 ≤ Xt}

and
∆
+
X := (Xt+1−Xt) ·1{Xt+1 ≥ Xt}

and accordingly ∆
+
Y and ∆

−
Y with respect to the Y -process.

Note that E[Xt −Xt+1 | Xt ] = E
[
∆
−
X | Xt

]
−E
[
∆
+
X | Xt

]
and ac-

cordingly for the drift of the Y -process.
Combining this decomposition with (2), we obtain

E[Yt −Yt+1 | Xt ]

≥ g′(Xt) ·E
[
∆
−
X | Xt

]
−g′(Xt)E

[
∆
+
X | Xt

]
= g′(Xt)E[Xt −Xt+1 | Xt ].

If Xt >
√

n, plugging in the expression for g′(Xt) and the
bound (1) yields

E[Yt −Yt+1 | Xt ]≥
n

X2
t
· X2

t

en2 =
1
en

,

which does not depend on Xt .
If Xt ≤

√
n, we combine the decomposition with (3) and

get for some value a(Xt) that
E[Yt −Yt+1 | Xt ]

≥
(

a(Xt)+
1
Xt

)
E
[
∆
−
X | Xt

]
−a(Xt)E

[
∆
+
X | Xt

]
≥

E
[
∆
−
X | Xt

]
Xt

+a(Xt)E[Xt −Xt+1 | Xt ]

≥
E
[
∆
−
X | Xt

]
Xt

since E[Xt −Xt+1 | Xt ] ≥ 0 according to (1). Hence, we are
left with a bound on E

[
∆
−
X | Xt

]
. Here we again argue that

the number of jobs decreases by 1 if one of the Xt jobs from
the fuller machine moves and no other jobs moves. Conse-
quently, E

[
∆
−
X | Xt

]
≥ Xt

en and

E[Yt −Yt+1 | Xt ]≥
1
en

if Xt ≤
√

n. Together with the bound derived above, we have
E[Yt −Yt+1 | Xt ]≥ 1

en for every Xt ≤ n. Now, since Y0≤ 3n1/2,
the additive drift theorem yields E[T ]≤ 3en3/2 = O(n3/2) as
suggested.

3.2 Recovering a discrepancy of at most U
We now consider the situation where the algorithms have ob-
tained a solution of discrepancy at most U and the processing
time of one arbitrary job is changed afterwards. We show an
upper bound of O(min{R,n}) on the time needed to obtain a
discrepancy of U after this change.

Theorem 3 Let x be the current solution that has a discrep-
ancy of at most U before changing the processing time of
a job on the fuller machine. Then, the expected time of
RLS and (1+1) EA to obtain a discrepancy of at most U is
O(min{R,n}).

Proof. We use multiplicative drift analysis [3] to show the
O(n) bound and consider drift according to the discrepancy
d(x). Let P = ∑

n
i=1 pi and Xt be the random variable for d(x)

of the search point x at time t ≥ 0. With respect to the pa-
rameters from the multiplicative drift theorem, we have s0 ≤
U +(U −L), smin = U and therefore s0/smin ≤ 2. W. l. o. g.,
let 1, . . . , f be the jobs on the fuller machine and p1, . . . p f
be their processing times. Furthermore let y(i) be the search
point obtained by flipping the bit i for i = 1, . . . , f . As long as
the current solution x has discrepancy greater than U , each of
these single bit flips is accepted. We get

E[Xt −Xt+1 | Xt ]≥
1
n
·
(

1− 1
n

)n−1

·
f

∑
i=1

(d(x)−d(y(i))

≥ 1
en

(
f

∑
i=1

2 · pi

)

≥ 2
en

(P/2+d(x)/2))

=
1
en

(P+d(x))

≥ 1
en

d(x).

We set δ = 1/(en) and get

en ln(s0/smin)≤ en ln2 = O(n)

as an upper bound.
It remains to show the O(R) bound. From the previous

calculation, we already have

E[Xt −Xt+1 | Xt ]≥
1
en

(P+d(x))≥ P
en

.

Using additive drift analysis, the expected time to reach a dis-
crepancy of at most U when starting with a solution x with
d(x)≤U +(U−L) is

U−L
P/(en)

≤ en(U−L)
nL

= e(R−1) = O(R).

Altogether the upper bound is O(min{R,n}), which com-
pletes the proof.

The previous theorem implies that both algorithms are ef-
fectively tracking solutions of discrepancy O(U) if the time
where no changes to the processing times are happening is
at least c ·min{R,n}, where c is an appropriate constant. In



particular, changes happening every c′n iterations where c′ is
an appropriate constant can be tracked effectively regardless
of the ratio R = U/L. Furthermore, a small ratio R, e. g. a
constant, implies that very frequent changes (every c′′R itera-
tions, c′′ an appropriate constant) can be tracked by RLS and
(1+1) EA. These statements can be obtained by combining
drift analysis with an averaging argument over a number of
phases. Due to space restrictions, this analysis is not spelt out
here.

4 Random Model
We now consider a model with less adversarial power. Dy-
namic changes are still possible, but each change is limited
in effect. More precisely, we consider a random model as
common in the average-case analysis of algorithms [23]. For
simplicity, we consider the model where all jobs sizes are in
{1, . . . ,n}; generalizations to other sets are possible. At each
point of time, at most one job size can be changed by the ad-
versary. The adversary can only choose the job to change,
but neither amount or direction of change. If a job i is cho-
sen to change, then its processing time changes from its cur-
rent value pi to one of the two values pi +1 and pi−1, each
with probability 1/2. Two exceptions are made if pi = n,
which results in job size n− 1, and if pi = 1, which results
in job size 2 afterwards. In other words, the size of each
job performs a fair random walk on {1, . . . ,n}, with reflect-
ing barriers. With respect to the initial job sizes, we consider
both arbitrary (worst-case) initializations and the case that the
sizes are drawn uniformly at random and independently from
{1, . . . ,n}. Then each initial job size is (n+1)/2 in expecta-
tion.

It is useful to denote the random processing time of job i at
time t by the random variable Xi(t). It is well known [13] that
the random walk described by the process Xi(t), t ≥ 0, has a
stationary probability distribution given by

lim
t→∞

Pr(Xi(t) = j) =
{ 1

2n−2 if j = 1 or j = n
1

n−1 otherwise

Hence, the probability values in the stationary distribution
differ from the initial uniform distribution by a factor of at
most 2. It is also well known in the theory of random walks
that the so-called mixing time (informally, the time to get suf-
ficiently close to the stationary distribution) of the considered
random walk is O(n2) steps. Hence, for any i, j ∈ {1, . . . ,n}
and for any t ≥ cn2, where t denotes the number of changes
to job pi and c is a sufficiently large constant, we have

c1

n
≤ Pr(Xi(t) = j)≤ c2

n
for two constants c1,c2 > 0. Hereinafter, we asssume this
bracketing of Xi(t) to hold, i. e., the mixing time has elapsed
for every job.

The aim is to analyze the discrepancies obtainable in our
model. We summarize in the following lemma a useful prop-
erty of the distribution of the processing times Xi(t), and drop
the time index for convenience. Roughly speaking, it shows
that there are no big gaps in the set of values that is taken by
at least one job.

Lemma 4 Let φ(i) := |{X j | X j = i∧ j ∈ {1, . . . ,n}}|, where
i ∈ {1, . . . ,n}, be the frequency of jobs size i. Let

G := max{` | ∃i : φ(i) = φ(i+1) = · · ·= φ(i+ `) = 0}
the maximum gap size, i. e. maximum size of intervals with
zero frequency everywhere. Then, for some constant c > 0,

Pr(G≥ `)≤ n2−c`.

Proof. Recall that we assume to be close to the stationary
distribution, more precisely for each i, j ∈ {1, . . . ,n}, we have
Pr(X j = i)≥ c1/n. By considering disjoint events,

Pr(X j ∈ {i, . . . , i+ `})≥ c1`

n
for each `≤ n.

Then for each ` ≥ 1, we get from the independence of the
job sizes that

Pr(∀ j ∈ {1, . . . ,n} : X j /∈ {i, . . . , i+ `})≤
(

1− c1`

n

)n

,

which is at most c`3 for some constant c3 < 1. Hence, by a
union bound the probability that there is an i such that for all
j ∈ {1, . . . ,n} : X j /∈ {i, . . . , i+`} is at most nc`3, which equals
n2−c` for some constant c > 0.

Hereinafter, with high probability means probability at
least 1−O(n−c) for any constant c > 0. We prove the fol-
lowing theorem stating that with high probability discrepancy
O(logn) can be reached in polynomial time. Its proof is in-
spired by the average-case analysis from [23]. Note also that
the theorem is restricted to the (1+1) EA since its proof ana-
lyzes improvements made by swapping two jobs between the
fuller and emptier machine.

Theorem 5 Regardless of the initial solution, the following
claim holds: with high probability the time for the (1+1) EA
after a one-time change to obtain a discrepancy of at most
O(logn) is O(n4 logn).

Proof. According to Lemma 4, there is for any constant c > 0
a sufficiently large constant c′ > 0 such that there is not gap
of size G := c′ logn or larger with probabiilty at least 1− n ·
n−c−1 = 1−n−c. In the following, we assume this maximum
gap size to hold.

If the current discrepancy is larger than G, then there must
be either at least one pair of jobs j, j′ with j on the fuller
machine and j′ on the emptier machine such that X j′ < X j
and X j−X j′ ≤ G, or a job j on the fuller machine of size of
at most G. To see this, imagine that despite the gap size of at
most G, there is no such pair as in the first case. Then all jobs
of size at least G must be on the fuller machine, resulting in
the second case.

Now, in the first case it is sufficient to swap jobs j and j′ to
decrease the discrepancy by at least 1. In the second case, it is
enough to move job j from the fuller to the emptier machine
to decrease the discrepancy by at least 1. In any case, the
probability of decreasing the discrepancy is at least(

1− 1
n

)n−1 1
n2 = Ω(n−2).



Since the maximum discrepancy is O(n2), the expected num-
ber of decreases is also at most O(n2). Multiplying this with
the waiting time for an improvement, we have an expected
time of O(n4). By a simple application of Markov’s inequal-
ity and repeating phases of length cn4 for some constant c, it
is easy to see that the time is O(n4 logn) with high probabil-
ity.

The previous theorem covers a worst-case initialization
with all jobs on one machine, where the discrepancy can be
up to n2. Under random initialization, this is unlikely to hap-
pen, as the following theorem shows.

Theorem 6 The expected discrepancy of the random initial
solution is Θ(n

√
n). Under a random initial solution, the time

for the (1+1) EA after a one-time change to obtain a discrep-
ancy of O(logn) is O(n3.5 log2 n) with high probability.

Proof. We prove that the initial discrepancy is Θ(n
√

n) in
expectation and O(n

√
n logn) with high probability. From

the last property, the statement on the time to obtain a dis-
crepancy of O(logn) follows with the same ideas as in the
proof of Theorem 5 if the initial discrepancy is estimated with
O(n
√

n logn) instead of O(n2).
We are left with the proofs on the initial discrepancy. Let

K denote the number of jobs that are initially put on the first
machine. Then E[K] = n/2 but also

E[|K−n/2|]≤
√

Var(K) = Θ(
√

n),

where we used Jensen’s inequality and the fact that K ∼
Bin(n,1/2). Moreover, by the properties of the binomial dis-
tribution we have that

Pr(K ≥ n/2+ c
√

n) = Ω(1)

for some constant c > 0. Altogether,

E[|K−n/2|] = Θ(
√

n).

In other words, there are in expectation Θ(
√

n) more jobs on
one machine than on the other.

Each job size is initially uniformly distributed on {1, . . . ,n}
and has expectation (n+1)/2. By linearity of expectation, the
discrepancy is at least Θ(

√
n)(n+1)/2 = Θ(n

√
n). This con-

sideration just subtracts the total load of the machine having
the minority of the jobs from the total load of the machine
having the majority (hereinafter called machine “majority”).
Should this difference be negative, the discrepancy is still
positive. However, by approximating the sum of the job sizes
on machine “majority” by a normal distribution with standard
deviation Θ(n

√
n), one can also see that the discrepancy is

O(n
√

n) even if machine “majority” is allowed to have a to-
tal load less than the other machine. Altogether the expected
discrepancy is Θ(n

√
n).

The statement that the discrepancy is O(n
√

n logn) with
high probability follows by using Chernoff bounds on the
difference in the number of jobs between the two machines
(stating that there are at most O(

√
n logn) more jobs on one

machine than the other), approximating the tails of the sum
of the job sizes on the machines by a normal distribution and
arguing that a deviation of c

√
n logn from the mean has prob-

ability e−Ω(c2).

Finally, we turn to the case that job sizes change frequently.
In the extreme case, at every point of time one job size is
allowed to increase or decrease by 1. Then it seems hard
to obtain a discrepancy of O(logn) as shown in Theorem 5.
However, we can apply the results from Section 3, noting that
the maximum job size is n at any time. In relation to the
makespan, the discrepancy, which will also be at most n, is
negligible.

Theorem 7 In the model with random changes, the follow-
ing holds: the expected time until the (1+1) EA (RLS) has
obtained a solution with discrepancy at most n is O(n3/2) (re-
spectively O(n logn)) independently of the initial solution and
the number of changes. The expected ratio between discrep-
ancy and makespan is at most 6/n then.

Proof. Since R = U = n in the notation of Theorem 1 and
Theorem 2, we immediately obtain the first statement of our
theorem. To compute the expected ratio, note that at any time
the sum of all job sizes has an expected value of n(n+ 1)/2
and is at least n2/3 + n with probability 1− 2−Ω(n) using
the approximation by Normal distribution. In this case, the
makespan must be at least n2/6+n/2, and the ratio is at most

n
n2/6+n/2

≤ 6
n
− 3

n
.

If the sum of the job sizes is less than n2/3+n, then the ratio
is at most n/n since all job sizes are at least one. Altogether,
the expected ratio is bounded from above by

6
n
− 3

n
+2−Ω(n) ≤ 6

n

if n is not too small.

5 Conclusions
We have shown that randomized local search and evolution-
ary algorithms are provably successful in tracking solutions
of good discrepancy for the dynamic makespan scheduling.
Investigating the adversary model, we have shown that the
algorithms obtain solutions of discrepancy at most U every
O(n logn) (for RLS) and every O(n3/2) (for (1+1) EA) itera-
tions even if changes are arbitrary and frequent. Furthermore,
such a discrepancy is maintained if the period of changes is
not too small. For the random model, we have shown that
discrepancies of O(logn) are obtained and that a ratio of at
most 6/n between discrepancy and makespan is obtained fre-
quently during the optimization process.
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