7 research outputs found

    Soil Moisture Retrieval from Microwave Remote Sensing Observations

    Get PDF
    This chapter mainly describes the vegetated soil moisture retrieval approaches based on microwave remote sensing data. It will be comprised of three topics: (1) SAR polarimetric decomposition is to model the full coherency matrix as a summation of the surface, dihedral, and volume scattering mechanisms. After removing the volume scattering component, the soil moisture is estimated from the surface and dihedral scattering components. Particularly, various dynamic volume scattering models will be critically reviewed, allowing the readers to select the appropriate one to capture the complex variations of the volume scattering mechanism with crop phenological growth. (2) Radiative transfer model is to express the radar backscattering coefficient as the incoherent summation of different scattering components. Hereby, we will review the water cloud model and its several extensions for enhanced soil moisture retrieval. (3) Compared to the active radar, the passive radiometer possesses high temporal resolution but coarse spatial resolution. The third topic is dedicated to review the microwave emission models and the active-passive combined approaches, in the context of Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active and Passive (SMAP) missions

    Coupled land surface and radiative transfer models for the analysis of passive microwave satellite observations

    Get PDF
    Soil moisture is one of the key variables controlling the water and energy exchanges between Earth’s surface and the atmosphere. Therefore, remote sensing based soil moisture information has potential applications in many disciplines. Besides numerical weather forecasting and climate research these include agriculture and hydrologic applications like flood and drought forecasting. The first satellite specifically designed to deliver operational soil moisture products, SMOS (Soil Moisture and Ocean Salinity), was launched 2009 by the European Space Agency (ESA). SMOS is a passive microwave radiometer working in the L-band of the microwave domain, corresponding to a frequency of roughly 1.4 GHz and relies on a new concept. The microwave radiation emitted by the Earth’s surface is measured as brightness temperatures in several look angles. A radiative transfer model is used in an inversion algorithm to retrieve soil moisture and vegetation optical depth, a measure for the vegetation attenuation of the soil’s microwave emission. For the application of passive microwave remote sensing products a proper validation and uncertainty assessment is essential. As these sensors have typical spatial resolutions in the order of 40 – 50 km, a validation that relies solely on ground measurements is costly and labour intensive. Here, environmental modelling can make a valuable contribution. Therefore the present thesis concentrates on the question which contribution coupled land surface and radiative transfer models can make to the validation and analysis of passive microwave remote sensing products. The objective is to study whether it is possible to explain known problems in the SMOS soil moisture products and to identify potential approaches to improve the data quality. The land surface model PROMET (PRocesses Of Mass and Energy Transfer) and the radiative transfer model L-MEB (L-band microwave emission of the Biosphere) are coupled to simulate land surface states, e.g. temperatures and soil moisture, and the resulting microwave emission. L-MEB is also used in the SMOS soil moisture processor to retrieve soil moisture and vegetation optical depth simultaneously from the measured microwave emission. The study area of this work is the Upper Danube Catchment, located mostly in Southern Germany. Since model validation is essential if model data are to be used as reference, both models are validated on different spatial scales with measurements. The uncertainties of the models are quantified. The root mean squared error between modelled and measured soil moisture at several measuring stations on the point scale is 0.065 m3/m3. On the SMOS scale it is 0.039 m3/m3. The correlation coefficient on the point scale is 0.84. As it is essential for the soil moisture retrieval from passive microwave data that the radiative transfer modelling works under local conditions, the coupled models are used to assess the radiative transfer modelling with L-MEB on the local and SMOS scales in the Upper Danube Catchment. In doing so, the emission characteristics of rape are described for the first time and the soil moisture retrieval abilities of L-MEB are assessed with a newly developed LMEB parameterization. The results show that the radiative transfer modelling works well under most conditions in the study area. The root mean squared error between modelled and airborne measured brightness temperatures on the SMOS scale is less than 6 – 9 K for the different look angles. The coupled models are used to analyse SMOS brightness temperatures and vegetation optical depth data in the Upper Danube Catchment in Southern Germany. Since the SMOS soil moisture products are degraded in Southern Germany and in different other parts of the world these analyses are used to narrow down possible reasons for this. The thorough analysis of SMOS brightness temperatures for the year 2011 reveals that the quality of the measurements is degraded like in the SMOS soil moisture product. This points towards radio frequency interference problems (RFI), that are known, but have not yet been studied thoroughly. This is consistent with the characteristics of the problems observed in the SMOS soil moisture products. In addition to that it is observed that the brightness temperatures in the lower look angles are less reliable. This finding could be used to improve the brightness temperature filtering before the soil moisture retrieval. An analysis of SMOS optical depth data in 2011 reveals that this parameter does not contain valuable information about vegetation. Instead, an unexpected correlation with SMOS soil moisture is found. This points towards problems with the SMOS soil moisture retrieval, possibly under the influence of RFI. The present thesis demonstrates that coupled land surface and radiative transfer models can make a valuable contribution to the validation and analysis of passive microwave remote sensing products. The unique approach of this work incorporates modelling with a high spatial and temporal resolution on different scales. This makes detailed process studies on the local scale as well as analyses of satellite data on the SMOS scale possible. This could be exploited for the validation of future satellite missions, e.g. SMAP (Soil Moisture Active and Passive) which is currently being prepared by NASA (National Aeronautics and Space Administration). Since RFI seems to have a considerable influence on the SMOS data due to the gained insights and the quality of the SMOS products is very good in other parts of the world, the RFI containment and mitigation efforts carried out since the launch of SMOS should be continued

    New algorithms for atmospheric correction and retrieval of biophysical parameters in earth observation : application to ENVISAT/MERIS data

    Get PDF
    An algorithm for the derivation of atmospheric and surface biophysical products from the MEdium Resolution Imaging Spectrometer Instrument (MERIS) on board ENVIronmental SATellite (ENVISAT/MERIS) Level 1b data over land has been developed. Georectified aerosol optical thickness (AOT), columnar water vapor (CWV), spectral surface reflectance and chlorophyll fluorescence (CF) maps are generated. Emphasis has been put on implementing a robust software able to provide those products on an operational manner, making no use of ancillary parameters apart from those attached to MERIS images. For this reason, it has been named Self-Contained Atmospheric Parameters Estimation from MERIS data (SCAPE-M). The fundamentals of the algorithm and the validation of the derived products are presented in this thesis. Errors of ±0.03, ±4% and ±8% have been estimated for AOT, CWV and surface reflectance retrievals, respectively, by means of a sensitivity analysis. More than 200 MERIS images have been processed in order to assess the method performance under a range of atmospheric and geographical conditions. A good comparison is found between SCAPE-M AOT retrievals and ground-based measurements taken during the SPectra bARrax Campaigns (SPARC) 2003 and 2004, except for a date when an episode of Saharan dust intrusion was detected. Comparison of SCAPE-M retrievals with data from AErosol RObotic NETwork (AERONET) stations showed a square Pearson's correlation coefficient R2 of about 0.7-0.8. Those values grow up to more than 0.9 in the case of CWV after comparison with the same stations. A good correlation is also found with the ESA Level 2 official CWV product, although slight different performances with varying surface elevation are detected. Retrieved surface reflectance maps have been intercompared with reflectance data derived from MERIS images by the Bremen AErosol Retrieval (BAER) method in the first place

    Design of a generic end-to-end mission performance simulator and application to the performance analysis of the FLEX/Sentinel-3 mission

    Get PDF
    La Observación de la Tierra mediante técnicas de teledetección con instrumentos ópticos en satélite tiene como objetivo monitorizar los procesos bio-geofísicos en la superficie y atmósfera terrestre, adquiriendo datos a diferentes longitudes de onda del espectro electromagnético. Con el fin de asegurar el mantenimiento de las observaciones y las capacidades para entender el sistema Tierra, nuevas misiones satelitales están siendo desarrolladas por agencias espaciales nacionales e internacionales así como organizaciones de investigación. En este contexto, los simuladores de misiones espaciales (E2ES por sus siglas en inglés, End-to-End Mission Performance Simulator) ofrecen a los científicos e ingenieros un marco único para entender el impacto de la configuración del instrumento en los productos finales de la misión y, por tanto, acelerar el desarrollo de una misión desde la fase conceptual hasta el lanzamiento. Al mismo tiempo, estas herramientas permiten definir una metodología para la consolidación de los requisitos y la evaluación de la actuación de estas misiones satelitales, estableciendo criterios para la selección de una misión por las diferentes agencias espaciales. Mientras que el concepto de un E2ES es simple, el diseño de nuevos E2ES y la evolución de los ya existentes tienen una falta de guias y metodología estandarizadas, lo cual se traduce en un caro y complejo proceso de re-ingeniería. Esta tesis cubre dos objetivos principales. Por un lado, se pretende armonizar el trabajo hecho en el campo de los E2ES durante las últimas décadas y proponer una serie de guias y metodologías para desarrollas E2ES para misiones satelitales futuras con instrumentos ópticos pasivos. El primer objetivo es por tanto "Diseñar un simulador de misión genérico que pueda ser fácilmente adaptado para reproducir la mayoría de misiones satelitales, presentes y futuras, con sensores ópticos pasivos". Por otro lado, la misión FLEX/Sentinel-3 de la ESA se usa para validar, a través de la implementación de su propio E2ES, el diseño de la arquitectura genérica tratada en el punto anterior. De este modo, el E2ES para la misión FLEX permite evaluar la actuación de la misión para la obtención de la fluorescencia inducida por radiación solar emitida por la vegetación terrestre. La misión FLEX/Sentinel-3 es una candidata óptima para esta tarea de validación dada la complejidad de la misión (p.ej. vuelo en tandem, multi-plataforma/-instrumento, múltiples rangos y resoluciones espectrales, observaciones multi-angulares, sinergia de productos). El segundo objetivo de esta tesis es por tanto "Evaluar la misión FLEX para la la observación de la emisión de fluorescencia emitida por la vegetación usando un E2ES desarrollado de acuerdo con una arquitectura genérica". La razón fundamental tras esta Tesis es promocionar el uso de una arquitectura genérica común para los E2ES que permita comparar misiones satelitales en procesos de selección competitiva como los Earth Explorer de la ESA así como acelerar el análisis de los requisitos técnicos y el rendimiento de la misión a nivel científico. Particularmente, esto se muestra mediante la implementación de esta arquitectura genérica para el caso específico de la misión FLEX/Sentinel-3 demostrando que: (1) la misión es capaz de obtener con la precisión requerida la emisión de fluorescencia por la vegetación ; y (2) el concepto de esta arquitectura genérica es apto para reproducir la complejidad de la misión FLEX/Sentinel-3 y por tanto se espera que esta metodología pueda ser también aplicable para un gran abanico de misiones ópticas pasivas. Esta base lógica se consigue a partir de una categorización de varias misiones satelitales y la identificación y análisis de los elementos principales que afectan en el rendimiento de la misión e impactan en la arquitectura de un simulador de misión. La arquitectura genérica para E2ES propuesta se valida mediante la implementación del E2ES de la misión FLEX/Sentinel-3 de la ESA teniendo en cuenta ambos satélites, sus instrumentos, y evaluando con este E2ES el rendimiento de la misión FLEX. En esta Tesis, los capítulos 1 y 2 introducen los principales temas de esta Tesis y definen los conceptos básicos. Los capítulos 3 al 5 describe el diseño de la arquitectura genérica para los E2ES en misiones ópticas pasivas. Finalmente, el capítulo 6 resume los principales resultados y las conclusiones derivadas de esta Tesis.Earth observation by satellite optical remote sensing aims to monitor bio-geophysical processes happening in the Earth surface and the atmosphere by acquiring data at different wavelengths of the electromagnetic spectrum. In order to ensure sustained observations and capabilities to fill scientific gaps in our current understanding of the Earth system, new satellite missions are being developed by national and international space agencies and research organisations. In this context, End-to-End Mission Performance Simulator (E2ES) tools offer scientists and engineers a unique framework to understand the impact of instrument configuration in the final mission products and to accelerate the mission development from concept to deployment. At the same time, these cost-effective and flexible tools are capable of defining a methodology for the consolidation of requirements and performance assessment of these new satellite missions, setting the criteria for mission selection by the various space agencies’ programme boards. While the concept of an E2ES is simple, the design of new E2ES and the evolution of existing ones lack from a standard methodology and guidelines, which translates into a complex and costly re-engineering process. This Thesis covers two main objectives. On the one hand, it aims to harmonize the work done in the field of E2ES during the last decades and to propose a set of guidelines or methodology to develop E2ES for future remote sensing satellite passive optical missions. The first main objective, therefore, is: ’To design a generic end-to-end mission performance simulator that can be easily adapted to reproduce most present or future passive optical spaceborne instruments’. On the other hand, the ESA’s FLEX/Sentinel-3 tandem mission is used to validate, through the implementation of its E2ES, the designed generic E2ES architecture and to evaluate the performance of the FLEX mission for the retrieval of Sun-induced fluorescence. The FLEX/Sentinel- 3 mission is optimally suitable for this validation task due to the complexity of the mission (e.g. tandem flight, multi-platform/-instrument mission, multiple spectral ranges and resolutions, multi-angular observations, synergy of products). The second main objective, therefore, is: ’To evaluate the FLEX mission for Sun-induced fluorescence retrievals using a newly developed E2ES in agreement with the designed generic E2ES architecture.’. The rationale behind this Thesis is promoting the use of a common generic E2ES architecture that allows comparing missions in competitive selection process (e.g., ESA’s Earth Explorers) and speeding-up the analysis of the mission technical requirements and scientific performances. Particularly, this is shown by implementing this generic E2ES architecture for the specific case of FLEX/Sentinel-3 mission demonstrating that: (1) the mission is capable of retrieving Sun-induced fluorescence within the required accuracy; and (2) the conceptual generic E2ES architecture is suitable toreproduce the complexity of the FLEX/Sentinel-3 tandem mission and thus it is expected to be also applicable for a wide range of passive optical missions. This rationale is achieved by categorising several satellite missions to identify and analyse the main elements that affect the mission performance and impact the simulator architecture. The proposed generic E2ES architecture is validated by implementing the ESA’s FLEX/Sentinel-3 E2ES, both satellites and their instruments, and testing it through the performance assessment of the FLEX mission products. In this Thesis, Chapters 1 and 2 introduce the main research questions and sets the background concepts. Then Chapters 3–5 describe the design of a generic E2ES architecture for passive optical missions. Finally, Chapter 6 summarizes the main results and conclusions derived in this Thesis

    Multiscale soil moisture retrievals from microwave remote sensing observations

    Get PDF
    Memoria de tesis doctoral presentada por María Piles Guillem para optar al grado de Doctora por la Universitat Politècnica de Catalunya (UPC), realizada bajo la dirección del Dr. Adriano Camps y de la Dra. Mercè Vall-llossera.-- 159 pages[EN] Soil moisture is a key state variable of the Earth’s system; it is the main variable that links the Earth’s water, energy and carbon cycles. Soil moisture variations affect the evolution of weather and climate over continental regions, and accurate observations of the Earth’s changing soil moisture are needed to achieve sustainable land and water management, and to enhance weather and climate forecasting skill, flood prediction and drought monitoring. This Ph.D. Thesis focuses on measuring the Earth’s surface soil moisture from space at a global and regional scale. [...][ES] La humedad del suelo es la variable que regula los intercambios de agua, energía, y carbono entre la tierra y la atmósfera. Mediciones precisas de humedad son necesarias para una gestión sostenible de los recursos de agua del planeta, para mejorar las predicciones meteorológicas y climáticas, y para la detección y monitorización de sequías e inundaciones. Esta tesis se centra en la medición de la humedad superficial de la Tierra desde el espacio, a escalas global y regional. [...]This work has been funded by the Spanish Ministry of Science and Education under the FPU grant AP2005-4912 and projects ESP2007-65667-C04-02 and AYA2008-05906-C02-01/ESPPeer Reviewe

    Examining Ecosystem Drought Responses Using Remote Sensing and Flux Tower Observations

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Water is fundamental for plant growth, and vegetation response to water availability influences water, carbon, and energy exchanges between land and atmosphere. Vegetation plays the most active role in water and carbon cycle of various ecosystems. Therefore, comprehensive evaluation of drought impact on vegetation productivity will play a critical role for better understanding the global water cycle under future climate conditions. In-situ meteorological measurements and the eddy covariance flux tower network, which provide meteorological data, and estimates of ecosystem productivity and respiration are remarkable tools to assess the impacts of drought on ecosystem carbon and water cycles. In regions with limited in-situ observations, remote sensing can be a very useful tool to monitor ecosystem drought status since it provides continuous observations of relevant variables linked to ecosystem function and the hydrologic cycle. However, the detailed understanding of ecosystem responses to drought is still lacking and it is challenging to quantify the impacts of drought on ecosystem carbon balance and several factors hinder our explicit understanding of the complex drought impacts. This dissertation addressed drought monitoring, ecosystem drought responses, trends of vegetation water constraint based on in-situ metrological observations, flux tower and multi-sensor remote sensing observations. This dissertation first developed a new integrated drought index applicable across diverse climate regions based on in-situ meteorological observations and multi-sensor remote sensing data, and another integrated drought index applicable across diverse climate regions only based on multi-sensor remote sensing data. The dissertation also evaluated the applicability of new satellite dataset (e.g., solar induced fluorescence, SIF) for responding to meteorological drought. Results show that satellite SIF data could have the potential to reflect meteorological drought, but the application should be limited to dry regions. The work in this dissertation also accessed changes in water constraint on global vegetation productivity, and quantified different drought dimensions on ecosystem productivity and respiration. Results indicate that a significant increase in vegetation water constraint over the last 30 years. The results highlighted the need for a more explicit consideration of the influence of water constraints on regional and global vegetation under a warming climate
    corecore