204 research outputs found

    An Analysis of Optimal Link Bombs

    Get PDF
    We analyze the phenomenon of collusion for the purpose of boosting the pagerank of a node in an interlinked environment. We investigate the optimal attack pattern for a group of nodes (attackers) attempting to improve the ranking of a specific node (the victim). We consider attacks where the attackers can only manipulate their own outgoing links. We show that the optimal attacks in this scenario are uncoordinated, i.e. the attackers link directly to the victim and no one else. nodes do not link to each other. We also discuss optimal attack patterns for a group that wants to hide itself by not pointing directly to the victim. In these disguised attacks, the attackers link to nodes ll hops away from the victim. We show that an optimal disguised attack exists and how it can be computed. The optimal disguised attack also allows us to find optimal link farm configurations. A link farm can be considered a special case of our approach: the target page of the link farm is the victim and the other nodes in the link farm are the attackers for the purpose of improving the rank of the victim. The target page can however control its own outgoing links for the purpose of improving its own rank, which can be modeled as an optimal disguised attack of 1-hop on itself. Our results are unique in the literature as we show optimality not only in the pagerank score, but also in the rank based on the pagerank score. We further validate our results with experiments on a variety of random graph models.Comment: Full Version of a version which appeared in AIRweb 200

    The Impact of Feature Selection on Web Spam Detection

    Full text link

    Specialized Genetic Algorithm Based Simulation Tool Designed For Malware Evolution Forecasting

    Get PDF
    From the security point of view malware evolution forecasting is very important, since it provides an opportunity to predict malware epidemic outbreaks, develop effective countermeasure techniques and evaluate information security level. Genetic algorithm approach for mobile malware evolution forecasting already proved its effectiveness. There exists a number of simulation tools based on the Genetic algorithms, that could be used for malware forecasting, but their main disadvantages from the user’s point of view is that they are too complicated and can not fully represent the security entity parameter set. In this article we describe the specialized evolution forecasting simulation tool developed for security entities, such as different types of malware, which is capable of providing intuitive graphical interface for users and ensure high calculation performance. Tool applicability for the evolution forecasting tasks is proved by providing mobile malware evolution forecasting results and comparing them with the results we obtained in 2010 by means of MATLAB

    Understanding and Hardening Blockchain Network Security Against Denial of Service Attacks

    Get PDF
    This thesis aims to examine the security of a blockchain\u27s communication network. A blockchain relies on a communication network to deliver transactions. Understanding and hardening the security of the communication network against Denial-of-Service (DoS) attacks are thus critical to the well-being of blockchain participants. Existing research has examined blockchain system security in various system components, including mining incentives, consensus protocols, and applications such as smart contracts. However, the security of a blockchain\u27s communication network remains understudied. In practice, a blockchain\u27s communication network typically consists of three services: RPC service, P2P network, and mempool. This thesis examines each service\u27s designs and implementations, discovers vulnerabilities that lead to DoS attacks, and uncovers the P2P network topology. Through systematic evaluations and measurements, the thesis confirms that real-world network services in Ethereum are vulnerable to DoS attacks, leading to a potential collapse of the Ethereum ecosystem. Besides, the uncovered P2P network topology in Ethereum mainnet suggests that critical nodes adopt a biased neighbor selection strategy in the mainnet. Finally, to fix the discovered vulnerabilities, practical mitigation solutions are proposed in this thesis to harden the security of Ethereum\u27s communication network

    A Decentralized Recommender System for Effective Web Credibility Assessment

    Get PDF
    An overwhelming and growing amount of data is available online. The problem of untrustworthy online information is augmented by its high economic potential and its dynamic nature, e.g. transient domain names, dynamic content, etc. In this paper, we address the problem of assessing the credibility of web pages by a decentralized social recommender system. Specifically, we concurrently employ i) item-based collaborative filtering (CF) based on specific web page features, ii) user-based CF based on friend ratings and iii) the ranking of the page in search results. These factors are appropriately combined into a single assessment based on adaptive weights that depend on their effectiveness for different topics and different fractions of malicious ratings. Simulation experiments with real traces of web page credibility evaluations suggest that our hybrid approach outperforms both its constituent components and classical content-based classification approaches

    Adding Query Privacy to Robust DHTs

    Full text link
    Interest in anonymous communication over distributed hash tables (DHTs) has increased in recent years. However, almost all known solutions solely aim at achieving sender or requestor anonymity in DHT queries. In many application scenarios, it is crucial that the queried key remains secret from intermediate peers that (help to) route the queries towards their destinations. In this paper, we satisfy this requirement by presenting an approach for providing privacy for the keys in DHT queries. We use the concept of oblivious transfer (OT) in communication over DHTs to preserve query privacy without compromising spam resistance. Although our OT-based approach can work over any DHT, we concentrate on communication over robust DHTs that can tolerate Byzantine faults and resist spam. We choose the best-known robust DHT construction, and employ an efficient OT protocol well-suited for achieving our goal of obtaining query privacy over robust DHTs. Finally, we compare the performance of our privacy-preserving protocols with their more privacy-invasive counterparts. We observe that there is no increase in the message complexity and only a small overhead in the computational complexity.Comment: To appear at ACM ASIACCS 201

    Mathematics and the Internet: A Source of Enormous Confusion and Great Potential

    Get PDF
    Graph theory models the Internet mathematically, and a number of plausible mathematically intersecting network models for the Internet have been developed and studied. Simultaneously, Internet researchers have developed methodology to use real data to validate, or invalidate, proposed Internet models. The authors look at these parallel developments, particularly as they apply to scale-free network models of the preferential attachment type

    Umělá inteligence v kybernetické bezpečnosti

    Get PDF
    Artifcial intelligence (AI) and machine learning (ML) have grown rapidly in recent years, and their applications in practice can be seen in many felds, ranging from facial recognition to image analysis. Recent developments in Artificial intelligence have a vast transformative potential for both cybersecurity defenders and cybercriminals. Anti-malware solutions adopt intelligent techniques to detect and prevent threats to the digital space. In contrast, cybercriminals are aware of the new prospects too and likely to adapt AI techniques to their operations. This thesis presents advances made so far in the field of applying AI techniques in cybersecurity for combating against cyber threats, to demonstrate how this promising technology can be a useful tool for detection and prevention of cyberattacks. Furthermore, the research examines how transnational criminal organizations and cybercriminals may leverage developing AI technology to conduct more sophisticated criminal activities. Next, the research outlines the possible dynamic new kind of malware, called X-Ware and X-sWarm, which simulates the swarm system behaviour and integrates the neural network to operate more efficiently as a background for the forthcoming anti-malware solution. This research proposes how to record and visualize the behaviour of these type of malware when it propagates through the file system, computer network (virus process is known) or by observed data analysis (virus process is not known and we observe only the data from the system). Finally, a paradigm of an anti-malware solution, named Multi agent antivirus system has been proposed in the thesis that gives the insight to develop a more robust, adaptive and flexible defence system.Význam umělé inteligence (AI) a strojového učení (ML) v posledních letech rychle rostl a na jejich aplikacích lze vidět, že v mnoha oblastech, od rozpoznávání obličeje až po analýzu obrazu, byl učiněn velký pokrok. Poslední vývoj v oblasti umělé inteligence má obrovský potenciál jak pro obránce v oblasti kybernetické bezpečnosti, tak pro ůtočníky. AI se stává řešením v otázce obrany proti modernímu malware a hraje tak důležitou roli v detekci a prevenci hrozeb v digitálním prostoru. Naproti tomu kyberzločinci jsou si vědomi nových vyhlídek ve spojení s AI a pravděpodobně přizpůsobí tyto techniky novým generacím malware, vektorům útoku a celkově jejich operacím. Tato práce představuje dosavadní pokroky aplikace technik AI v oblasti kybernetické bezpečnosti. V této oblasti tzn. v boji proti kybernetickým hrozbám se ukázuje jako slibná technologie a užitečný nástroj pro detekci a prevenci kybernetických útoků. V práci si rovněž pokládme otázku, jak mohou nadnárodní zločinecké organizace a počítačoví zločinci využít vyvíjející se technologii umělé inteligence k provádění sofistikovanějších trestných činností. Konečně, výzkum nastíní možný nový druh malware, nazvaný X-Ware, který simuluje chování hejnového systému a integruje neuronovou síť tak, aby fungovala efektivněji a tak se celý X-Ware a X-sWarm dal použít nejen jako kybernetická zbraň na útok, ale i jako antivirové obranné řešení. Tento výzkum navrhuje, jak zaznamenat a vizualizovat chování X-Ware, když se šíří prostřednictvím systému souborů, sítí a to jak analýzou jeho dynamiky (proces je znám), tak analýzou dat (proces není znám, pozorujeme jen data). Nakonec bylo v disertační práci navrženo paradigma řešení proti malwaru, jež bylo nazváno „Multi agent antivirus system“. Tato práce tedy poskytuje pohled na vývoj robustnějšího, adaptivnějšího a flexibilnějšího obranného systému.460 - Katedra informatikyvyhově

    Evidence-based Cybersecurity: Data-driven and Abstract Models

    Get PDF
    Achieving computer security requires both rigorous empirical measurement and models to understand cybersecurity phenomena and the effectiveness of defenses and interventions. To address the growing scale of cyber-insecurity, my approach to protecting users employs principled and rigorous measurements and models. In this dissertation, I examine four cybersecurity phenomena. I show that data-driven and abstract modeling can reveal surprising conclusions about longterm, persistent problems, like spam and malware, and growing threats like data-breaches and cyber conflict. I present two data-driven statistical models and two abstract models. Both of the data-driven models show that the presence of heavy-tailed distributions can make naive analysis of trends and interventions misleading. First, I examine ten years of publicly reported data breaches and find that there has been no increase in size or frequency. I also find that reported and perceived increases can be explained by the heavy-tailed nature of breaches. In the second data-driven model, I examine a large spam dataset, analyzing spam concentrations across Internet Service Providers. Again, I find that the heavy-tailed nature of spam concentrations complicates analysis. Using appropriate statistical methods, I identify unique risk factors with significant impact on local spam levels. I then use the model to estimate the effect of historical botnet takedowns and find they are frequently ineffective at reducing global spam concentrations and have highly variable local effects. Abstract models are an important tool when data are unavailable. Even without data, I evaluate both known and hypothesized interventions used by search providers to protect users from malicious websites. I present a Markov model of malware spread and study the effect of two potential interventions: blacklisting and depreferencing. I find that heavy-tailed traffic distributions obscure the effects of interventions, but with my abstract model, I showed that lowering search rankings is a viable alternative to blacklisting infected pages. Finally, I study how game-theoretic models can help clarify strategic decisions in cyber-conflict. I find that, in some circumstances, improving the attribution ability of adversaries may decrease the likelihood of escalating cyber conflict
    corecore