12,332 research outputs found

    A domain decomposing parallel sparse linear system solver

    Get PDF
    The solution of large sparse linear systems is often the most time-consuming part of many science and engineering applications. Computational fluid dynamics, circuit simulation, power network analysis, and material science are just a few examples of the application areas in which large sparse linear systems need to be solved effectively. In this paper we introduce a new parallel hybrid sparse linear system solver for distributed memory architectures that contains both direct and iterative components. We show that by using our solver one can alleviate the drawbacks of direct and iterative solvers, achieving better scalability than with direct solvers and more robustness than with classical preconditioned iterative solvers. Comparisons to well-known direct and iterative solvers on a parallel architecture are provided.Comment: To appear in Journal of Computational and Applied Mathematic

    Alternating-Direction Line-Relaxation Methods on Multicomputers

    Get PDF
    We study the multicom.puter performance of a three-dimensional Navier–Stokes solver based on alternating-direction line-relaxation methods. We compare several multicomputer implementations, each of which combines a particular line-relaxation method and a particular distributed block-tridiagonal solver. In our experiments, the problem size was determined by resolution requirements of the application. As a result, the granularity of the computations of our study is finer than is customary in the performance analysis of concurrent block-tridiagonal solvers. Our best results were obtained with a modified half-Gauss–Seidel line-relaxation method implemented by means of a new iterative block-tridiagonal solver that is developed here. Most computations were performed on the Intel Touchstone Delta, but we also used the Intel Paragon XP/S, the Parsytec SC-256, and the Fujitsu S-600 for comparison

    Analysis of A Splitting Approach for the Parallel Solution of Linear Systems on GPU Cards

    Full text link
    We discuss an approach for solving sparse or dense banded linear systems Ax=b{\bf A} {\bf x} = {\bf b} on a Graphics Processing Unit (GPU) card. The matrix A∈RN×N{\bf A} \in {\mathbb{R}}^{N \times N} is possibly nonsymmetric and moderately large; i.e., 10000≤N≤50000010000 \leq N \leq 500000. The ${\it split\ and\ parallelize}( ({\tt SaP})approachseekstopartitionthematrix) approach seeks to partition the matrix {\bf A}intodiagonalsub−blocks into diagonal sub-blocks {\bf A}_i,, i=1,\ldots,P,whichareindependentlyfactoredinparallel.Thesolutionmaychoosetoconsiderortoignorethematricesthatcouplethediagonalsub−blocks, which are independently factored in parallel. The solution may choose to consider or to ignore the matrices that couple the diagonal sub-blocks {\bf A}_i.Thisapproach,alongwiththeKrylovsubspace−basediterativemethodthatitpreconditions,areimplementedinasolvercalled. This approach, along with the Krylov subspace-based iterative method that it preconditions, are implemented in a solver called {\tt SaP::GPU},whichiscomparedintermsofefficiencywiththreecommonlyusedsparsedirectsolvers:, which is compared in terms of efficiency with three commonly used sparse direct solvers: {\tt PARDISO},, {\tt SuperLU},and, and {\tt MUMPS}.. {\tt SaP::GPU},whichrunsentirelyontheGPUexceptseveralstagesinvolvedinpreliminaryrow−columnpermutations,isrobustandcompareswellintermsofefficiencywiththeaforementioneddirectsolvers.InacomparisonagainstIntel′s, which runs entirely on the GPU except several stages involved in preliminary row-column permutations, is robust and compares well in terms of efficiency with the aforementioned direct solvers. In a comparison against Intel's {\tt MKL},, {\tt SaP::GPU}alsofareswellwhenusedtosolvedensebandedsystemsthatareclosetobeingdiagonallydominant. also fares well when used to solve dense banded systems that are close to being diagonally dominant. {\tt SaP::GPU}$ is publicly available and distributed as open source under a permissive BSD3 license.Comment: 38 page
    • …
    corecore