1,186 research outputs found

    A direct solver with O(N) complexity for variable coefficient elliptic PDEs discretized via a high-order composite spectral collocation method

    Get PDF
    A numerical method for solving elliptic PDEs with variable coefficients on two-dimensional domains is presented. The method is based on high-order composite spectral approximations and is designed for problems with smooth solutions. The resulting system of linear equations is solved using a direct (as opposed to iterative) solver that has optimal O(N) complexity for all stages of the computation when applied to problems with non-oscillatory solutions such as the Laplace and the Stokes equations. Numerical examples demonstrate that the scheme is capable of computing solutions with relative accuracy of 10−1010^{-10} or better, even for challenging problems such as highly oscillatory Helmholtz problems and convection-dominated convection diffusion equations. In terms of speed, it is demonstrated that a problem with a non-oscillatory solution that was discretized using 10810^{8} nodes was solved in 115 minutes on a personal work-station with two quad-core 3.3GHz CPUs. Since the solver is direct, and the "solution operator" fits in RAM, any solves beyond the first are very fast. In the example with 10810^{8} unknowns, solves require only 30 seconds.Comment: arXiv admin note: text overlap with arXiv:1302.599

    PoisFFT - A Free Parallel Fast Poisson Solver

    Full text link
    A fast Poisson solver software package PoisFFT is presented. It is available as a free software licensed under the GNU GPL license version 3. The package uses the fast Fourier transform to directly solve the Poisson equation on a uniform orthogonal grid. It can solve the pseudo-spectral approximation and the second order finite difference approximation of the continuous solution. The paper reviews the mathematical methods for the fast Poisson solver and discusses the software implementation and parallelization. The use of PoisFFT in an incompressible flow solver is also demonstrated

    Some fast elliptic solvers on parallel architectures and their complexities

    Get PDF
    The discretization of separable elliptic partial differential equations leads to linear systems with special block triangular matrices. Several methods are known to solve these systems, the most general of which is the Block Cyclic Reduction (BCR) algorithm which handles equations with nonconsistant coefficients. A method was recently proposed to parallelize and vectorize BCR. Here, the mapping of BCR on distributed memory architectures is discussed, and its complexity is compared with that of other approaches, including the Alternating-Direction method. A fast parallel solver is also described, based on an explicit formula for the solution, which has parallel computational complexity lower than that of parallel BCR
    • …
    corecore