
Research Institute for Advanced Computer Science
NASA Ames Research Center

SOME FAST EI,L!PTIC SOI,VERS ON PARALLEl,

ARCHITECTURES AND TtlEIR COMPLEXITIES

E. GALLOPOULOS

Y. SAAD

April, 1989 F._5 L
Research Institute for Advanced Computer Science

NASA Ames Research Center

RIACS Technical Report 89.16

NASA Cooperative Agreement Number NCC 2-387

_q

k

(NASA-CR-188840) SOME FAST ELLIPTIC SOLVERS

ON PARALLEL ARCHITECTURES AND THEIR

COMPLEXITIES (Research Inst. for Advanced

Computer Science) 32 p CSCL 09B
G3/62

N92-I1692

Uncles

0043026

https://ntrs.nasa.gov/search.jsp?R=19920002474 2020-03-17T15:17:02+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42815564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SOME FAST ELLIPTIC SOLVERS ON PARALLEL

ARCHITECTURES AND THEIR COMPLEXITIES

E. GALLOPOULOS

Y. SAAD

April, 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.16

NASA Cooperative Agreement Number NCC 2-387

SOME FAST ELLIPTIC SOLVERS ON PARALLEL

ARCHITECTUKES AND THEIR COMPLEXITIES

E. GALLOPOULOS

Center for Supercomputing Research and Development

Universiht of Illinois at Urbana-Champaign

Urbana, lllinois 61801

Y. SAAD

RIACS

Mail Stop _30-5

NASA Ames Research Center

Moffet Field, California 94035

ABSTRACT

The discretigation of separable elliptic partial differential equations leads to lin-
ear systemswith specialblockt_idlagonalmatrices.Severalmethods areknown

to solvethesesystems,the most generalof which isthe Block CyclicReduc-

tion(BCR) algorithmwhich handlesequationswith nonconstantcoefficients.A

method was recently proposed to parallelize and vectorise BCR. In.this paper we
discussthe mapping ofBCR on distributedmemory architecturesand compare

itscomplexitywith thatofotherapproachesincludingthe Alternating-Direction
method. We alsodescribea fastparallelsolver,based on an explicitformula

forthesolution,which has parallelcomputationalcomplexitylowerthan thatof

parallelBCR. "

Keylvords:Blockcyclicreductionalgorithm,parallelprocessing,partialfzactior,s,

hypercube computers,computationalcomplexity,alternatingdirectionalgorlthI._l.

1. Introduction. In thispaper we are concerned with efficient_:_ra]Jel

methods for solving block tridiagonal systems that arisefrom the dJscretiza-

tion of the general separable ellipticequation

_2U

(1.1) a(z)-_x 2 + b(:¢)_ + c(z)u

02u Bu

+d(y)--_y_ + e(y)-_y + g(y)u = f(z,y).

These systems are of great importance particularly because their solution

may be required in the inner loop of an iterative procedure, in precondition-

ing more complex systems, or in the context of time-stepping techniques.

When (1.1) is of Poisson type in one direction and is defined on a domain

which allows separation of variables to be used ([27]), there exist special fast

methods which for N unknowns achieve sequential complexity of O(N log N)

([4,5,11,26]) and parallel computational complexity of O(log N) ([6,18,25]).
We concentrate on methods which in principle do not rely on fast trans-

forms and can thus be used to handle discrete equations as general as (1.1).

We describe their mapping on parallel architectures and investigate their

computational and communication complexities. The methods we discuss

are block cyclic reduction (BCR), alternating direction implicit procedure

(ADI), and a new explicit elliptic solver (EES).
Parallel BCR was recently introduced in [7] and [25]. Its implementa-

tion and performance were discussed for the case of the AUiant FX/8 shared

memory vector muitiprocessor in the former and for the Cray-1 in the lat-

ter. A very brief discussion of the mapping of the algorithm on hypercubes

and multicluster shared memory architectures can be found in [6,23] and [9]

respectively. We outline the algorithm and its parallellzation in Section 2

and discuss its mapping on distributed memory architectures, particularly

on hypercubes, in Section 2.1. Several mapping strategies are considered,

depending on the size of the problem and the number of processors and

their parallel arithmetic and communication complexities are discussed. In
Section 2.2 we describe an implementation of BCR for massively parallel ar-

chitectures. If scalar cyclic reduction is used to solve the tridiagonal systems

then the parallel computational complexity of BCR is O(log n logm), for a

block tridiagonal system of n blocks each of dimension m. (N = n x m). This

is inferior to the O(log nm) complexity associated with FFT based methods.

In Section 3 we introduce an O(lognm) parallel algorithm which we call

Explicit Elliptic Sorer (EES). This algorithm affords the same generality as

BCR and is very simple to implement. Nevertheless, it may be impractical

due to its requirement of a very large number of processo_rs. In Section 4 we

briefly discuss the use of these methods for the most general separable prob-

lem. In Section 5 we examine ADI methods. Although, strictly speaking,

these are iterative techniques, their sequential complexity to achieve a level

of accuracy that is comparable with discretization errors, is of the order of

O(n _ log s n) when m = n. For an n _ processor hypercube connected system,

their parallel complexity is of order O(log 3 n). Moreover, a nonnegligible

advantage is that they are far easier to implement than the BCR schemes.

Finally in Section 6 we provide some concluding remarks.

2. Block Cyclic Reduetlon. Consider the more restricted form of

Eq. (1.1)

02u _ 02u(2•1) a(z)b-_ + b(z) + c(z)u + - f(z, y)Oy _

with Dirichlet boundary conditions on a rectangle. If we discretize with

a 5 point stencil on a naturally ordered n x m grid we obtain the block

-1

",o ".•

-I A

I, °

-I

OOo °

-I A -I

-I A

tridJagonal system:

A -I

-I A

(2.2)

vl ' ¢ Yl

• •

v/ = fj
• °

• •

• •

V, \f,_

A and I are tridiagonal and unit matrices respectively, of order m. The

vectors vj and fj are of order m.

The BCR algorithm for solving systems in the above form was introduced

as early as 1965 by Hockney (Illl). The basic idea of the first step is to

combine every block-row of even number with the two adjacent block rows so

as to eliminate the odd (block) variables. The process is repeated until only

one block variable remains. A back-substitution is then applied to compute

all the unknowns. In its direct application the method is unstable, but a

stabilized version was introduced by Buneman ([3]) at a cost of increased

complexity. The first descriptions of the method assumed that the number

of blocks n = 2 k - 1 ([4])• The extension of the method to any n is due to

Sweet ([26]). For a short history of BCR we refer to [21]. The sequential

complexity of the method is O(nmlog n).

Let us rewrite (2.2) as

(2.3) = /

and assume, to simplify the notation, that n = 2k - 1. In the r-th reduction

step of BCR, r = 1,..., k- 1, the current 2 k-'+l -1 right-hand-side vectors

are combined into 2_-" - 1 ones, producing a system of the form

A(')v(") = f(')

in which ¢4(') is a block-tridiagonal matrix of block dimension 2t-'+l - 1

whose diagonal blocks are all equal to a matrix A(') and whose co-diagonal

blocks are equal to -I. The matrix A(') can be expressed as a Chebyshev

po]ynomiM of degree 2"-1 in A, which we write as A(') = p.z,-l(A). In

Buneman's version of the algorithm, the explicit computation of the right-

hand-sides f(_) of the reduced systems is avoided by introducing auxiliary

vectors p and q which are defined through the solution to a system of the
form

A(')X,= r,

where Y, E IRrex(:'-'-1). Since the roots A_") of P2,-* are known, A(') can

be written in product form, where each factor is a tridiagonal matrix of the

form A - AI')I. A similar strategy is used for the back-substitution phase.

For completeness we next describe the Buneman algorithm.

ALGORITHM: BCR, BUNEMAN_S VERSION

A. Initialize: p_0) : 0, q_0): fj, j : 1,..., n and h = 1, r : 0.
B. Forward solution:

(') + ,,(')1. Form the matrix Y, with columns q.) +
/"(2j- 1)h Y(_i+l)h'

j = 1,..., (n + 1)/2h- 1
2. Solve the (multi)- linear system A(')X, = Y,

3. Update the vectors p and q according to

(2.4) ,,(r+1) ,,(,)r2jh = r2jh + X,,ej, j = 1,...,2 k-'-I - 1

(2.5) (,+1) , (,+1) +,(,)
q2jh = zP2jh "/(2j-1)h' j = 1,... -- 1

4. If h< nthen h = 2h, r =r+l;goto 1.

C. Solve for u: A(')u = q[') and set vh = Ph + U.
D. Backward substitution: while h > 1 do

1. h = hi2

2. Form the matrix Y, with column vectors q_'h) + v(.i_l)h + vo+l)h,

j = 1,3,5,...,n/h.

3. Solve the (multi)- linear system A(')U, = Y,

4. Update the solution vectors vp,,j = 1, 3, ..., by V, = P,+U,,

where V, (resp. P,) is the matrix with vector columns Vjh (resp.

Pjh).

In (2.4), the vector X, ej is the j-th column of the matrix X,. As was

mentioned above, since the roots of/h,-i are known the systems in B.2 can

l

4

000000000000000
0000000

½000 000

OOFOOEO0 0
Serial Block Cyclic Reduction for n = 31.

be written

(2.6) I-I (A- _!'_)_I)[_al... Ix,,-,_d- [ml" -ly_,-,_,].
i=1

Clearly, as r increases the effectiveness with which a parallel or vector com-

puter can handle (2.6) decreases rapidly since the number of right hand

sides available decays geometrically. Figure 1 depicts the rapid increase in

the sequential factors (the blocks on the left) in contrast to the equally rapid

decrease in the number of independent systems (the vectors on the right)

for n = 31. The parallel version of BCR is based on expressing the matrix

function [P2--, (A)] -1 as a partial fraction, i.e. as a linear combination of the

2"-1 components (a-)_:)1I) -I.

2v--I

(2.r) [x11--.I,,-,_1] = _ _')(a _(')T_-, . .
i=l

The coefficients - (')_i are equal to 1/p_,_,(Ai_l)(_) and can be derived analyti-

cally. The cases of Neumarm and periodic boundary conditions can also be

handled similarly. Figure 2 depicts the parallel reduction for n = 31. When

the number of blocks n is not equal to 2 k - 1, additional systems of the form

h 1

(2.8) I-_(A - ._i_lI)z -- l'I (A - pj_lI)y
i=1 j=l

must be solved at each step. In this case the rational matrix polynomial

1 k

(2.9) H(A _ #j_li) " [_ICA -)_i_1/-)]-1

j=l /=1

is also reduced into a sum of partial fractions ([8]).

5

\

O

E]

000000000000H00

0000000+ 0000000

000+O000 O000 O000

O+O0+O0+O0+O0+O0+O0+O0
FIG. 2. Parallel Block Cyclic Reduction for n = 31.

The same technique can be applied for general separable equations fol-

lowing the algorithm in [22], the main difference being that the roots of the

polynomial are not known beforehand in an analytic form. Standard meth-
ods can be u_ed for the numerical computation of these roots, followed by

the technique described earlier. We note that partial fraction expansions for

BCR were also independently advocated ill [25]. They have also been used

in a similar context by Swayne [24] who was not, however, motivated by

parallel computing. Their use in a different context for parallel processing

was advocated by It. T. I_,Jng [16].

2.1. Block Cyclic Reduction on hypereubes. Distributed memory

machines based on hypercube networks represent an excellent compromise

between fltlly connected arrays and grid arrays and have recently been devel-

oped into several commercial products. A p-cube network or p-dimensional

hypercube, consists of P = 2p identical nodes that are interconnected to each

other in such a way that each node has p neighbors. The rigorous description

of the intercormection involves a binary numbering of the nodes: two nodes

are connected if and only if their binary numbers differ in one and only one

bit. Thus, for p = 3, a p-cube cart be represented as an ordinary cube in
three dimensions where the vertices are the 8 = 23 nodes of the 3-cube. For

p = 4 one can represent the hypercube network as shown in Figure 3.

In thi_ section we consider several mappings of the BCR algorithm on

hypercubes. Sections 2.1.1 and 2.1.2 deal with the limited processor case,

in that the number of processors P is assumed to be smaller than m in the

former and n in the latter. Section 2.2 deals with the case P > N.

An important notion in hypercube architectures is that of Gray-codes.

A Gray code of order p is simply a sequence go, ..., g2p-1, of all the p-bit

binary numbers such that two consecutive elements of the sequence differ in

exactly one bit, i.e., H(gi, gi+l) = 1, where H(z,y) denotes the Hamming

distance between z and y. In particular, the binary reflected Gray code

FIG. 3. 3-D view of the ,_-cube.

sequence of order p, see [17] has the remarkable additional property that

H(gl, gi+2J) = 2, for j __ 1. In the remainder of this paper we will use the

term Gray code to refer to binary reflected Gray codes.

2.1.1. Interleaving right hand sides vertically across proces-

sors. We first describe a mapping of the data that leads to a simple and

efficient algorithm for the case m >> P. Considering each of the subvectors

fj of the right-hand-side f, we assign its l-th component fj,l to processor

gl-1 for l < P and more generally,

MAPI: Assign component fi,t to node gmod(/-1,2v)"

Thus the processor labeled gt-1 will hold all the components l + uP,

where l + uP < m, of each subvector fj of Of. A consequence of this map-

ping is that when solving the simultaneous tridiagonai systems with Gaus-

sian elimination, the forward and backward sweeps will only require nearest

neighbor communication.

In the very first step of block cyclic reduction, there are 2k-1 - 1 tridiag-

onal linear systems to solve with the same matrix A, and different right hand

sides, f2, f4, , f_(2h_l_l). As is illustrated in Figure 4 each of these inde-
pendent tridiagonal systems is interleaved across the P processors. These

linear systems can be solved by pipelined Ganssian elimination, which we

now describe.

The first elimination step consists of communicating the first row and top

element of the first right hand side down from processor go to its neighbor

gl which then performs the forward elimination step. In the second step

processor gl sends the second row of the first right-hand-side to processor

P00

Pol

Plo
Poo
Pol

Pn
/lo
Poo

Pol

Poo
Pol
Pll

/'1o
Poo
Pol
Pll
Plo

x X

x X

X

X

x x

X X X

X X X

X X x

X X x

X X x

X x x

X X x

x x x

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

X X

x x X

x x x

x x x

X X x

X x x

x x x

x x x

x x X

x x X

x x x

x xlx

X X[X

X Xl X

X X X

X X X

X X X

X X X

X X X

X X X

X X X

FIG. 4. Interleaving assignment of three right-hand-sides across four processors.

g2 while processor go will send the first element of the second right hand

side down to gl. Then gl performs the first elimination step for the second

right hand side and g2 the second step of elimination for the first right hand

side. Note that here gl does less computation than g2, For later reference,

we display in Figure 5 the main loop involved in the solution of a system

with the tridiagona] matrix whose nonzero components in the ith row are

b(i),d(i),c(i).

The pivots z may be saved in place of b(i) since they will be needed for

the other right hand sides. The remainder of the process is similar. Initially

most of the processors are idle but after the first P elimination steps, every

processor becomes active and the granularity of the tasks increases. When

the forward elimination is completed, the backward elimination is performed

c Forward solve:

do i=2j m

z = b(i)/d(i-l)

d(i) = d(i) - z*c(i-l)

y(i) = y(i) - z*y(i-l)

enddo

c Backward solve

y(m) = y(m)/d(m)

do i = m-l, I, -i

y(i) = (y(i) - ¢(i)*y(i+l))/d(i)

enddo

FIG. 5. GausBian elimination]or tridiagonal system.

in the same way but backwards.

In subsequent steps of the parallel version of Buneman's algorithm de-

scribed in Section 2, we have several tridiagonal systems to solve with the

same right hand sides but different tridiagonal matrices. For simplicity we

drop the superscript index (r) from the A's; it is understood however that

the set of A's changes at each step of block cyclic reduction. Thus, in the

second step of the forward reduction, we end up with systems of the form

(A - AoI)(A - AII)X = Y where this time the number of right hand sides

in Y is 2 k-2 - 1, or nearly half what it was in the first step. One pos-

sibility is to proceed sequentially with respect to the A's, i.e., we can use

the pipelining procedure described above to solve (A- AoI)Z = Y and

then (A - AII)X = Z. However, towards the end of the forward elim-

ination, the number of right hand sides decreases and a better alterna-

tive is to use the parallel technique based on partial fractions, described

in Section 2.1. This amounts to solving the independent tridiagonal sys-

tems (A - AoI)X0 = Y and (A - AaI)X1 = Y and then computing a linear

combination of Xi, i = 0, 1. It is interesting to observe that from the point

of view of implementation, one can consider that we axe solving altogether

twice as many tridiagonal systems independently. The right hand sides can

therefore be duplicated as many times as there are A's and we are back to

the situation of step one except that not all of the distinct right hand sides

must be solved with the same tridiagonal matrix. For example, in step 2 we

will have to solve 212 k-2 - 1] independent tridiagonal systems, half of which

involve the same matrix (A - AoI) and the other half the matrix (A -AII).

The pipelined procedure described for the first step can be used.

Let us now estimate the time that it takes to perform the r-th step of

the forward elimination. For reasons that will be explained later we will

assume that m _> n. We will use the following standard and simple model.

9

Tomoveadatasetof j words from one processor to a neighbor takes a time

of

(2.10) fi + jr

seconds, while performing j arithmetic operations in vector mode,

(2.11) 3`+

seconds. Note that this model includes the case where each processor is

a scalar processor, by taking 3` = 0. We will often refer to Buneman's

algorithm described in Section 2.1. At the start of every step, the algorithm

requires forming the matrix]_ of right-hand-sides. Each co]unto vector yj of

Y, is a linear combination of the vectors q's and p's in the standard notation

of Buneman's algorithm and they are obtained by the formula,

(,) p() rr) .(2.12) YJ = _jh + (_j-1)h 4 Pi2j+l), j = 1,2,...,

Clearly_ this requires no cormnunication since a given processor contains the

same components of each of the vectors to be combined. The time for this

is approximately,

The next phase of the elinfination step consists of solving 2_-1 tridiag-

onal systems each of dimension m and having 2k-r - 1 different right hand

sides arranged in interleaved order. Following our previous discussion, we

will assume that we must solve exactly q = 2"-1(2 k-, - 1) tridiagonal sys-

tems each with a different right hand side and a different diagonal. Clearly,

this is not quite accurate since many of the matrices are identical as was

seen above, but it gives an upper bound for the time estimates that is much

simpler to derive.

In pipelined algorithms there is a pipe-fill time which corresponds to

the first few steps before all processors reach their high regime of efficiency.

The first P - 1 steps see processors g0,.--,gP-1 becoming gradually busy

each doing one elimination step consisting of reading three floating point

numbers from a previous processor and performing forward elimination at a

total cost of

(P -- 1)[_ + 3r + 33' + 5w]

Similarly, in the next, P steps a!l processors will be busy but they will deal

with two elements of the righ_ hand side instead of just one. The new cost

is

Pif_ + 6T-_- 67 + lOw]

10

It is only after the first component of the last right hand side is processed,

i.e., after step q, that the processors will start doing essentially the same

work at every new step. If we let s =_ [q/Pl, then the total time that it

takes before this is achieved is approxim_: _:y,

(2.13) 2 + 55,,]
j=l

Note that a similar phenomenon takes place in reverse in the last q steps.

Apart from these first and last q steps each of the remaining rn - 2q steps

of the algorithm, takes the same amount of time which is approximately,

fl + 3"[+ 3st + 5sw and the totM becomes

(2.14) _ 2Psi13 + 7 + 32T + 52W] + (rn -- 2q)[_ + 37 + 3st + 5W]

Note here that we need to have m - 2q > 0 which, using the fact that q is

a decreasing function of r leads to m > 2 k - 2 = n - 1 or rn > n, which

justifies our earlier assumption.

The partial fraction expansion formula (2.7) requires that we now take

a linear combination of 2_-1 matrices of 2 k-r - 1 columns of length rn each.

These matrices are split equally among the processors and the time required

for this linear combination is approximately,

2_-i(2 k-" - 1)(3' + I'll w) = q(7 +

assuming that the linear combinations are performed column-wise. Note

that once more no communication is required.

Finally, we need to update the p and q vectors according to (2.4), (2.5).

Again this requires no interprocessor communication an_ the arithmetic time

is approximately, -_ 4- for (2.4) and 27 + 2[_1_ for (2.5).

Adding up all these times, and separating the communication from arith-

metic complexities we obtain

(2.15) T_om,_ _ (2Ps + m - 5q)fl + 3s(Ps + m - 2q)v

for communication and

(2.16) T,,,ith ,_ (2Ps + 3rn - 5q) 7

(SP + 5(,, - 2q) + (q + 5)[p1) +

for arithmetic.

Note that since q = 2k-_ - 2"-x, for q large relative to the nmnber

of processors, Ps will be of the order of q which implies that the number

11

of start-ups is of the order of 2q = 2_ - 2 r in both communication and

arithmetic. Apart from the start-up coefficients, the algorithm is dominated

by the O(Ps 2) terms in both communication and arithmetic, which are of

the same order as q2/p in a typical situation.

When the number of right hand sides is small, blocking can be used to

reduce the effect of start-up overhead. Going back to the original version of

the algorithm, we notice that at every step only a few arithmetic computation

and a few data transfers are performed at every step. If each processor

has a vector processing capability then this may be inefficient. Similarly,

many machines have high latency times in communication and it is always

preferable when possible to transfer a sizable amount of data at once rather

than just a few. The remedy to this is to use a simple and standard scheme in

pipelining which consists of blocking the computations. Instead of treating

only one right hand side at a time, we can deal with a group of u right hand

sides simultaneously at each time. Then each elementary step of Gaussian

cllnfination can be performed as a vector operation across the u right hand
sides.

2.1.2. Horizontal distribution of the right hand sides. In this

section we consider another implementation of BCR in which the right hand

side vectors are not distributed vertically, but horizontally, i.e., a whole right

hand side (vector) is now assigned to the same processor instead of being

split and shared among several ones as in the previous subsection. Again

we consider a hypercube system with P = 2p processors and assume that

P<<n, where n is of the form n -- 2k-1.

For the purpose of illustration let us consider the simple case where

n -- 15 and the number of processors P -- 2p is 8. We start by mapping

two right hand sides per processor except for the last processor which will

only hold one right hand side. We use the Gray code mapping of the right

hands sides fl, f2,-.., fls, at the rate of two vectors per node, which consists

of assigning fl, f2 to node 000, fs, f4 to node 001 , ..., f2i+l, f2i+2 to node gi

where go, g1, ...,g2r-1 is the standard binary reflected Gray code sequence.

As is easily seen in this example, when combining three successive vectors

f2i-1, f2i, f2i+l as in the first step of forward reduction, we only need near-

est neighbor communication. After these linear combinations are completed,

each processor solves a tridiagonal system involving A. In the later reduction

steps, subvectors with subscripts differing by a power of two are combined.

Because of a well-known property of the binary reflected Gray code, one

observes that communication is kept at distance of exactly two. It is impor-

tant to notice that after a certain number of steps, in our example after just

the first step, many processors will have no right hand sides while others

will have exactly one right hand side. In our example, in step 2, processors

12

F

g2, g4 and 98 will have one right hand side to solve with a system which is a

degree 2 polynomialin A. This raises the question of how to put the inactive

processors to work, which will be ad_essed shortly.
Consider the situation in the general case. At each step of the reduction

process there are 2 k-" - 1 right hand sides involving a polynomial of degree

2"-1 for r = 1,...,logn - 1. Once these systems are solved, the resulting

vectors are combined in groups: the vectors corresponding to indices i -

2"-1,i,i + 2"-1 are added together. This gives a new set of independent

systems with half the number of unknowns. With the exception that we are

now dealing with vectors instead of scalars, the combination step is as in

scalar cyclic reduction. A systematic way of mapping the right hand sides

to the P processors is to start by partitioning the Gray code representation

hi of the index i of each right hand side (vector), for 1 < i + 1 < n, as

F,(O

(2.17) hi = lk-l'" "ik_p ik-p-l''" io

As shown, for any integer i, 0 < i < 2k - 1, we denote by Fp(i) the binary

number formed by the p leading bits of hi, the i-th element of the Gray

code sequence of dimension k. Hence Fp(i) can serve as an identifier tag for

P = 2p processors. Then, the mapping rule used is as follows

MAr,2: Assign component fj, t, 1 = 1,2,...,m to node Fp(j - 1).

We then obtain the following theorem which can be used both in scalar

and block cyclic reduction.
THEOREM 2.1. [f n = 2k -- 1 and rule MAP2 is in effect in the initial

assignment o,f equations to processors for cyclic reduction, the elements to

be combined at each step belong to nodes which are at a mazimum distance

of 2 apart on the hypercube graph.

Proof. We discuss the case of BCR. The same arguments can be used to

prove the result for scalar cyclic reduction. Consider block index i + 1 with

i = a2 k-p + I, where 0 < 1 < 2 k-p and a = 0,...,2 p - 1. At step r, each

vector i = 2"# with/_ = 1,..., 2 k-r - 1 is combined with vectors i- 2"-1 and

i + 2"-1. According to MAP2, the equation i + 1 is in processor Fp(i) = g,_.

When 2" < i + 2"-1 < 2 k - 1, the equations i + 2_-1 and i - 2 "-x are in the

same processor because the p leading bits of their indices are identical. It is

ordy when r > k - p that any of the vectors in g,, would be combined with

elements in a processor other than 9=, g,_+l or g_-x. From the Gray code

assignment, processors 9,_ and gc,+a are adjacent. When r > k - p, we write

r = k - p + t for t > 1 and combine i with i + 2 k-P+t, i.e.

a2 k-p + 1-4-2 k-p+t = 2k-P(a + 2 t) + l

By definition these lie in processors g_-2,- From a fundamental property

13

of binary reflected Gray codes these processors are at distance 2 away from

processor g,_ and the theorem is proved. •
We distinguish two regimes in the algorithm. With n = 2k - 1 and

P = 2p, the first regime is when the step number r does not exceed k -p, in

which case each processor ends up with 2k-'/2 p = 2 k-'-p right hand sides

except for the last processor which will have one less right hand side. The

degree of the polynomial is 2"-1 . Thus, the work is well balanced, at the

exception of the slight difference with the last processor. More precisely,

each processor will have a linear system of the form p_r(A)X = Y to solve

and there is no need to use partial fractions in order to load balance. In

contrast, in the second regime, i.e., as soon as r > k - p, each processor of

the form J = Fp(j2") ends up with exactly one right hand side while any

other processor will not have accumulated any right hand side and would

remain idle if no counter action is taken. However, the idea of partial fraction

expansions described earlier can be employed to achieve load balancing when

solving the polynomial systems (A - AoI)(A - AII)...(A - A_--a_lI)z = y,

of degree 2_-1 that are generated at the r th reduction step in nodes labeled

Fp(j × 2"),j = 1,...,. Again we start by illustrating the process with the
particular case n = 15 and P = 8; i.e., k = 4,p = 3. After the first

elimination process, all processors must solve a linear system of the form

(A - AoI)z = y where y consists of one right hand side, and this constitutes

the only step of the first regime where there is no need to load balance.

In the second step, processors F3(2) = 001, Fa(4) = 010 and F3(6) = 111,

will have to solve each a system of the form (A - AoI)(A - AII)z = y, or

equivalently, by the partial fraction decomposition, two independent linear

systems (A - AiI)zl = y, i = 0, 1. To make the other processors participate

in solving these systems, we will have each of the three _master nodes' 001,

010, and 111 distribute some of the linear systems (A - AiI)zi = y to slave

processors. To do this in a systematic manner, each master processor will

assign rthe system (A - A_I)z_ = y to the (slave) processor whose label has

the same leading 2 bits as those of the master node and the same trailing bit

as that of the binary representation of i. Thus, node 001 sends the system

associated with A0 to processor 000, and keeps the system with A1. Similarly,

node 010 sends the system associated with A1 to node 011 and node 111 sends

the system associated with A0 to node 110. After these systems are solved

they must be combined back in their master nodes.

More generally, at a given step of the second regime processors numbered

Fp(j × 2_), j = 1, 2,..., 2_-" - 1 and only those processors, will have to solve

systems of the form

(2.18) (A - AoI)(A- AII)...(A - A2,-,_l)z = y.

14

When r = k - p + 1, all the processors in the subcube of th," nodes whose

leading p - 1 bits are identical with those of the master node Fp(j2"), will

have no system of the form (2.18) to solve. At any step r = k -p+ r0, where

r 0 = 1,2,.. serves as iteration counter for the steps of the second regime,

each master node Fp(j2 _) will have a system of the form (2.18) while all
other nodes in the subcube of the nodes having the same p- r0 leading bits,

will have none. We can use the partial fraction expansion of Section 2 to

decompose (2.18) into 2"-1 independent linear systems

(2.19) (A-_iI)zi=y, i=0,1,...,2 "-1-1,

which should be followed by a linear combination of the z:s. Then, a simple

strategy to distribute the linear systems (2.19) equally, is to have the master

node broadcast the right hand side y to the nodes of its subcube consisting

of all the nodes with the same leading p - r0 bits, and have each of them

solve the systems (2.19) for which the trailing r0 bits of i match the trailing
r 0 bits of the node's label.

In brief we have used the fact that the sets Sj consisting of the nodes

so that Fp(_) = Fp(j2"), form a partition of the p-cube into subcubes, and

we have distributed the linear systems (2.19) equally in each subcube.

Therefore, if we denote by L,(i) the binary number consisting of the s

tralhng bits of the binary number i, we can summarize the rule by

LOAD BALANCING RULE: At step r = k - p + to, each master node

Fp(j2 r) makes slave nodes Fp_ro(j2")Lro(i) solve systems (2.19).

Note that there are p - 1 steps in the second regime. It is easy to see

that each node will solve an equal number of linear systems which is constant

and equal to 2"-1-_° = 2 k-p-l, at the exception of a small number of the

last nodes in the Gray code sequence which will have no system to solve.

This process requires broadcasting of the right-hand-side in node J to its

subcube and then gathering/summing of the data in the manner distributed

inner products are usually computed in a hypercube. With the simplest

broadcast algorithm, these operations cost O(r0m) which means that the

communication overhead in this second phase is higher than that of the

first phase where the right hand sides y are formed. Hence depending on

the relation between communication and arithmetic costs of the particular

hypercube system it might be preferable not to distribute the work to all

processors but only to those located in a smaller subcube.

A final operation required in the second regime is to accumulate the

different solutions back to the master node. This is essentially a gather-

combine operation and is done by exploiting the topology of the hypercube,

in r0 steps consisting of moving in a higher subcube closer to the master

node and adding the intermediate results at each time.

15

To get an estimated time of the r-th step of this algorithm, we must

distinguish between the two regimes. We first observe that the operation

that consists of combining the vectors p's and q's to form the right hand

sides is identical in both regimes except that we deal with more vectors in

the first and that only the master nodes are actually active in the second.

We can also view the right-hand sides in the first regime as forming a single

long right vector of length m' = 2 I'-'-p × m. Thus, the first operation in

step r is to have each processor with label of the form J = Fp[j × 2"] form

a linear combination of q and p vectors of length m _ to form their column of

the right-side matrix Y. This costs 2/3 + 2m% for communication (Bringing

two vectors that are at most two hops away) and 23' + 2m'w for their linear

combination.

After the right-hand-sides are formed we need to solve the tridlagonal

systems. This is processed differently in the two regimes. In the first regime,

we need to solve in each processor independently, at most 2" tridiagonal

systems with 2 k-_-p right-hand-sides. Using standard Gaussian elimination
this will consume a time of

(2.20) 2" x m x [37 + 8 x 2k-"-Pw]

assuming vectorization across the right-hand-sides.

On the other hand regime 2 requires first broadcasting the (single) right-
hand-side to its subcube at the cost of

ro x (_ + mr),

and then having each of the slave processors solve 2"-1-'° = 2k-p-1 tridiag-

onal systems at the cost of

(2.21) 2k-p-1 xmx [37+8Xw]

Moreover, the different solutions must be accumulated back to the master
node at the cost of

ro[13 + mr + 3' + m x w].

Finally, we need to update the vectors p and q according to (2.4), (2.5).
(,-+1)

Note that the vectors involved in updating P2jh are the same processor, so
there is no need for communication. The number of vectors that processor

g2j.2- combines is 2 k-'-r'-I and the cost is 2k-'-P-l(7 + rrua) for (2.4). For

(2.5), we need to bring the vectors q('_ _ at the cost of 2(/3 + mr), and(2j- 1jh
then do the linear combination at the cost of 23' + 2nu,,. These computations

are identical in both regimes. Note that many processors will be idle at the

16

endof the elimination phase and load balancing can also be performed, but

we omit the details.

Summing up we find that each step in the first regime costs a total of

(2.22) Tcomm = 4fl + 2k-_-P_-Imr

for communication and,

(2.23) Ta,ith = (5 + 3 × 2"-1m)7 + (4 + 2k-'-p+l + 2k-P+2)mw

for arithmetic. Similarly, each step in the second regime costs

(2.24) Tcomm = (r0 + 4)(/3 + mr)

for communication and

(2.25) Ta_ith = (5 + 3 × 2k-v-l)7 + (to + 6 + 2k-P+2)moJ

and arithmetic. Note the high coefficient in front of the 7 term in the second

regime which simply indicates that there is no vectorization when solving

the tridiagonal systems. It is rather difficult to compare the algorithm of
Section 2.1.1 with the one described in this section based on these com-

plexity results. Assuming that m = n, we only note that when the latter

is dominated by the first regime, i.e., when n is very large compared with

P then the second algorithm is likely to be slightly superior than the first.

This can be seen by comparing all the coefficients of each of the constants

fl, % 7, w amd making the simplification Ps _ 2k-1 which is valid for large n

and small r, i.e., for the first reduction steps. If the algorithm is dominated

by the second regime, i.e., when then n is of the same order as P and so

there are only a very small number of steps in the first regime, then the

arithmetic times of the two algorithms are comparable except that there are

many more start-ups with the second. On the other hand, communication

is less costly with the second algorithm.

2.2. A massively parallel block cyclic reduction algorithm. In

this section we consider the extreme case where the number of processors

is larger or equal to N =- mn the number of grid points. In fact, consider

the simple case where rn = 2m - 1,n = 2rn - 1 and p = Pt +/>2, i.e.,

P = rn(n + 1) > N. Each of the grid points is assigned to a different node

and corresponds to a well-known mapping of a two-dimensional grid into

the hypercube as illustrated in Figure 6. Thus, the physical grid is mapped

into an array of processors imbedded in the hypercube. In terms of the

right-hand-side vectors fj the mapping rule is as follows:

MAP3: Assign component fj,t to node gj-lgt-1.

17

O0

01,

II_ - -

10 i
000 001 011 010 II0 I11 101 I00

FIG. 6. Two dimenlional Gray-code for an 8 × 4 9r{d.

Hence the subvectors fi, i : 1, 2, ..., n, are stored vertically, each in one

vertical line of the array depicted in 6. Each horizontal line contains the

same components of these subvectors. It is clear that if standard BCR were

used, then tire linear combination of the subvectors causes no difficulty and

would reqttire communication only between nodes that are on the same hor-

izontal lines. Solving the tridiagonal systems requires interaction between

grid points of the same subvectors, i.e., communication between nodes that

are on the same vertical lines. If we use standard Gaussian elimination then

only one of the nodes of each vertical line will be busy at any given step of

the forward and backward sweeps. An obvious solution to this difficulty is

to use scalar cyclic reduction. An alternative would be to use the parallel

variant of cyclic reduction known as PARACR that avoids the back substi-

tution phase ([12]). It was observed however that because of the additional

communication involved in PARACR, cyclic reduction is more economical

([14]). : : : - :
Without going into the complex details of the algorithms, we wo_d Uke

to estimate the order of the time required to execute it. We can adapt

the algorithm of Section 2.1.2 to this case, except that we are now only

considering the special situation where there is no first regime. There are

a total of k = P2 steps. Each step starts by assembling the right-hand-

sides,:qne f°r e ach c°lumn, of t h e grid corresponding to the nodes:zj_,. This

require _ communicating a_fe w elements with procesiors that are at most

2 hops away in the z-ddrection, and is a constant with respect to r. The

tridiagonal systems to be solved next will require to broadcast the right-

hand-sides tothe subcube associated with the master nodes, at a cost roughly

proportional to the step number r. Assume that this time plus the time

required to sum up the partial results later on, back tothe master node is

of the form abr. Then the tridiagonal systems are solved independently at

roughly a cost of the form atth. The rest of the operations on p's and q's

are again constant with respect to r. If we call c the total of all the times

18

that are constant with respect to r, each step will cost approximately

(2.26) c + abr + atth

which yields a total over the Pz - 1 steps of

/>2-1
(2.27) T_cR _ _[c + ,_R---- 5- + ,_,_]

In other words the cost is of the order of O[log 2 n + log m log hi. The term

log2n comes entirely from the use of the partial fraction expansion and

appears because of the need to load balance the computation.

It is interesting to observe the striking difference between the parallel

complexity of BCR and FFT based algorithms. A simple application of the

2-D FFT algorithm (for Poisson's equation) or of the combined FFT and

tridiagonal solve algorithm (for (2.1)) in the hypercube can yield a paral-

lel arithmetic complexity of O(log n + logm), i.e., the sum of the times for
implementing FFT in the one direction and FFT or scalar cyclic reduction

in the other. On the other hand the parallel version of BCR described here

cannot achieve a time better than O(lognlogm). That this is an actual

limitation of the algorithm rather than just a consequence of the implemen-

tation being used can be established by looking at the dependency graph of

the parallel BCR.

However, as is shown in the next section, there exist alternative algo-

rithms with a complexity of order O(logn + log m), which is comparable to
that of FFT based methods.

S. Explicit Methods. We now present an algorithm for the solution

of (2.2) having parallel complexity O(log n + log m) which is based on using

the explicit inverse of ,4.

Denote by S,_(z) the shifted Chebyshev polynomial of degree n of the

second kind defined for 0 < z < 2 by

(3.1) S,_(z) = sin[(n+ 1)0] cos0 = x/2.
sin 0 '

The explicit inverse A -1 can be written in block form, with block (i, j)

givenby, ([1])

{ S_I(A)SI_I(A)S._j(A), j > i,(3.2) "A_z -- S_'(A)Sj_t(A)S._,(A), i > j

As a result we can write the solution u explicitly. The i th block component

is obtained by multiplying .A-1 by f blockwise, yielding:

!q

tti = i

j=l

19

i-1

= _ S='(A)Sj_I(A)Sn_,(A)fj
j-----1

I'L

+ _ S=I(A)Si-i(A)S,*-j(A)fj
j=/

It is clear from (3.2) that each block .A_ 1 can be expressed as a rational

matrix function qij(A) with denominator of degree n and numerator of degree

less than n. As a result we can express each of these as the sum of n

fractions. Let the coefficients al_), be the expansion coefficientselementary

of each of these rational functions with respect to the elementary fractions.

In other words, let,

a! fo, >(3.3) *_
z ---Ak = qij(z) : (S;'(z)Sj_l(z)S,-,_i(z) for i > j

k=l

Then each of the components u,. is given by

Ui =

j=l

= _qij(A)fj

j=l

= -t3 _--

j:l k=l

n n

= y_'(A a_i)-_ X-"a(_')_.-- / _ ij ._3

k=l j=l

which results in the algorithm of Figure 7 for computing the solution.

From the above description the parallel computational complexity fol-

lows easily: Step (I) requires log n operations, if ham processors are available.

The complexity for step (II) depends on the algorithm chosen to solve the

systems. Since A is tridiagonal, scalar cyclic reduction can be used at a

cost of O(log m) and n2rn processors. Step (HI) can be completed in log n

operations with n2m processors. Summarizing, the algorithm has parallel

computational complexity

TEES = O(logn + logm).

To achieve this bound, O(n3m) processors are necessary. The sequential

complexity of the algorithm is 2n3m + O(mn 2) operations, which is much

20

Computethe n roots Ak of Sn(z) in (3.1).

thecoefficients) inCompute (3.3).
DOALL i -" 1, n

DOALL k -- 1, n

compute f_k) = E_=I _.(k)tuij Jj

compute _ik = (A - AkI)-l f (k)

END DOALL

compute ui = _'_=1 aik

END DOALL

FIG. 7. Algorithm: Explicit Elliptic Soloer

(I)
(ii)

(III)

higher than the usual O(mnlogn) of fast methods. As was just seen, the

dominating cost is the computation of the intermediate vectors f(i k) in the

innermost loop. This complexity is comparable to that of a direct banded

solver that does not exploit the special structure.

Note that the algorithm is as general as the BCR algorithm. It has the

added benefit that it is very simple to program and that unlike BCR it does

not require a special treatment when n _ 2k - 1.

We must point out however that the factor O(log n) lower complexity of

the explicit algorithm compared with that of parallel BCR came at a very

high price, namely a factor of O(n 2) increase in the number of processors

required. As we show next, by taking advantage of the structure of the

problem, we can lower this processor requirement by a factor of O(n).

We first observe that each of the coefficients a!_) is defined by
_J

(3.4) a_) Sj-t(Ak)Sn-i(Ak)
= S,n()_k) for i >_ j

with, the corresponding formulas for i < j defined by interchanging i and j.

Therefore, we can write

a(k)
ij

where we have set

(3.5)

sin(j0k) sin((n + 1 - i)Ok)

sin 2 Ok S'.(A_)

sin 20kS'*n()_k)

= sin(jOk) sin((n + 1 - i)Ok)

21

1
with cos0k =]Ak. We now use a wellknown trigonometricformula toobtain

for i> j

(3.6) f_}_) = 2[cos((n + 1 - (i + j))Ok)- cos((n + I - (i j))Ok)]

To get the formula for the case i < j we need only interchange the indices i

and j, leading to the general expression

(3.7) /_) = l[cos((n+ 1 - (i+ j))Ok)- cos((n+ 1 -li- jl)0k)]

One then noticesthat the matrix B (t)= (_!_))id=1.....,_isthe sum of the

Hankel matrix

t cos(n + 1 - (i +

and the Toeplitz matrix

1 cos(n + 1 - li - jl)0k},,S=l •

it follows that the matrix A (k) , (k),= (c_ij) is also the sum of a Hankel and a

ToepUtz matrix.
Observe that each of the rn coordinates of the subvectors of f(k) in the

previous algoritlun, is the result of the product of the matrix A (k) by the

vector obtained by extracting all the corresponding coordinates from the

vectors fj. In fact another way of expressing this is by writing that

(3.8) (F(k)) T = A(k)F T

where F (k) and F are m × n matrices whose column vectors are the f_(k)'s and

fi's, respectively. Each of these products represents the product ofa Toeplitz

plus a Itankel matrix times a vector of size n. We write this as (T1 + H)z

with T1 Toeplitz and H Hankel. By definition, H can be rewritten as JT2,

where J is the permutation matrix consisting of ones in the antidiagonal

and 0 everywhere else. Hence the operation becomes (T1% JT2)z. Tlz

and T2z are two ToepLitz matrix vector products computable by four FFT

transforms of size 2n each, at the cost of O(logn) arithmetic operations

and 2n processors per FFT. J is a permutation matrix and hence the only

other computation required is the parallel addition of the two partial results

requiring n processors.

This must be multiplied by the number of components in each subvector,

and by n, the number of roots As, which leads to 2n2rn processors. The rest

of the algorithm proceeds as before and requires O(log rnn) operations with

O(mn 2) processors. We are thus led to the following theorem.

THEOREM 3.2. Using O(mn 2) processors, system (2.2) can be solved in

O(log n + log rn) parallel steps.

22

4. General Separable Equations. A second order finite difference

discretization of equation (1.1) with Dirichlet boundary conditions leads to

the block tridiagonal matrix `4

A + alI 711

[32I A + a2I 7_I

"., "o, *..

flkI A + akI 7kI

*,, "..

fln-,I A + a,_lI

fl.I
7n-lI

A + anI

We summarize how the techniques we have described so far can deal

with this case. As we shall see, this generalization comes at the cost of

extra preprocessing overhead due to the need to compute polynomial roots

or (equivalently) computing eigenvalues, which in practice may make these
methods less attractive.

Block cyclic reduction has been extended by Swarztrauber ([22]) to han-

die (1.1). The difficulty here is that the roots of the polynomials generated

in the course of the reduction are not analytically available as is the case for

(2.1). As a result, in order to perform the partial fraction decomposition,

they must be computed numerically. In [22, Table 2] there are timing results

which show that this preprocessing overhead can be overwhelming.

Although (1.1) is the most general form we can have, it is not the most

convenient to work with since it can lead to non-symmetric matrices. This

is overcome by rewriting (1.1) (if the coefficients allow) or transforming it

(multiplying by suitable integrating factors) to self-adjoint form. We thus

assume next that such a transforxnation has been made and hence fli = _'{-1

fori=l,...,nandA=A T .

The matriz decomposition algorithm described in [4] is based on the

eigenvalue-eigenvector decomposition of the diagonal blocks of A. When the

equation is of Poisson type in one direction, a suitable ordering of the un-
knowns makes the orthogonal matrix of eigenvectors of A equal to a discrete

Fourier transform operator thus allowing the use of FFT for the matrix-

vector multiplications. For the above more general matrix ,4 however this

is no longer true: The eigenvalues and eigenvectors of A must be computed

numerically and matrix-vector multiplications must be performed explicitly.

In the experiments described in [22], the generalized BCR seems to perform

better than matrix decomposition.

The generalization of the explicit method of Section 3 requires the use

23

of a formula analogous to (3.2) for A -1. From [2, Theorem 2.2]

"A-1 = { P_I(A)Pi-I(A)Rn-_(A)' j >- i,(4.1) - fl" _J P_I(A)Pj_I(A)R._i(A), i >_ j

where the n roots of Pn are the negatives of the eigenvalues of the sym-

metric tridiagonal matrix Tridiag[fii_l, ai, /9i]. The polynomials Pi, Rj are

computable by means of three term recurrence relations. Hence once the n

eigenvalues of Tridiag[_i_l, ai, jfli] have been computed the algorithm can

proceed as in Section 3.

5. ADi Algorithms. The Alternating Direction Implicit procedure of

Peaceman and R_chford can be regarded as a fast algorithm for solving

separable elliptic equations. Although this is an iterative method, if the

equations resulting from the discretized partial differential equations are

solved with an accuracy that is of the order of the discretization error, and

if the optimal parameters are used, then the number of steps required for

convergence is of the order of O (log 2 n), where n is assumed to be the larger of

the two numbers of grid points in the z and y directions. This puts the total

cost in the sequential case to O(nmlog 2 n) [20]. Hence if one cart achieve a

parallelism of the order of nrn then there is the possibility of reducing the
cost of ADI to the same order as what we obtained with BCR in the best

case. Several of the benefits of ADI have been mentioned in the literature

for the general nonseparable case or the parabolic equation case ([10,14,15]).

Here we would only like to mention some of the implementation aspects and

discuss some advantages over BCR.

To describe the basic algorithm, consider the partial differential equa-

tion,

(s.1) a + =
: ay

on a rectangular domain with the Dirichlet boundary conditions.

If the equations are discretized using a mesh of n + 1 points in the z

direction and rn + 1 points in the y direction we get the system of equations:

(5.2) A_u + Byu = f

in which the matrices A_ and B_ representthe 3-point centraldifference

approximations to the operators _-_=(a(z,y)_¥)) and _(b(z,y)g-_)) respec-

tively.

The ADI algorithm consists of iterating by solving (5.2) alternatively in

the z and y directions as follows:

(5.3) (A=+ pd) = (pal - + /

24

I 2 3 4

2 3 4 1

3 4 1 2

4 1 2 3

FIG. 8. Domain decomposition and assignment of the square into a ,t-processor ring.

(5.4) (B_ + p_A_)u i+_ = (mI - A_)u _+_/2 + f,

where Pi, i = 1, 2, ..., is a sequence of acceleration parameters.

In the following we summarize some of the results described in [15] with

emphasis on complexity. Observe that if the mesh points are ordered by lines

in the z direction, then (5.3) constitutes a set of m independent tridiagonal

systems of size n each. The system (5.4) can also be recast into a set of

n independent tridiagonal systems of size m each, by reordering the grid

points by lines, this time in the y direction. This requires essentially to

transpose the matrix of the n × rn grid points and constitutes the main

difficulty in implementing ADI on parallel architectures. Another difficulty

that has been traditionally associated with ADI is that classical algorithms

for solving tridiagonal systems are sequential in nature.

Consider first the implementation of ADI on a simple ring of processors.

To avoid transposing data in ADI as pointed out above, we consider the

special assignment of the grid points into the ring of proce_ .ors proposed in

[15] and shown in Figure 8 for the case of a 4-processor ring. When iterating

with ADI, the solutions of the systems (5.3) and (5.4) can be performed by a

regular Gaussian elimination algorithm. Observe that all processors will be

performing some work at any given stage of the iteration. Communication

is facilitated by the fact that all neighboring subsquares of the domain are

in neighboring processors and this is true in both the horizontal and vertical

direction. The mapping can be succinctly described by

MAP4: Assign component .¢#,t to node mod[[_] + [_] - 2, P] + 1

Using the same model for estimating execution time as in Section 2.1,

with 7 = 0, a simple complexity analysis shows that the time for implement-

ing such an algorithm on a ring of P processors is [15]

8m_

T(P) = 2(P - 1)/9 + 2(m + n)r + ---f-w.

25

If P is small compared with m and n, the above formula shows that the op-

timal speed-up of P is nearly reached provided the communication constants

15,r are not too big. However, as the number of processors increases the com-

munication time may become too high. In fact for the case rn = n, the mini-

mal time that can be achieved on an arbitrarily large ring is 4(2v/'_+ 2r)m,

see [15] which is linear in m.

The next simple architecture to be considered is that of a two dimen-

sional grid. In [15] it was shown for the case m = n, that mapping the n 2

grid points of the square homographically into a _ x I¢ grid of processors,

and using a substructured Gaussian Elimination [10,19], the total time for

one of the solution steps in ADI is of the form

1l 2 n

To(P) a T + + + o(1),

where a, 5, 0 are constants independent of P. The minimum time for an

arbitrarily large processor grid is of the form 0(n2/3). Multiplying this by

the number of steps which is O (log 2 n) we arrive at an asymptotic complexity
of

Topt,a,.id = O(n _/3 log s n)

compared with O(n z log S n) in the sequential case. Note that the number of

processors to achieve this optimal time is O(n4/a).

We next consider the implementation of ADI on hypercubes. We sim-

plify the exposition by assuming again that m = n. We use the same

mapping as before by embedding the 2-D grid into the hypercube as was

described in Section 2.2. Then, scalar cyclic reduction is employed to solve

the successive tridlagonal systems in the algorithm. Assume that the 2-D

mesh is first subdivided into small (11/,;) × (n/t¢) squares and that the sub-

square in position (i,j) is assigned to processor (i,j) of the grid. Then each

of the solve phases in ADI amounts to solving in each row or column of the

grid n/_; independent tridiagonal systems each of which is split into t¢ equal

parts.

Consider the process on each of the n/i¢ tridiagonal systems separately.

Each of the first log(n/_) steps of cyclic reduction requires only communica-

tion between neighboring processors in which a fixed number of elements is

transmitted to neighbors namely 4 elements from each direction. The total

time for arithmetic operations of the forward and backward sweep is O(n/_)

since it is similar to that of performing the cyclic reduction algorithm on a

tridiagonal system of size n/_ on a single processor. After these log(n/_¢)
first steps are completed, each processor will end up with one equation of a

_× _ tridiagonal system. Cyclic reduction on such a system can be performed

26

in time O(logr) thanks to the fact that the distance between equations i

and i + 2J is constant due to the assignment using Gray codes [13].

The total time for all n/_ systems is of the form O(_ _) + O(-_ logP).
Observe that for the maximum allowable value of P, P = n_ we get a time of

the form O(log P). Therefore, a logarithmic time in n is achievable for each

step of ADI with the hypercube topology. Moreover, the total time over the

O(log 2 n) steps required for convergence would become T_t,h_ = O(log a n)

which does not compare favorably with the O(log 2 n) of the hypercube BCR

described earlier. On the other hand the implementation of ADI is far sim-

pler than the parallel BCR. All that is required is to implement efficient

multiple tridiagonal solvers in the z and y directions. Moreover, ADI is

more general than block cyclic reduction, although the theory for nonsepa-

rable problems does not provide the optimal parameters and the number of

steps may be much higher than what is obtained with separable problems.

6. Conclusions. We have proposed several parallel implementations

of fast algorithms for solving elliptic equations. As was shown in [8] the

block cyclic reduction algorithm using partial fraction expansions leads to a

viable and efficient approach for computers with small numbers of proces-

sors. In this paper we have also considered the case where the number of

processors is large compared with the problem size. One common feature

of all the different variants is the complexity of their implementation. This

problem becomes even more acute when the problem dimension is not care-

fully chosen (e.g. n '= 2 k - 1 for BCR). It is not cleal to us whether much

simpler algorithms should not be preferred even at the expense of sacrificing

some efficiency. The explicit methods described in Section 3 are simpler to

implement but require far too many processors to be of practical use for

problems of reasonable size. The alternative of the ADI techniques consid-

ered in Section 5 constitutes a good compromise between efficiency and ease

of implementation.

Acknowledgement. The authors would like to thank George Cybenko

for his helpful remarks.

The research of the first author was supported by the National Sci-

ence Foundation under Grants No. US NSF-MIP-8410110, US NSF DCR85-

09970, US NSF CCR-8717942 and by AT&T Gram AT&T AFFL67Sameh.

The research of the second author was supported by NASA under USRA
Grant No. NCC 2-387.

REFERENCES

[1] R. E. B&NK &ND D. J. RosE, Marching algorithms for elliptic boundary value prob-

lems. I: the constant coefficient case, SIAM J. Numer. Anal., 14 (October 1977),

27

pp. 792-829.

[2] _, Marching algorithms for elliptic boundary value problems. II: the variable

coefficient case, SIAM J. Numer. Anal., 14 (October 1977), pp. 950-969.
[3] O. BUNEMAN, A compact non-iterative Poisson solver, Tech. Rep. 294, Stanford

University Institute for Plasma Research, Stanford, CvJ2f., 1969.

[4] B. BUZBEE_ G. GOLUB, AND C. NIELSON, On direct methods for solving Poiuon's

equation, SIAM J. Numer. Anal., 7 (December 1970), pp. 627-656.

[5] D. F/$CHER, G. GOLUB, O. HALD, C. LEIVA, AND O. WIDLUND, _ Fo_eier-

Toeplitz methods for separable elliptic problems, Math. Comp., 28 (April 1974),

pp. 349-368.

[6] E. GALLOPOULOS AND Y. SAAD, Parallel elliptic solvers, in Proc. Third SIAM Con-

ference on Parallel Processing for Scientific Computing, G. Rodrigue, ed., SIAM,

December 1987, pp. 51-55.

[7] --, Parallel block cyclic reduction algorithm for the fast solution of elliptic equa-

tions, in Lecture Notes in Computer Science No. 297: Proc. 1987 First InCl.

Conf. on Supercomputing, T. S. Papatheodorou, E. N. I-Ioustis, and C. D. Poly-

chronopoulos, eds., Springer-Verlag, New York, Feb. 1988, pp. 563-575.

[8] --., Parallel block cyclic reduction algorithm for the fast solution of elliptic equa-

tions, Parallel Comput., (to appear).

[9] E. GALLOPOULO5 AND A. H. SAMEH, Solving elliptic equations on the Cedar mul-

tiprocessor,in Aspects of Computation on Asynchronous Parallel Processors,

M. H. Wright, ed.,Elsevier Science Pub. B. V. (North-Holland), 1989, pp. 1-12.

GANNON AND J. W. ROSENDALE, On the impact of communication complexity on

the design of parallel numerical algorithms, IEEE Trans. Comput., C-33 (Decem-

ber 1984), pp. 1180-1194.

HOCKNEY, A fast direct solution of Poisson's equation using Fourier analysis, J.

Assoc. Comput. Mach., 12 (1965), pp. 95-113.
HOCKNEY AND C. JESSHOPE, Parallel Computers, Adam Hilger, 1983.

L. Jom_ssoN, Odd-even cyclic reduction on ensemble architectures and the so-

lution of tridiagonal systems of equations, Tech. Rep. RR-339, Yale University,

Department of Computer Science, October 1984.

L. JOHNSSON AND C. T. Ho, Multiple tridiagonal systems, the alternating direc-

tion methods and boolean cube configured multiprocessors, Tech. Rep. RR-532,

Yale University, Department of Computer Science, 1987.

L. JOHNSSON, Y. SAAD, AND M. H- SCHULTZ, Alternating direction methods on

rnultiprocessors, SIAM J. Sci. Statist. Comput., 8 (September 1987), pp. 686-700.

T. KUNG, New algorithms and lower bounds for the parallel evaluation of certain

rational expressions and recurrences, 3. Assoc. Comput. Mach., 23 (April 1976),

pp. 252-261.

M. REINGOLD, J. NIEVERGELT, AND N. DEO, Combinatorial Algorithms: Theor_

and Practice, Prentlce-Hall, 1977.

H. SAMEtI, S. C. CttEN, AND D. J. KUCK, Parallel Poisson and biharmonic

solvers, Computing, 17 (1976), pp. 219-230.

H. SAMEH AND D. J. KUCK, On stable parallel linear system solvers, J. Assoc.

Comput. Mach., 25 (January 1978), pp. 81-91.

STOER AND R. BURLISCH, Introduction to Numerical Analysis, Springer-Verlag,

New York, 1980.

N. SWAR2TRAUBER, Fast Poissson solvers, in Studies in Numerical Analysis,

G. H. Golub, ed., Mathematical Association of America, 1984, pp. 319-369.

_, A direct method for the discrete solution of separable elliptic equations, SIAM

J. Numer. Anal., 11 (December 1974), pp. 1136-1150.

[10]D.

[11]R.

[1_] a.
[13] s.

[14]s.

[15]s.

[16]H.

[171 E.

[18] h.

[19] A.

t20] J.

[21] P.

28

[23] P. N. SWARZTRAUBER AND R. A. SWEET, Vector and parallel methods for the direct

solution of Poisson's equation, J. Comput. Appl. Math., (To appear).
[24] D. A. SWAYNE, Matrix operations with rational functions, in Proc. "/th Manitoba

Conf. Numerical Mathematicl, Utilitas Mathematics, Winnipeg, Manitoba, 1977,
pp. 581-589.

[25] R. A. SWE_T, A parallel and vector cFclic reduction algorithm, SIAM J. Sci. Statist.

Comput., 9 (July 1988), pp. 761-765.

[26] _, A cltclic reduction algorithm for solving block tridiagonal systems of arbitrary

dimension, SIAM J. Numer. Anal., 14 (September 1977), pp. 707-720.
[27] O. B. WIDLUND, On the use of fast methods for separable finite difference equations

for the solution o/general elliptic problems, in Sparse Matrices and their AppLi-

cations, D. J. Rose and R. A. Willoughby, eds., Plenum Press, 1972, pp. 121-131.

29

