46 research outputs found

    A PTAS for Bounded-Capacity Vehicle Routing in Planar Graphs

    Full text link
    The Capacitated Vehicle Routing problem is to find a minimum-cost set of tours that collectively cover clients in a graph, such that each tour starts and ends at a specified depot and is subject to a capacity bound on the number of clients it can serve. In this paper, we present a polynomial-time approximation scheme (PTAS) for instances in which the input graph is planar and the capacity is bounded. Previously, only a quasipolynomial-time approximation scheme was known for these instances. To obtain this result, we show how to embed planar graphs into bounded-treewidth graphs while preserving, in expectation, the client-to-client distances up to a small additive error proportional to client distances to the depot

    Offline and online variants of the Traveling Salesman Problem

    Get PDF
    In this thesis, we study several well-motivated variants of the Traveling Salesman Problem (TSP). First, we consider makespan minimization for vehicle scheduling problems on trees with release and handling times. 2-approximation algorithms were known for several variants of the single vehicle problem on a path. A 3/2-approximation algorithm was known for the single vehicle problem on a path where there is a fixed starting point and the vehicle must return to the starting point upon completion. Karuno, Nagamochi and Ibaraki give a 2-approximation algorithm for the single vehicle problem on trees. We develop a Polynomial Time Approximation Scheme (PTAS) for the single vehicle scheduling problem on trees which have a constant number of leaves. This PTAS can be easily adapted to accommodate various starting/ending constraints. We then extended this to a PTAS for the multiple vehicle problem where vehicles operate in disjoint subtrees. We also present competitive online algorithms for some single vehicle scheduling problems. Secondly, we study a class of problems called the Online Packet TSP Class (OP-TSP-CLASS). It is based on the online TSP with a packet of requests known and available for scheduling at any given time. We provide a 5/3 lower bound on any online algorithm for problems in OP-TSP-CLASS. We extend this result to the related k-reordering problem for which a 3/2 lower bound was known. We develop a κ+1-competitive algorithm for problems in OP-TSP-CLASS, where a κ-approximation algorithm is known for the offline version of that problem. We use this result to develop an offline m(κ+1)-approximation algorithm for the Precedence-Constrained TSP (PCTSP) by segmenting the n requests into m packets. Its running time is mf(n/m) given a κ-approximation algorithm for the offline version whose running time is f(n)

    Approximation Algorithms for Generalized Path Scheduling

    Get PDF
    Scheduling problems where the machines can be represented as the edges of a network and each job needs to be processed by a sequence of machines that form a path in this network have been the subject of many research articles (e.g. flow shop is the special case where the network as well as the sequence of machines for each job is a simple path). In this paper we consider one such problem, called Generalized Path Scheduling (GPS) problem, which can be defined as follows. Given a set of non-preemptive jobs J and identical machines M ( |J| = n and |M| = m ). The machines are ordered on a path. Each job j = {P_j = {l_j, r_j}, p_j} is defined by its processing time p_j and a sub-path P_j from machine with index l_j to r_j (l_j, r_j ? M, and l_j ? r_j) specifying the order of machines it must go through. We assume each machine has a queue of infinite size where jobs can sit in the queue to resolve conflicts. Two objective functions, makespan and total completion time, are considered. Machines can be identical or unrelated. In the latter case, this problem generalizes the classical Flow shop problem (in which all jobs have to go through all machines from 1 to m in that order). Generalized Path Scheduling has been studied (e.g. see [Ronald Koch et al., 2009; Zachary Friggstad et al., 2019]). In this paper, we present several improved approximation algorithms for both objectives. For the case of number of machines being sub-logarithmic in the number of jobs we present a PTAS for both makespan and total completion time. The PTAS holds even on unrelated machines setting and therefore, generalizes the result of Hall [Leslie A. Hall, 1998] for the classic problem of Flow shop. For the case of identical machines, we present an O((log m)/(log log m))-approximation algorithms for both objectives, which improve the previous best result of [Zachary Friggstad et al., 2019]. We also show that the GPS problem is NP-complete for both makespan and total completion time objectives

    A Tight (1.5+?)-Approximation for Unsplittable Capacitated Vehicle Routing on Trees

    Get PDF
    In the unsplittable capacitated vehicle routing problem (UCVRP) on trees, we are given a rooted tree with edge weights and a subset of vertices of the tree called terminals. Each terminal is associated with a positive demand between 0 and 1. The goal is to find a minimum length collection of tours starting and ending at the root of the tree such that the demand of each terminal is covered by a single tour (i.e., the demand cannot be split), and the total demand of the terminals in each tour does not exceed the capacity of 1. For the special case when all terminals have equal demands, a long line of research culminated in a quasi-polynomial time approximation scheme [Jayaprakash and Salavatipour, TALG 2023] and a polynomial time approximation scheme [Mathieu and Zhou, TALG 2023]. In this work, we study the general case when the terminals have arbitrary demands. Our main contribution is a polynomial time (1.5+?)-approximation algorithm for the UCVRP on trees. This is the first improvement upon the 2-approximation algorithm more than 30 years ago. Our approximation ratio is essentially best possible, since it is NP-hard to approximate the UCVRP on trees to better than a 1.5 factor

    Minimizing the Maximum Flow Time in the Online Food Delivery Problem

    Get PDF
    We study a common delivery problem encountered in nowadays online food-ordering platforms: Customers order dishes online, and the restaurant delivers the food after receiving the order. Specifically, we study a problem where k vehicles of capacity c are serving a set of requests ordering food from one restaurant. After a request arrives, it can be served by a vehicle moving from the restaurant to its delivery location. We are interested in serving all requests while minimizing the maximum flow-time, i.e., the maximum time length a customer waits to receive his/her food after submitting the order. We show that the problem is hard in both offline and online settings even when k = 1 and c = ?: There is a hardness of approximation of ?(n) for the offline problem, and a lower bound of ?(n) on the competitive ratio of any online algorithm, where n is number of points in the metric. We circumvent the strong negative results in two directions. Our main result is an O(1)-competitive online algorithm for the uncapacitated (i.e, c = ?) food delivery problem on tree metrics; we also have negative result showing that the condition c = ? is needed. Then we explore the speed-augmentation model where our online algorithm is allowed to use vehicles with faster speed. We show that a moderate speeding factor leads to a constant competitive ratio, and we prove a tight trade-off between the speeding factor and the competitive ratio

    A Constant Factor Approximation for Capacitated Min-Max Tree Cover

    Get PDF
    Given a graph G = (V,E) with non-negative real edge lengths and an integer parameter k, the (uncapacitated) Min-Max Tree Cover problem seeks to find a set of at most k trees which together span V and each tree is a subgraph of G. The objective is to minimize the maximum length among all the trees. In this paper, we consider a capacitated generalization of the above and give the first constant factor approximation algorithm. In the capacitated version, there is a hard uniform capacity (?) on the number of vertices a tree can cover. Our result extends to the rooted version of the problem, where we are given a set of k root vertices, R and each of the covering trees is required to include a distinct vertex in R as the root. Prior to our work, the only result known was a (2k-1)-approximation algorithm for the special case when the total number of vertices in the graph is k? [Guttmann-Beck and Hassin, J. of Algorithms, 1997]. Our technique circumvents the difficulty of using the minimum spanning tree of the graph as a lower bound, which is standard for the uncapacitated version of the problem [Even et al.,OR Letters 2004] [Khani et al.,Algorithmica 2010]. Instead, we use Steiner trees that cover ? vertices along with an iterative refinement procedure that ensures that the output trees have low cost and the vertices are well distributed among the trees

    A Tight (1.5+ϵ)(1.5+\epsilon)-Approximation for Unsplittable Capacitated Vehicle Routing on Trees

    Full text link
    In the unsplittable capacitated vehicle routing problem (UCVRP) on trees, we are given a rooted tree with edge weights and a subset of vertices of the tree called terminals. Each terminal is associated with a positive demand between 0 and 1. The goal is to find a minimum length collection of tours starting and ending at the root of the tree such that the demand of each terminal is covered by a single tour (i.e., the demand cannot be split), and the total demand of the terminals in each tour does not exceed the capacity of 1. For the special case when all terminals have equal demands, a long line of research culminated in a quasi-polynomial time approximation scheme [Jayaprakash and Salavatipour, SODA 2022] and a polynomial time approximation scheme [Mathieu and Zhou, ICALP 2022]. In this work, we study the general case when the terminals have arbitrary demands. Our main contribution is a polynomial time (1.5+ϵ)(1.5+\epsilon)-approximation algorithm for the UCVRP on trees. This is the first improvement upon the 2-approximation algorithm more than 30 years ago [Labb\'e, Laporte, and Mercure, Operations Research, 1991]. Our approximation ratio is essentially best possible, since it is NP-hard to approximate the UCVRP on trees to better than a 1.5 factor
    corecore