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Abstract
Scheduling problems where the machines can be represented as the edges of a network and each
job needs to be processed by a sequence of machines that form a path in this network have been
the subject of many research articles (e.g. flow shop is the special case where the network as well
as the sequence of machines for each job is a simple path). In this paper we consider one such
problem, called Generalized Path Scheduling (GPS) problem, which can be defined as follows. Given
a set of non-preemptive jobs J and identical machines M ( |J | = n and |M | = m ). The machines
are ordered on a path. Each job j = {Pj = {lj , rj}, pj} is defined by its processing time pj and
a sub-path Pj from machine with index lj to rj (lj , rj ∈ M , and lj ≤ rj) specifying the order of
machines it must go through. We assume each machine has a queue of infinite size where jobs can
sit in the queue to resolve conflicts. Two objective functions, makespan and total completion time,
are considered. Machines can be identical or unrelated. In the latter case, this problem generalizes
the classical Flow shop problem (in which all jobs have to go through all machines from 1 to m in
that order).

Generalized Path Scheduling has been studied (e.g. see [9, 4]). In this paper, we present several
improved approximation algorithms for both objectives. For the case of number of machines being
sub-logarithmic in the number of jobs we present a PTAS for both makespan and total completion
time. The PTAS holds even on unrelated machines setting and therefore, generalizes the result of
Hall [7] for the classic problem of Flow shop. For the case of identical machines, we present an
O( log m

log log m
)-approximation algorithms for both objectives, which improve the previous best result

of [4]. We also show that the GPS problem is NP-complete for both makespan and total completion
time objectives.
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1 Introduction

Scheduling problems are well-studied over the last several decades due to their applications
in various fields (from Operations Research, to Computer Science). One of the most classical
scheduling problem is Job Shop: Given a set J of n jobs and a set M of m machines. Each
job j consists of a sequence of λj operations O1,j , O2,j , . . . , Oλj ,j . The amount of time that
job j takes to complete its operation Oi,j on machine Mi ∈M is denoted as pi,j . The goal of
the problem is to find a feasible schedule that satisfies all constraints, while trying to optimize
some objective function. In a feasible schedule, no machine can process more than one job at
any time and each job can be run on at most one machine at any time. More constraints
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10:2 Approximation Algorithms for Generalized Path Scheduling

can be added depending on specific interests. For example, one can enforce that operations
of a job need to be processed in a specific order (known as precedence constraints), so an
operation cannot be processed until all its preceding operations are finished. The scheduling
problems have drawn much attention because of their wide applications in many day-to-day
situations. As an example, think of the given machines as routers and jobs as messages to be
sent from one router to another through a specified path. A good scheduling algorithm can
be applied here to send all messages efficiently.

In this paper we consider a variant of job-shop that we call Generalized Path Scheduling.
This problem in the most general setting of unrelated machines generalizes Flow shop and it
has been studied by [4, 9] among others.

I Definition 1 (Generalized Path Scheduling). Given a set of non-preemptive jobs J and
identical machines M ( |J | = n and |M | = m ) that form a path (edges representing the
machines), each job j has a processing time pj and a sub-path Pj of machines from machine
lj to rj (lj ≤ rj) specifying the order of machines it must go through. Each machine has a
queue where jobs can wait in before being processed on that machine. We consdier minimizing
makespan (largest completion time) and/or total completion time (also called min-sum).

If we have unrelated machines but all the jobs have to go through all the machines in the
same order then we have the classic Flow shop problem [17]. Authors of [4] introduced a more
general setting in which the network of machines is a general graph (instead of a path) and
each job has a path (sequence of machines) in this graph to go through. Several special cases
of this problem have been studied before (see below). The two objective functions makespan
and total completion time that we consider in this paper have been studied extensively in the
literature. Let Cj be the completion time of job j (the time when j finishes its last operation)
in a given schedule. The makespan of the scehdule is defined as Cmax := max{C1, . . . , Cn},
and the total completion time is defined as

∑n
j=1 Cj . The latter is also referred as the

min-sum objective in this work.
The span of a job j, λj = rj − lj + 1, is the number of machines on the path of j. The

length of job j, Lj = pj ·λj , is the minimum total time that job j needs to be completed. We
say job j is delayed on machine i if the start time of j on i is strictly greater than its arrival
time. The completion time Cj of job j is then equal to its length plus the total amount of
time it has been delayed. Let C be the largest congestion over all machines (the maximum
total running time of jobs that use machine i over all machines) and D be the maximum
length over all jobs. Then clearly, both C and D are lower bounds for the makespan of the
optimal schedule. This trivial lower bound has been used in many earlier works in design of
algorithms and proving lower bounds for various scheduling problems.

1.1 Related work
One of the most general version of scheduling problem is the job shop scheduling with
unrelated machines. The first polynomial time approximation algorithm for this problem is
an O( log2(mλmax)

log log(mλmax) )-approximation (λmax is the maximum span) for the makespan objective,
given by [17]. Later, [6] improves the result by a O(log log(mλmax)) fator, this is also the
best known result for this problem. If the amount of time that every job takes to be processed
on any machine is the same, then we get the packet routing problem when machines are
edges of a graph. Leighton et al. [12, 13] show that there always exist a schedule of length
O(lb), where lb = max{C,D} is the trivial congestion/dilation lower bound for makespan
objective. Later, the authors in [8] present a constructive algorithm that finds a schedule of
length at most 8.84(C +D). However, the algorithms for the unit-processing time case seem
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hard to be adapted to the general processing time case and the approximability of non-unit
processing time for jobs is still open even for special cases where the network of machines
form a simple structure such as a tree or even a path.

Li et al. [14] show that if there is an α-approximation w.r.t. the lower bound lb =
max{C,D} for the makespan objective, then there is a 2eα-approximation algorithm for the
min-sum objective. This provides a framework of converting the makespan objective to the
min-sum objective without affecting the approximation ratio asymptotically. Acyclic job
shop is a special case of the job shop problem, where each job can have at most one operation
on each machine. Feige et al. [3] give an O(log lb log log lb)-approximation for the makespen
objective of this problem. They also show the upper bound is nearly tight by proving the
existence of instances of shortest makespan Ω( lb log lb

log log lb ) even when machines are identical.
The GPS problem considered in this paper is a special case of the acyclic job shop, where
the machines are identical and form a path.

The best known result for the GPS problem is due to [4], they present an
O(min{lognλmax, log pmax})-approximation for (the more general problem of) acyclic job
shop with identical machines, under both the makespan and min-sum objective. However,
many special cases of GPS problem can actually be solved exactly in polynomial time or
have an O(1)-approximation algorithms. For example, if the network of the machines form a
rooted tree and all the job paths have to go through the root of the tree, then the problem
becomes the junction tree problem studied in [4], for which they present a 4-approximation
for makespan and 8e-approximation for min-sum. For the special case of GPS where all jobs
have the same processing time, [10, 1] show that the greedy furthest-to-go gives the optimal
makespan. Conversely, [1] shows shortest-to-go gives optimal min-sum for unit-processing
time case. Moreover, authors of [9] show that furthest-to-go algorithm computes the optimal
makespan on non-nested instances for general processing times; non-nested means span of no
job is completely within span of another. If all jobs need to be processed on all (identical)
machines from left to right, then the problem becomes the proportionate flow shop. It
is straitforward that any fixed priority rule would give optimal solution for the makespan
objective; for the (weighted) min-sum objective, [16] gives an exact algorithm that runs in
O(n2) time. Bi-directional version of the problem, where there are jobs moving from left to
right and right to left , can be dealt with by interleaving the uni-directional algorithms

If m = O(1), then many scheduling problems admit better approximation ratios. For
example, [15] gives a PTAS for the open shop makespan minimization problem, [17] gives a
(2 + ε)-approximation algorithm for job shop, and [7] gives a PTAS for the flow shop. Note
that all the results discussed are based on the fact that m is fixed. Hall [7] introduces the
notion of outline scheme, which is used in a couple of our algorithms in a fundamental way.

The scheduling problems where networks of machines have other specific structures
have been the subjects of many researches. For example, when the machines form a
grid, [11] shows that by applying the furthest-to-go algorithm vertically and horizontally
one can get a 3-approximation for the makespan for unit processing time case. Same
approximation ratio applies to the rooted tree network, where jobs can either go vertically
upward, vertically downward, or upward-downward. When the network of machines is a star
and jobs start/end at leaves, [4] gives a 1.796-approximation for the min-sum objective, and
a 7.279-approximation for the general processing time case.

1.2 Our Results
We study GPS with both makespan and min-sum objectives and present several approximation
algorithms and hardness results.

ISAAC 2020



10:4 Approximation Algorithms for Generalized Path Scheduling

I Theorem 2. There is a PTAS for GPS with makespan objective when m = O( log1/6 n
log logn ).

This result actually holds even on unrelated machines setting and therefore, generalizes the
result of Hall [7] for the classical problem of flow shop. We use this result as a subroutine to
prove the following for general values of m:

I Theorem 3. For GPS with makespan objective there is an O( logm
log logm )-approximation.

This improves the O(min{lognλmax, log pmax})-approximation of [4]. We obtain similar
results for the min-sum objective. First we introduce a variant of the GPS problem, called
the segmented GPS problem and we give a PTAS for it for when m = O(log1/6 n/ log logn).
We then use this to prove the following:

I Theorem 4. There is a PTAS for GPS with min-sum objective when m = O( log1/6 n
log logn ).

I Theorem 5. For GPS with min-sum objective there is an O( logm
log logm )-approximation.

This improves the result of [4]. Finally, we show GPS is NP-complete under both objectives.

I Theorem 6. The Generalized Path Scheduling problem (under both makespan and
min-sum objective) is NP-complete.

Proofs of Theorems 5 and 6, and most of Theorem 4 appear in the full version of this paper.

2 A PTAS for the makespan objective when m is sub-logarithmic

In this subsection we prove Theorem 2. For this theorem, we assume we have unrelated
machine setting (while our other results work with identical machine setting), hence Theorem
2 generalize the result of Hall [7] for the classic flow shop problem. The algorithm is built
based on outline scheme and linear program. Similar techniques have been used in [7, 15]
to design PTAS for the flow shop and open shop problems when m = O(1). The general
framework is to break the jobs (based on their processing times) into large and small jobs. It
can be shown that the number of large jobs cannot be too large and we can guess (enumerate)
their schedule on the machines with good accuracy. For small jobs we find a good schedule
using a Linear Programming (LP) relaxation and rounding with small error.

2.1 The outline scheme
Since we are assuming we have unrelated machines, we use pij to denote processing time of
job j on machine i.

I Definition 7. An outline scheme partitions all feasible solutions into classes (outlines),
such that solutions that get grouped together share some common characteristics.

The outline scheme should suggest a natural way to obtain a good schedule. Our goal is
to show that: 1© The number of outlines is polynomially bounded. 2© For each outline, we
can generate a schedule such that the makespan of the schedule is approximately (1 + ε) as
good as the optimal schedule in this outline. Since the optimal schedule must be contained
in one of those outlines, by enumerating all of them, we are guaranteed to find a nearly
good schedule. Suppose we have an upper bound T on the length of the optimal schedule
T ∗. Such an upper bound can be obtained by using a naive algorithm that simply processes
operations starting from M1 and move to the next machine if all operations on the current
machine are finished. Therefore T ≤ mT ∗ is always a valid upper bound. Then we partition
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∑
t1,t2,...,tλj

xj,(t1,t2,...,tλj ) = 1, j = 1, . . . , n′,

∑
{j|M1∈Pj}

p1jxj,(...,k,... ) ≤ αk1 , k = 1, . . . , κ,

∑
{j|M2∈Pj}

p2jxj,(...,k,... ) ≤ αk2 , k = 1, . . . , κ,

. . .∑
{j|Mm∈Pj}

pmjxj,(...,k,... ) ≤ αkm, k = 1, . . . , κ,

x ≥ 0 .

Figure 1 The LP to assign small jobs. Recall that pij is the processing time of job j on machine
i, and Pj is the path of machines for job j.

the time line from 0 to T into κ intervals of size δ = T
κ , and we refer to interval [(k− 1)δ, kδ)

as the k-th δ-interval, 1 ≤ k ≤ κ. Values of δ and κ are to be determined. Also, we classify
the jobs into big and small jobs. The big jobs are those with maximum processing time (over
their span of machines) at least γ, and small jobs are those with maximum processing time
< γ. The value of γ will be specified later. Then we are ready to formally define the outline
scheme. Each outline consists of:

The δ-interval in which each operation of a big job begins.
For each machine and δ-interval, the approximate (rounded up to the nearest multiple of
γ) amount of time allocated to the operations of small jobs that begin in that δ-interval.

Therefore, the outline specifies which δ-interval each operation of each big job should begin
in, and how much small-jobs-time is allocated for each δ-interval on each machine. The
reason that we label jobs as big and small is because we cannot afford to guess too much
detail on every job. Instead, for the small jobs, whose order of scheduling do not impact the
overall makespan significantly, we can schedule them approximately by using an LP. How
many outlines do we need to guess? Suppose the number of big jobs is L, then the number
of possible assignments of big-job operations to δ-intervals is at most κmL. And observe that
the number of possible assignments of small-jobs-time to intervals is at most ( δγ + 1)mκ.

Hence, the number of outlines is bounded by: κmL(δ/γ + 1)mκ. We will choose the
parameters in such a way that the number of possible outlines is bounded by a polynomial.
So we can enumerate over all possible outlines (each of which tells us how the operations of
the big jobs are to be ordered and roughly how much time we are to allocate to small jobs
in each interval). When we find a solution we allow each interval to be expanded slightly;
i.e. the time we spend to perform the operations of the jobs for each interval is slightly
bigger than what the interval size is. This small over usage over all intervals results in small
increase in the total makespan of the final schedule.

For a given outline, we introduce a Linear Program to determine the assignment of
small-job operations to δ-intervals. Let J1, J2, . . . , Jn′ be the small jobs, and job Ji is to be
processed on machines Mi1 , . . . ,Miλi

(recall λi ≤ m is the span of job Ji) in the specified
order. Then we construct an LP with the following variables:

xj,(t1,t2,...,tλj ), j = 1, . . . , n′, 1 ≤ t1 ≤ t2 ≤ · · · ≤ tλj ≤ κ,

ISAAC 2020



10:6 Approximation Algorithms for Generalized Path Scheduling

where xj,(t1,t2,...,tλj ) = 1 means that job Jj is assigned to δ-interval t1 on machine Mj1 , t2
on machine Mj2 , and so on. We use αk1 , αk2 , . . . , αkm to denote the amount of time (for small
jobs) assigned (by outline) to the k-th δ-interval on machines M1,M2, . . . ,Mm, respectively.
We want to find a basic feasible solution against the constraints in Fig. 1. The first and last
constraints ensure that the operations of all small jobs are assigned to some δ-intervals, and
all constraints in the middle ensure that the small-job-time in the solution in each interval
on each machine is no more than the value described by the outline. Observe that the LP
has n′ +mκ constraints and at most n′κm variables. A basic feasible solution (bfs) of this
LP is guaranteed to have at most n′ +mκ positive variables. Also, each job must have at
least one positive variable associated with it, this is because of the first constraint of the LP.
Thus, a job that receives fractional assignment must have at least one more positive variable.
Combining with the fact that the bfs has at most n′ +mκ positive variables, we know that
such a solution can have at most mκ jobs that actually receive fractional assignments and
the remaining small jobs will have unique integral assignment to δ-intervals. Let’s just ignore
the small jobs that received fractional assignments. They will be appended to the end of the
schedule with a cost of at most (mκ+m− 1)γ. For the remaining jobs (big jobs + small
jobs with integral assignments), we describe a two-step algorithm to construct a schedule
based on their assignments to δ-intervals.

In the first step, we ‘greedily’ schedule each machine independently. For a machine Mi,
we order the operations assigned to each δ-interval such that the longest operation is the
last (for analysis purposes). More precisely, let I be the indices k such that there are some
operations assigned to the kth δ-interval in the first step schedule. Then we schedule the
operations in the order of their indices in I where operations in kth δ-interval start at time
σk and end at time τk, where σk = max{(k − 1)(δ + γ),max1≤h≤k−1,h∈I{τh}}, τk becomes
well-defined once we defined σk. Another way to view the first step schedule is that: for
machine Mi, all operations assigned in the first δ-interval get scheduled first as a block
with no idle time in between, followed by the operations in the second δ-interval, and so on.
Within each block, we schedule the largest operation the last. Therefore, jobs in each block
do not overlap, and they are not scheduled before the specified starting time.

Let Σ be the optimal schedule in a fixed outline, and let T̃ be its length. We focus on
a specific machine Mi. Let sk and (tk) denote the start time and (end time) of the first
and (last) operations during the kth δ-interval in Σ. Then using a simple induction (proof
appears in the full version of this paper) we can show:

I Lemma 8. For all k, σk ≤ sk + (k − 1)γ, and τk < tk + kγ.

I Corollary 9. The makespan of the first step schedule is at most T̃ + κγ.

However, notice that the first-step schedule is very likely an infeasible schedule, because we
only focus on each machine individually, so the operations of a job might get processed on
different machines at the same time (overlaps). The second step of the algorithm is to remove
the potential overlaps of operations by delaying the operations on Mi by 2(i− 1)(δ+ γ) units
of time, for i = 2, . . . ,m. We will eventually show that the schedule after injecting delays on
every machine will be feasible, but before that we need to prove the following lemma first:

I Lemma 10. Consider operations inside an arbitrary kth δ-interval on a arbitrary machine
in the first step schedule. (1) Each large operation starts processing during [(k − 1)(δ +
γ), k(δ + γ)). (2) And each small operation starts and finishes processing during [(k − 1)(δ +
γ), k(δ + γ) + γ).
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Proof. It is clear that all these operations start at or after (k − 1)(δ + γ). Then it remains
to show that they don’t start (end) too late. We consider the following two cases. First,
suppose there exists a large operation. Observe that all large operations are scheduled in
the same δ-interval in Σ (recall Σ is the optimal schedule in the outline) as well. Let Oj
be the operation that was scheduled the last in our algorithm (it is the largest), then it
suffices to show Oj starts before time k(δ + γ)). From Lemma 8, we know τk < tk + kγ,
also there is some operation Oj′(pj ≥ pj′) is scheduled the last and completes at tk in Σ.
Also, Oj′ starts before time kδ. Therefore, the last operation of this interval starts at time
τk − pj < tk + kγ − pj′ < k(δ + γ). The other case is when all operations are small (< γ). In
this case , tk < kδ + γ, so by Lemma 8: τk < tk + kγ < k(δ + γ) + γ. J

I Lemma 11. After delaying the operations on Mi by 2(i− 1)(δ+ γ) units, for i = 2, . . . ,m,
the resulting schedule is feasible.

Proof. The schedule we obtained from first step is conflict-free in each interval, but it is
still likely infeasible because there might be a job starting on a machine before its previous
operation finishes on the previous machine (the job starts before it becomes available). In
step two, we delay operations in M2 by 2(δ + γ), jobs in M3 by 4(δ + γ), and so on. So
the makespan of the schedule increases by at most 2(m− 1)(δ + γ). And we show that the
schedule after injecting delays is feasible. Consider an arbitrary job j, and two consecutive
operations of j on machines Mi and Mi+1, call them Oj,i, and Oj,i+1. It suffices to prove
that these two operations are scheduled in order and do not overlap.

First consider the case when j is a big job. Suppose Oj,i is assigned to the kth δ-interval
and Oj,i+1 is assigned to the lth δ-interval (l ≥ k). By Lemma 10, the difference of their
starting time is at least (l− k− 1)(δ+ γ), i.e. in the worst case Oj,i+1 starts on Mi+1 (δ+ γ)
units before Oj,i starts on Mi in the first step schedule. Note that operations on Mi+1 are
delayed by 2(δ + γ) more units relative to operations on Mi in step two, so once the delays
have been injected, Oj,i and Oj,i+1 will be scheduled in order and do not overlap.

Another case is when j is a small job, and we still use Oj,i and Oj,i+1 to denote the
two consecutive operations of j. And suppose Oj,i is assigned to kth δ-interval and Oj,i+1
is assigned to the lth δ-interval (l ≥ k). Again by Lemma 10, after the delays have been
injected, Oj,i will complete before (k + 2(i− 1))(δ + γ) + γ, and Oj,i+1 will start at or after
time (2i+ k− 1)(δ+ γ). Since (2i+ k− 1)(δ+ γ) > (k+ 2(i− 1))(δ+ γ) + γ, Oj,i and Oj,i+1
will be scheduled in order and do not overlap. J

Combining previous lemmas, we obtain the following theorem:

I Theorem 12. For a given δ, and γ and an outline with an associated optimal schedule of
length T̃ , we can generate a feasible schedule of length:

T̃ + κγ + 2(m− 1)(γ + δ) + (mκ+m− 1)γ

Proof. The additive κγ follows from Corollary 9, second term 2(m− 1)(γ + δ) follows from
Lemma 11, and (mκ+m− 1)γ comes from the fractional small jobs that get appended at
the end. J

2.1.1 The PTAS
In this section, we show that the algorithm that we obtain from previous section is a PTAS
for the GPS makespan minimization problem. Let δ = Tε

u , and γ = Tε2

uv . The value of u and
v will be specified later. So the additive error from Theorem 12 becomes:

ISAAC 2020
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Error = κγ + 2(m− 1)(γ + δ) + (mκ+m− 1)γ

= u

ε
· Tε

2

uv
+ 2(m− 1)

(
Tε(v + ε)

uv

)
+
(mu
ε

+m− 1
) Tε2
uv

=
[

3mε+ 2mv + (m+ 1)u− 3ε− 2v
uv

]
εT

Moreover, recall that T is the upper bound of T̃ , suppose T = βT̃ , such β is at most m.
Let L be the number of large jobs, then L is at most mT̃

γ = muv
βε2 , therefore the total possible

number of assignments of large operations to δ-intervals is at most κmL. The number of
small-job-time that we assign to each δ-interval is δ

γ + 1 = v
ε + 1 (because we round it up to

multiple of γ), so the number of possible assignments of small-job-time each machine during
each interval is at most ( vε + 1)mκ. Therefore, the total number of outlines is at most:(u

ε

)m2uv/ε2 (v
ε

+ 1
)mu/ε

Assuming u = 4(m− 1)β and v = 2(m+ 1)β + ( 3
2 )ε, then the additive error becomes:

Error =
[

3mε+ 4m(m+ 1)β + 3mε+ 4(m+ 1)(m− 1)β − 3ε− 4(m+ 1)β − 3ε
8(m+ 1)(m− 1)β2 + 6(m− 1)βε

]
· εβT̃

=
[

8(m+ 1)(m− 1)β + 6(m− 1)ε
8(m+ 1)(m− 1)β2 + 6(m− 1)εβ

]
· εβT̃ = εT̃

Therefore, we can guarantee the additive error is at most εT̃ .

Runtime. The runtime is given by the number of outlines that we need to consider multiplied
by the time needed to solve an individual outline. First note that the number of outlines is
(m/ε)O(m6/ε2). For each outline, we need to find a basic feasible solution for the associated
LP; recall that the LP has n+ mu

ε constraints and at most num

εm variables. By using the LP
solver from [20], we can solve the LP in time O(N3.5), where N is the input size. Therefore
the total runtime is O(N3.5(m/ε)O(m6/ε2)). Suppose m = O( log1/6 n

log logn ), the total runtime
becomes:

O(N3.5m(m6)) = O

N3.5

(
log1/6 n

log logn

)logn/ log6 logn
 = O(N3.5n).

Therefore, the total runtime is polynomial, which completes the proof of Theorem 2.

3 An O( log m
log log m

)-approximation for makespan objective

In this Section we prove Theorem 3. Consider the special case of the GPS problem (with
identical machines) where there are h machines, called terminal machines, such that any
job j has to start/end at one of the h machines. We show how an ρ-approximation for this
special case can be used to derive an O(ρ loghm)-approximation for general case of GPS.

For a given instance of GPS, we select h machines (including the first and last machines)
that partition the path of machines into h− 1 segments of equal sizes (or sizes that differ by
at most 1), call these h machines level 1. For all the jobs whose span crosses these h machines
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(i.e. uses machines in more than two segments), we group them into group G1. So all the
jobs in J −G1 have their span entirely within one segment and those that fall into different
segments, can be scheduled independently (as their paths do not overlap). For each segment,
we again select h machines (to partition that segment into equal segments) and all the jobs
in J −G1 that pass any one of the second level terminal machines (h2 many) form group G2.
And we do this recursively. Eventually, we have partitioned the jobs into O(loghm) groups.
Also, by losing a constant factor, we can assume that jobs among a group have to start/finish
at one of the terminal machines.1 Suppose we have a ρ-approximation for a single group of
jobs, then if we schedule all groups sequentially, we obtain an O(ρ loghm)-approximation for
the general case. We will show below that we can set h = O(log1/6m/ log logm) and will
have ρ = O(1).

3.1 Instances with h terminal machines
In this section, we show how one can extend the idea of the PTAS in Section 2 to solve the
instances with h terminal machines. Similarly, suppose we have an upper bound T on the
makespan of the optimal schedule, and we partition the time line from 0 to T into κ intervals
of size δ = T

κ . The definition of a job being big or small is slightly different. Suppose the
h terminal machines partition the machines into h− 1 equal-size segments (except the last
one). A job j is big if the time it takes to travel a segment is ≥ γ (i,e, pj× segment size

≥ γ). Otherwise, we say the job is small. Each outline should specify:
The δ interval in which a big job starts running on a terminal machine.
For each terminal machine and δ-interval, how much time is allocated to small jobs that
begins in that δ-interval, rounded up to the nearest multiple of γ.

Suppose the number of big jobs is L, the number of guesses of the starting time interval
of all big jobs is at most κhL; also, the number of possible assignments of small-job-time to
δ-intervals is at most (δ/γ + 1)hκ. So the number of outlines is at most: khL(δ/γ + 1)hκ. For
the small jobs, we again construct an LP as in Section 2 and find a basic feasible solution of
it. Then we have at most hκ jobs that actually receive fractional assignments, we can ignore
them for now and append them at the end of the schedule with a cost at most (hκ+ h− 1)γ.

For all big jobs and small jobs with integral assignments, we schedule them according
to their assignments to δ-intervals in two steps. In the first step, we schedule each segment
independently. For a fixed segment, let Mi be the first machine (a terminal machine) of
this segment. We order the jobs assigned to each δ-interval according to their processing
times and send them based on faster first. Let σk be the time when the first job in the kth
δ-interval begins on the first machine of the segment, and let τk be the time when the last
job in the kth δ-interval finishes on the last machine of the segment.

Let Σ be the optimal schedule in the outline that we are focusing on, say the makespan
of Σ is T̃ . Similarly, we define sk and (tk) to be the start time (end time) of the first (last)
job during the kth δ-interval of Σ on the same segment. Then we show the following (proof
appears in the full version of this paper)

I Lemma 13. For all k, σk ≤ sk + (k − 1)δ, and τk < tk + kγ.

1 This is because for instances where there is a machine that is used by all jobs it is a special case of the
junction tree problem studied in [4]. Therefore we can use their two-stage algorithm and in ≤ 2OPT
time send all the jobs to their first terminal machines, and once all the jobs reach their last terminal
machines on their paths, spend another ≤ 2OPT time to deliver them to their final destinations.
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Then we can conclude the makespan of the schedule obtained from the first step is at most
T̃ + κγ. However, this schedule is likely to be infeasible because we schedule each segment
independently without caring about their consistency. The second step is to inject delays to
jobs so that the jobs in the resulting schedule are processed in order. We delay operations on
the second terminal machine by 2(δ + γ), delay operations on the third terminal machine by
4(δ + γ), and so on. So eventually, if we consider two adjacent terminal machines, operations
on the later one are delayed by 2(δ+ γ) units relative to the previous terminal machine. And
we need to show:

I Lemma 14. After delaying the operations on the ith terminal machineMhi by 2(i−1)(δ+γ)
units of time, for i = 2, . . . , h. The resulting schedule is feasible.

Proof. Consider an arbitrary job j and its operations traveling two adjacent terminal
machines Mhi and Mhi+1 . Observe that all operations of job j in the segment starting with
machine Mhi must be scheduled in order because we schedule them based on faster first. So
it remains to show that after injecting the delays, j doesn’t start on Mhi+1 before all previous
operations are finished. The rest of proof is analogous to the proof of Lemma 11. J

Therefore, the final schedule is of length at most T̃ +κγ+ 2(h− 1)(δ+ γ) + (hκ+h− 1)γ.
For sufficiently small δ = O(Tεh ) and γ = O(Tε

2

h2 ), the additive error becomes εT̃ . Moreover,
the total number of outlines is O(h(h6)). Suppose h is sub-logarithmic, say h = log1/6 m

log logm ,
then runtime becomes polynomially bounded. This implies a O(ρ loghm) = O( logm

log logm )-
approximation for the general problem, which completes the proof of Theorem 3.

4 Approximations for min-sum objective

In this section, we study the approximability of the min-sum objective and prove Theorem
4. Proof of Theorem 5 uses Theorem 4 and appears in the full version of this paper. The
ideas of designing approximation algorithms for the min-sum objective using algorithms for
the min-max (makespan) variants have been used extensively for various problems such as
scheduling and vehicle routing problems (to name a few see e.g. [2, 14, 18, 4]). Here we
borrow ideas from [18], which designs a PTAS for minimum-latency traveling repairman
problem on Euclidean metrics by reducing it to a variant of min-max version of it. This
technique is used to design algorithms for many other problems, see [5, 19] for an example.
First we introduce a variant of GPS called segmented GPS and present a PTAS for it when
m is sub-logarithmic using ideas of Theorem 2. Then in Section 4.1, we use it as a subroutine
to design a PTAS for the min-sum objective GPS problem for sub-logarithmic m. Finally, in
Section 4.2, we present an O( logm

log logm )-approximation for min-sum GPS with general m.

4.1 A PTAS for Min-Sum GPS when m is sub-logarithmic
In this section we prove Theorem 4 (all missing proofs appear in the full version of this
paper). In order to do so we first define an interesting variant of the GPS problem called the
segmented GPS as follows.

I Definition 15 (segmented GPS). An instance of segmented GPS is given by a set of m
identical machines that form a path, and also a set of n jobs each needs to be processed
on a sub-path. Also, for some constant π, given bounds B1 ≤ B2 ≤ · · · ≤ Bπ such that
Bi/Bi−1 = η where η is a constant, and given numbers n1 ≤ n2 ≤ · · · ≤ nπ = n. A feasible
solution is a schedule such that at least ni jobs are finished within the first Bi units of time
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for all i ∈ {1, . . . , π}, and the length of the schedule is at most Bπ. We say an algorithm
gives an α-approximation if for any feasible instance it finds a schedule that finishes at least
ni jobs within αBi units of times, for all 1 ≤ i ≤ π.

We can prove the following similar to Theorem 2.

I Theorem 16. There is a PTAS for segmented GPS when m = O( log1/6 n
log logn ).

The algorithm adapts the idea of outline scheme. Intuitively, we again partition the time
line from 0 to Bπ into polynomially many δ-intervals, and we use the notion of big and small
to classify jobs so that we can afford to fully guess the assignment of big jobs to δ-intervals.
For small jobs, we guess approximately the amount of time that is allocated for them on
each δ-interval and each machine, and we then assign small jobs by an LP.

However, we define δ w.r.t. B1 instead of Bπ. This gives us better precision so that the
additive error at the end depends on B1, so is relatively small. Also, at the same time, the
number of δ intervals doesn’t blow up, the number is at most ηπ+1 (which is a constant since
both η, π are constants) times what we used to have. Moreover, for the same reason, we
define γ w.r.t. B1. The number of large jobs L is also ηπ+1 (which is a constant) times what
we used to have.

More precisely, let δ = B1ε
u and γ = B1ε

2

uv , as before, u = O(m) and v = O(m) are
functions of m to be specified later. The number of δ-intervals is κ ≤ ηπ+1B1

δ = uηπ+1

ε . An
outline specifies the δ-interval in which an operation of a big jobs begins in, and amount
of time that is allocated to small job in each interval on each machine, rounded to nearest
multiple of γ. Therefore, the total number of outlines is κmL( δγ + 1)mκ = O(m(m6)), which
is polynomially bounded as m is sub-logarithmic.

Assume we know the assignment of big jobs. As before, we process the operations assigned
to each δ-intervals s.t. the longest operation is the last. Then, for each bound Bi, we know
the number of large jobs nli that are finished before Bi. Therefore, when we assign small
jobs, we modify the LP in Figure. 1 by adding π extra constraints to ensure that x values
that fall in the first Bi units of time is at least nsi = ni − nli (see Figure. 2 for the full LP).

Such LP has n′ +mκ+ π constraints and at most n′κm variables (recall n′ is the number
of small jobs). A basic feasible solution of this LP is guaranteed to have at most mκ+π small
jobs that actually receive fractional assignments and the remaining small jobs will have unique
integral assignment to δ-intervals. We can simply ignore the fractional small jobs for now,
because we can append them all at the end of B1 with a cost of at most (mκ+ π +m− 1)γ
(which is at most εB1, based on the discussion in Section 2). Call this schedule the first-step
schedule, then it finishes at least ni jobs before time Bi, for i = 1, . . . , π, as wanted. But it
may not be feasible. In order to turn it into a feasible schedule, we need to inject delays to
machines.

I Lemma 17. After delaying the operations on machine Mi by 2(i − 1)(δ + γ) units, for
i = 2, . . . ,m. The resulting schedule becomes feasible. And the delays only stretch the schedule
by a factor of (1 + ε).

Proof. The proof is analogous to the proof of Lemma 8 and Theorem 12. J

Theorem 16 follows immediately from the above discussion. This theorem combined with
the following implies Theorem 4:

I Theorem 18. If there is a polynomial time α-approximation algorithm for the segmented
GPS problem, then there is a polynomial time (1 + ε)α-approximation algorithm for the GPS
min-sum minimization problem.
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∑
t1,t2,...,tλj

xj,(t1,t2,...,tλj ) = 1, j = 1, . . . , n′,

∑
{j|M1∈Pj}

pjxj,(...,k,... ) ≤ αk1 , k = 1, . . . , κ,

∑
{j|M2∈Pj}

pjxj,(...,k,... ) ≤ αk2 , k = 1, . . . , κ,

... ∑
{j|Mm∈Pj}

pjxj,(...,k,... ) ≤ αkm, k = 1, . . . , κ,

∑
{j|tλj ·δ≤Bi}

xj,(...,tλj ) ≥ nsi , i = 1, . . . , π,

x ≥ 0.

Figure 2 the modified LP. π new constraints are added to ensure that at least ns
i = ni−nl

i small
jobs are finished before time Bi.

Proof of this theorem is built upon ideas of [18] for minimum latency traveling repairman
problem on Euclidean metrics. With a (1 + ε)-factor loss, we may assume that the makespan
of the optimal schedule is polynomially bounded in m,n. 2 The reduction is as follows.
Consider the time points t1, t2, . . . , tΓ, where t1 = 1 and ti/ti−1 = (1 + ε)π, for some constant
π that only depends on ε (π = O(1/ε2)), and we can assume Γ = O(log(mn)). The part of
schedule between ti and ti+1 is called the ith subschedule. We call a schedule is well-structured
if each subschedule processes a subset of jobs completely. That is, if a job j starts processing
at or after time ti, it has to be finished on all its span before ti+1. We first show that we can
reduce the solution space to only the well-structured schedules by losing an ε-factor. This
allows us to deal with each subschedule independently. Moreover, the time frame between ti
and ti+1 can be further partitioned into π sub-intervals such that the ratio of the end time
and start time of each sub-interval is (1 + ε). Therefore, each subschedule can be viewed as
an instance of the segmented GPS problem. However, we cannot afford to guess the subset
of jobs to be processed on every subschedule, but we show that, for large enough π, in the
ith subschedule we can simply re-do all the jobs that have been processed in the previous
subschedules. As a result, we don’t need to know the set of jobs to be processed on each
subschedule, instead, we use Dynamic Programming to enumerate the number of job to be
processed, which can be done in polynomial time. The first step is the following lemma
(proof appears in the full version of this paper).

I Lemma 19. There is a (1 + ε)-approximate well-structured schedule OPT ′.

So using Lemma 19 we can focus on well-struuctured solutions. The proof of this
lemma shows that solution OPT ′ is 1© well-structured; 2© each subschedule processes all
jobs that appear in previous subschedules. Therefore, let Dj be the completion time of

2 This is a fairly standard trick. If pmax, pmin are the largest and smallest processing times (respectively)
one can assume that pmin ≥ εpmax/(mn), otherwise all jobs smaller than εpmax/(mn) can be removed,
then they can be added to any schedule of the rest of the jobs right before a job of size pmax and this
will increase the total completion time of the schedule by at most a 1 + ε factor. With this assumption
we can scale processing times so that pmin = 1 and hence pmax ≤ mn/ε.
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jth job on the first subschedule that processes at least j jobs in OPT ′, we know that∑n
j=1Dj =

∑
j∈J C

′
j ≤ (1 + ε)opt. Therefore, in order to find such an OPT ′, we can search

for a solution among all schedules satisfying 1© and 2© that minimizes
∑n
j=1Dj . We show

this can be done by a DP that runs in polynomial time if we have an algorithm for the
following subproblem.

I Definition 20 (The subproblem). An instance of the subproblem is given by i ∈ {1, . . . ,Γ}
and integers n′ ≤ n′′ ∈ {0, 1, . . . , n}. A solution is a schedule that starts at time ti and
finishes before time ti+1 that processes exactly n′′ jobs. The goal is to find a schedule that
minimizes the total completion time of jobs n′+1, . . . , n′′. For any feasible instance (i, n′, n′′),
let Subi(n′, n′′) denote its optimal value.

We say an algorithm is (α, β)-approximation for the subproblem if for any feasible instance
(i, n′, n′′), it finds a schedule that starts at time αti and finishes before time αti+1, and the
total completion time of jobs n′ + 1, . . . , n′′ is at most αβSubi(n′, n′′).

I Lemma 21. If there is an (α, β)-approximation for the subproblem, then there is an
αβ(1 + ε) approximation for the GPS min-sum minimization problem.

I Lemma 22. If there is an α-approximation for the segmented GPS problem, then there is
an (α, 1 + ε)-approximation for the subproblem.

Theorem 18 follows from Lemmas 19, 21, and 22. Combining with the (1 + ε)-
approximation for the segmented GPS problem from Theorem 16, we obtain a PTAS
for the GPS min-sum minimization problem and hence prove Theorem 4. The number of
subproblems that we need to consider is O(Γn2) = O(n2 log(mn)), and for each subproblem,
we enumerate O(nπ) = O(n1/ε2) instances of segmented GPS.

4.2 An O( log m
log log m

)-approximation for Min-sum GPS
As mentioned earlier, the framework of using a min-max solver as a blackbox to approximate
a min-sum objective has been used in the past extensively. To apply that here we first define
the following variant of the problem:

I Definition 23 (Throughput Maximization Given Bound B). Given an instance of GPS and
a bound B, what is the maximum number of jobs q that can be finished before this bound?
An α-approximation for this problem is an algorithm that finishes q jobs within time αB.

For the ease of notation, we denote this problem as problem A. Then

I Lemma 24. If there is an α-approximation for problem A, then there is an O(α)-
approximation for the min-sum objective.

Proof. Given a black box that can approximate problem A within factor α, we can obtain an
O(α)-approximation for the min-sum objective as follows. Let Sj be the set of jobs that finish
between time 2j and 2j+1 in the optimal schedule (regarding min-sum), and let nj = |Sj |.
Therefore, by invoking the solver for problem A, for each j, we can find a maximum set of
jobs Qj with size qj that can be scheduled within time α2j+1.

Our solution to the min-sum objective is the following: for j = 1, 2 . . . , schedule the
jobs in Qj as suggested by the solver of problem A. Note that a job might be scheduled
multiple times in different Qj ’s, the completion time of a job is the first time when it is
completely scheduled. Consider the ith job that finishes in our schedule, say i ∈ Sj . Then
the completion time of ith job in the optimal schedule is at least 2j . Consider the set of jobs
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Qj and note the qj ≥ i. Therefore the completion time of the ith job in our schedule is at
most α

∑j+1
k=1 2k ≤ α2j+2. That is, the average completion time of our schedule is at most

4α times the value of the optimal solution. This completes the proof. J

So it is enough to get an O( logm
log logm )-approximation for problem A (for general m). The

algorithm is similar to the one in Section 3.1, so we only provide a sketch here. First, we
select h = O( log1/6 m

log logm ) terminal machines that partition the machines into h− 1 equal size
segments. Group the jobs that cross the terminal machines together and do it recursively,
we obtain ∆ = O(loghm) = O( logm

log logm ) classes of jobs. Let OPT be an optimal schedule
that completes q = q1 + · · · + q∆ jobs before given bound B, where q is the maximum
possible jobs that can be finished before time B and qi is the number of jobs from class
i. Consider the instance of problem A on a single class of jobs. Similarly we consider the
segment between two terminal machines as the role of a single machine and define δ and
γ accordingly. Then each instance can be viewed as a special case of the segmented GPS
problem when π = 1, so the PTAS for the segmented GPS problem can be applied here.
That is, given bound B and let q∗i be the maximum number of jobs that can be finished
before B if we only consider jobs in class i, we have an algorithm that finishes q∗i jobs before
time (1 + ε)B. Note that q∗i ≥ qi. Therefore, if we apply the PTAS on every class of jobs to
obtain the q∗i many jobs from each class i and sequentially glue them together, then we get a
schedule that finishes q∗1 + · · ·+ q∗∆ ≥ q1 + · · ·+ q∆ = q jobs before time (1 + ε)∆B, which is
a ∆ = O( logm

log logm )-approximation for problem A. Combining with the result from Lemma
24, we get an O( logm

log logm )-approximation for min-sum objective (for general m).

5 Conclusion

We have proposed two O( logm
log logm )-approximation algorithms for the GPS problem under the

makespan and min-sum objectives, and a PTAS for when m is sub-logarithmic. The problem
of getting an O(1)-approximation algorithm for the GPS is still open for both objectives. The
furthest-to-go algorithm seems plausible as it gives the optimal solution for the non-nested
instances [9] and we do not know any example showing that the congestion/dilation lower
bound is violated by more than a small constant factor by the furthest-to-go algorithm. It
is also worth pointing out that, for the makespan objective, if one can show every fixed
priority gives O(1)-approximation for instances in which all jobs have the same end machine,
then furthest-to-go gives O(1)-approximation for GPS. This is because for any machine Mi

in a GPS instance, if Ji is the set of jobs that use Mi, then none of the jobs in Ji will be
delayed by any job in J − Ji before machine Mi. The priority among jobs in Ji is defined by
their destinations. Therefore, if every fixed priority gives O(1)-approximation for instances
with same end machine, then the furthest-to-go algorithm gives O(1)-approximation for the
completion time of every machine, hence for the makespan of the schedule.
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