142 research outputs found

    A Weakly-Robust PTAS for Minimum Clique Partition in Unit Disk Graphs

    Full text link
    We consider the problem of partitioning the set of vertices of a given unit disk graph (UDG) into a minimum number of cliques. The problem is NP-hard and various constant factor approximations are known, with the current best ratio of 3. Our main result is a {\em weakly robust} polynomial time approximation scheme (PTAS) for UDGs expressed with edge-lengths, it either (i) computes a clique partition or (ii) gives a certificate that the graph is not a UDG; for the case (i) that it computes a clique partition, we show that it is guaranteed to be within (1+\eps) ratio of the optimum if the input is UDG; however if the input is not a UDG it either computes a clique partition as in case (i) with no guarantee on the quality of the clique partition or detects that it is not a UDG. Noting that recognition of UDG's is NP-hard even if we are given edge lengths, our PTAS is a weakly-robust algorithm. Our algorithm can be transformed into an O(\frac{\log^* n}{\eps^{O(1)}}) time distributed PTAS. We consider a weighted version of the clique partition problem on vertex weighted UDGs that generalizes the problem. We note some key distinctions with the unweighted version, where ideas useful in obtaining a PTAS breakdown. Yet, surprisingly, it admits a (2+\eps)-approximation algorithm for the weighted case where the graph is expressed, say, as an adjacency matrix. This improves on the best known 8-approximation for the {\em unweighted} case for UDGs expressed in standard form.Comment: 21 pages, 9 figure

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d

    QPTAS and Subexponential Algorithm for Maximum Clique on Disk Graphs

    Get PDF
    A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for Maximum Clique on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2^{O~(n^{2/3})} for Maximum Clique on disk graphs. In stark contrast, Maximum Clique on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2^{n^{1-epsilon}}, unless the Exponential Time Hypothesis fails

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    Polynomial-Time Approximation Schemes for Independent Packing Problems on Fractionally Tree-Independence-Number-Fragile Graphs

    Get PDF
    We investigate a relaxation of the notion of treewidth-fragility, namely tree-independence-number-fragility. In particular, we obtain polynomial-time approximation schemes for independent packing problems on fractionally tree-independence-number-fragile graph classes. Our approach unifies and extends several known polynomial-time approximation schemes on seemingly unrelated graph classes, such as classes of intersection graphs of fat objects in a fixed dimension or proper minor-closed classes. We also study the related notion of layered tree-independence number, a relaxation of layered treewidth

    QPTAS and subexponential algorithm for maximum clique on disk graphs

    Get PDF
    A (unit) disk graph is the intersection graph of closed (unit) disks in the plane. Almost three decades ago, an elegant polynomial-time algorithm was found for \textsc{Maximum Clique} on unit disk graphs [Clark, Colbourn, Johnson; Discrete Mathematics '90]. Since then, it has been an intriguing open question whether or not tractability can be extended to general disk graphs. We show the rather surprising structural result that a disjoint union of cycles is the complement of a disk graph if and only if at most one of those cycles is of odd length. From that, we derive the first QPTAS and subexponential algorithm running in time 2O~(n2/3)2^{\tilde{O}(n^{2/3})} for \textsc{Maximum Clique} on disk graphs. In stark contrast, \textsc{Maximum Clique} on intersection graphs of filled ellipses or filled triangles is unlikely to have such algorithms, even when the ellipses are close to unit disks. Indeed, we show that there is a constant ratio of approximation which cannot be attained even in time 2n1ε2^{n^{1-\varepsilon}}, unless the Exponential Time Hypothesis fails

    Parameterized Study of Steiner Tree on Unit Disk Graphs

    Get PDF
    We study the Steiner Tree problem on unit disk graphs. Given a n vertex unit disk graph G, a subset R? V(G) of t vertices and a positive integer k, the objective is to decide if there exists a tree T in G that spans over all vertices of R and uses at most k vertices from V? R. The vertices of R are referred to as terminals and the vertices of V(G)? R as Steiner vertices. First, we show that the problem is NP-hard. Next, we prove that the Steiner Tree problem on unit disk graphs can be solved in n^{O(?{t+k})} time. We also show that the Steiner Tree problem on unit disk graphs parameterized by k has an FPT algorithm with running time 2^{O(k)}n^{O(1)}. In fact, the algorithms are designed for a more general class of graphs, called clique-grid graphs [Fomin et al., 2019]. We mention that the algorithmic results can be made to work for Steiner Tree on disk graphs with bounded aspect ratio. Finally, we prove that Steiner Tree on disk graphs parameterized by k is W[1]-hard
    corecore