24 research outputs found

    Wide-Area IP Network Mobility

    Get PDF

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool

    MOBILITY SUPPORT ARCHITECTURES FOR NEXT-GENERATION WIRELESS NETWORKS

    Get PDF
    With the convergence of the wireless networks and the Internet and the booming demand for multimedia applications, the next-generation (beyond the third generation, or B3G) wireless systems are expected to be all IP-based and provide real-time and non-real-time mobile services anywhere and anytime. Powerful and efficient mobility support is thus the key enabler to fulfil such an attractive vision by supporting various mobility scenarios. This thesis contributes to this interesting while challenging topic. After a literature review on mobility support architectures and protocols, the thesis starts presenting our contributions with a generic multi-layer mobility support framework, which provides a general approach to meet the challenges of handling comprehensive mobility issues. The cross-layer design methodology is introduced to coordinate the protocol layers for optimised system design. Particularly, a flexible and efficient cross-layer signalling scheme is proposed for interlayer interactions. The proposed generic framework is then narrowed down with several fundamental building blocks identified to be focused on as follows. As widely adopted, we assume that the IP-based access networks are organised into administrative domains, which are inter-connected through a global IP-based wired core network. For a mobile user who roams from one domain to another, macro (inter-domain) mobility management should be in place for global location tracking and effective handoff support for both real-time and non-real-lime applications. Mobile IP (MIP) and the Session Initiation Protocol (SIP) are being adopted as the two dominant standard-based macro-mobility architectures, each of which has mobility entities and messages in its own right. The work explores the joint optimisations and interactions of MIP and SIP when utilising the complementary power of both protocols. Two distinctive integrated MIP-SIP architectures are designed and evaluated, compared with their hybrid alternatives and other approaches. The overall analytical and simulation results shown significant performance improvements in terms of cost-efficiency, among other metrics. Subsequently, for the micro (intra-domain) mobility scenario where a mobile user moves across IP subnets within a domain, a micro mobility management architecture is needed to support fast handoffs and constrain signalling messaging loads incurred by intra-domain movements within the domain. The Hierarchical MIPv6 (HMIPv6) and the Fast Handovers for MIPv6 (FMIPv6) protocols are selected to fulfil the design requirements. The work proposes enhancements to these protocols and combines them in an optimised way. resulting in notably improved performances in contrast to a number of alternative approaches

    Connecting vehicular networks to the internet : a life time-based routing protocol

    Get PDF
    Inter-Vehicle Communications have recently attracted the attention of researchers in academia and industry. In such networks, vehicles should be able to communicate among each other (V2V) as well as with roadside Infrastructure units (V2I). Vehicular networks try to provide safety on the roads by disseminating critical messages among vehicles. Infrastructure units provide some services such as driver information systems and Internet access. Because of the high speed and high mobility of vehicles, establishing and maintaining a connection to these units is very challenging. We introduce a new protocol that uses the characteristics of vehicle movements to predict the vehicle behavior and select a route with the longest life-time to connect to the wired network. It aims at spreading the advertisement messages through multi-hops without flooding the network, do seamless hand-overs and select the most stable routes to these units. We performed some simulations and compared the performance of our work with some well-known protocols

    Actas da 10ª Conferência sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Distributed All-IP Mobility Management Architecture Supported by the NDN Overlay

    Get PDF
    Two of the most promising candidate solutions for realizing the next-generation all-IP mobile networks are Mobile IPv6 (MIPv6), which is the host-based and global mobility supporting protocol, and Proxy MIPv6 (PMIPv6), which is the network-based and localized mobility supporting protocol. However, the unprecedented growth of mobile Internet traffic has resulted in the development of distributed mobility management (DMM) architecture by the Internet engineering task force DMM working group. The extension of the basic MIPv6 and PMIPv6 to support their distributed and scalable deployment in the future is one of the major goals of the DMM working group. We propose an all-IP-based mobility management architecture that leverages the concept of Named Data Networking (NDN), which is a distributed content management and addressing architecture. In the proposed solution, mobility support services are distributed among multiple anchor points at the edge of the network, thereby enabling a flat architecture that exploits name-based routing in NDN. Our approach overcomes some of the major limitations of centralized IP mobility management solutions, by extending existing routing protocol and mobility management architecture, to distribute the mobility management function of anchor points in the IP network and optimize the transmission path of mobile traffic

    An enhanced group mobility management method in wireless body area networks

    Get PDF
    Mobility management of wireless body area networks (WBANs) is an emerging key element in the healthcare system. The remote sensor nodes of WBAN are usually deployed on subjects’ body. Certain proxy mobile IPv6 (PMIP) methods have been recommended, however, PMIP is relatively impractical in group mobility management pertaining to WBAN. It is likely to cause enormous registration and handover interruptions. This paper presents an approach aims at overcome these limitations using improved group mobility management method. The method emphasizes on incorporation of authentication, authorization, and accounting (AAA) service into the local mobility anchor (LMA) as an alternative to independent practice. Furthermore, proxy binding update (PBU) and AAA inquiry messages are merged. Additionally, AAA response and proxy binding acknowledge (PBA) message are combined. The experiment results demonstrate that the proposed method outperforms the existing PMIP methods in terms of delay time for registration, the handover interruptions and the average signaling cost

    Learning and Reasoning Strategies for User Association in Ultra-dense Small Cell Vehicular Networks

    Get PDF
    Recent vehicular ad hoc networks research has been focusing on providing intelligent transportation services by employing information and communication technologies on road transport. It has been understood that advanced demands such as reliable connectivity, high user throughput, and ultra-low latency required by these services cannot be met using traditional communication technologies. Consequently, this thesis reports on the application of artificial intelligence to user association as a technology enabler in ultra-dense small cell vehicular networks. In particular, the work focuses on mitigating mobility-related concerns and networking issues at different mobility levels by employing diverse heuristic as well as reinforcement learning (RL) methods. Firstly, driven by rapid fluctuations in the network topology and the radio environment, a conventional, three-step sequence user association policy is designed to highlight and explore the impact of vehicle speed and different performance indicators on network quality of service (QoS) and user experience. Secondly, inspired by control-theoretic models and dynamic programming, a real-time controlled feedback user association approach is proposed. The algorithm adapts to the changing vehicular environment by employing derived network performance information as a heuristic, resulting in improved network performance. Thirdly, a sequence of novel RL based user association algorithms are developed that employ variable learning rate, variable rewards function and adaptation of the control feedback framework to improve the initial and steady-state learning performance. Furthermore, to accelerate the learning process and enhance the adaptability and robustness of the developed RL algorithms, heuristically accelerated RL and case-based transfer learning methods are employed. A comprehensive, two-tier, event-based, system level simulator which is an integration of a dynamic vehicular network, a highway, and an ultra-dense small cell network is developed. The model has enabled the analysis of user mobility effects on the network performance across different mobility levels as well as served as a firm foundation for the evaluation of the empirical properties of the investigated approaches
    corecore