33,741 research outputs found

    A Novel Thermal Energy Storage System in Smart Building Based on Phase Change Material

    Get PDF

    Ancient and historical systems

    Get PDF

    Ghent University-Department of Textiles: annual report 2013

    Get PDF

    Small-Scale Compressed Air Energy Storage Application for Renewable Energy Integration in a Listed Building

    Get PDF
    In the European Union (EU), where architectural heritage is significant, enhancing the energy performance of historical buildings is of great interest. Constraints such as the lack of space, especially within the historical centers and architectural peculiarities, make the application of technologies for renewable energy production and storage a challenging issue. This study presents a prototype system consisting of using the renewable energy from a photovoltaic (PV) array to compress air for a later expansion to produce electricity when needed. The PV-integrated small-scale compressed air energy storage system is designed to address the architectural constraints. It is located in the unoccupied basement of the building. An energy analysis was carried out for assessing the performance of the proposed system. The novelty of this study is to introduce experimental data of a CAES (compressed air energy storage) prototype that is suitable for dwelling applications as well as integration accounting for architectural constraints. The simulation, which was carried out for an average summer day, shows that the compression phase absorbs 32% of the PV energy excess in a vessel of 1.7 m(3), and the expansion phase covers 21.9% of the dwelling energy demand. The electrical efficiency of a daily cycle is equal to 11.6%. If air is compressed at 225 bar instead of 30 bar, 96.0% of PV energy excess is stored in a volume of 0.25 m3, with a production of 1.273 kWh, which is 26.0% of the demand

    Demand response within the energy-for-water-nexus - A review. ESRI WP637, October 2019

    Get PDF
    A promising tool to achieve more flexibility within power systems is demand re-sponse (DR). End-users in many strands of industry have been subject to research up to now regarding the opportunities for implementing DR programmes. One sector that has received little attention from the literature so far, is wastewater treatment. However, case studies indicate that the potential for wastewater treatment plants to provide DR services might be significant. This review presents and categorises recent modelling approaches for industrial demand response as well as for the wastewater treatment plant operation. Furthermore, the main sources of flexibility from wastewater treatment plants are presented: a potential for variable electricity use in aeration, the time-shifting operation of pumps, the exploitation of built-in redundan-cy in the system and flexibility in the sludge processing. Although case studies con-note the potential for DR from individual WWTPs, no study acknowledges the en-dogeneity of energy prices which arises from a large-scale utilisation of DR. There-fore, an integrated energy systems approach is required to quantify system and market effects effectively
    • …
    corecore