5 research outputs found

    Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature

    Get PDF
    It is crucial to develop highly sensitive and selective sensors for ammonia, one of the most common toxic gases which have been widely used in pharmaceutical, chemical and manufacturing industries. In this study, graphene oxide (GO) film was spin-coated onto surfaces of ST-cut quartz surface acoustic wave (SAW) devices with a resonant frequency of 200 MHz for ammonia sensing. The oxygen-containing functional groups (such as hydroxyl and epoxy ones) on the surface of GO film strongly absorb ammonia molecules and thus increase the film stiffness. This is attributed to the main ammonia sensing mechanism of the Love mode SAW devices, which show not only a positive frequency shift of 620 Hz for 500 ppb ammonia gas, but also an excellent selectivity (as compared to other gases such as H2, H2S, CO and NO2) and a good reproducibility, operated at room temperature of 22 oC

    Rayleigh Wave Calibration of Acoustic Emission Sensors and Ultrasonic Transducers.

    Get PDF
    Acoustic emission (AE) sensors and ultrasonic transducers were characterized for the detection of Rayleigh waves (RW). Small aperture reference sensors were characterized first using the fracture of glass capillary tubes in combination with a theoretical displacement calculation, which utilized finite element method (FEM) and was verified by laser interferometer. For the calibration of 18 commercial sensors and two piezoceramic disks, a 90° angle beam transducer was used to generate RW pulses on an aluminum transfer block. By a substitution method, RW receiving sensitivity of a sensor under test was determined over the range of frequency from 22 kHz to 2 MHz. Results were compared to the sensitivities to normally incident waves (NW) and to other guided waves (GW). It was found that (1) NW sensitivities are always higher than RW sensitivities, (2) differences between NW and RW receiving sensitivities are dependent on frequency and sensor size, (3) most sensors show comparable RW and GW receiving sensitivities, especially those of commonly used AE sensors, and (4) the receiving sensitivities of small aperture (1 mm diameter) sensors behave differently from larger sensors

    Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review

    Get PDF
    Bulk acoustic wave (BAW) and surface acoustic wave (SAW) sensor devices have successfully been used in a wide variety of gas sensing, liquid sensing, and biosensing applications. Devices include BAW sensors using thickness shear modes and SAW sensors using Rayleigh waves or horizontally polarized shear waves (HPSWs). Analyte specificity and selectivity of the sensors are determined by the sensor coatings. If a group of analytes is to be detected or if only selective coatings (i.e., coatings responding to more than one analyte) are available, the use of multi-sensor arrays is advantageous, as the evaluation of the resulting signal patterns allows qualitative and quantitative characterization of the sample. Virtual sensor arrays utilize only one sensor but combine itwith enhanced signal evaluation methods or preceding sample separation, which results in similar results as obtained with multi-sensor arrays. Both array types have shown to be promising with regard to system integration and low costs. This review discusses principles and design considerations for acoustic multi-sensor and virtual sensor arrays and outlines the use of these arrays in multi-analyte detection applications, focusing mainly on developments of the past decade

    A Novel Surface Acoustic Wave Sensor Array Based on Wireless Communication Network

    No full text
    A novel surface acoustic wave (SAW) sensor array based on wireless communication network is prepared. The array is composed of four SAW sensors, a wireless communication network module, and a global positioning system (GPS) module. The four SAW sensors of the array are coated with triethanolamine, polyepichlorohydrin, fluoroalcoholpolysiloxane, and L-glutamic acid hydrochloride to detect hydrogen sulfide (H2S), 2-chloroethyl ethyl sulfide (CEES), dimethylmethylphosphonate (DMMP), and ammonia (NH3) at film thicknesses of 50–100 nm. The wireless communication network module consists of an acquisition unit, a wireless control unit, and a microcontroller unit. By means of Zigbee and Lora technologies, the module receives and transmits the collected data to a PC work station in real-time; moreover, the module can control the sensor array’s working mode and monitor the working status. Simultaneously, the testing location is determined by the GPS module integrated into the SAW sensor array. H2S, CEES, DMMP, and NH3 are detected in 300 m at different concentrations. Given the practical future application in environment in the future, the low, safe concentrations of 1.08, 0.59, 0.10, and 5.02 ppm for H2S, CEES, DMMP, and NH3, respectively, are detected at the lowest concentration, and the sensitivities of different sensors of the sensor array are 32.4, 14.9, 78.1 and 22.6 Hz/ppm, respectively. With the obtained fingerprints and pattern recognition technology, the detected gases can be recognized
    corecore