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Abstract: Bulk acoustic wave (BAW) and surface acoustic wave (SAW) sensor devices have successfully
been used in a wide variety of gas sensing, liquid sensing, and biosensing applications. Devices include
BAW sensors using thickness shear modes and SAW sensors using Rayleigh waves or horizontally
polarized shear waves (HPSWs). Analyte specificity and selectivity of the sensors are determined by
the sensor coatings. If a group of analytes is to be detected or if only selective coatings (i.e., coatings
responding to more than one analyte) are available, the use of multi-sensor arrays is advantageous,
as the evaluation of the resulting signal patterns allows qualitative and quantitative characterization of
the sample. Virtual sensor arrays utilize only one sensor but combine it with enhanced signal evaluation
methods or preceding sample separation, which results in similar results as obtained with multi-sensor
arrays. Both array types have shown to be promising with regard to system integration and low costs.
This review discusses principles and design considerations for acoustic multi-sensor and virtual sensor
arrays and outlines the use of these arrays in multi-analyte detection applications, focusing mainly on
developments of the past decade.

Keywords: bulk acoustic wave; surface acoustic wave; quartz crystal microbalance; film bulk acoustic
resonator; sensor array; chemical sensor; biosensor; electronic nose; electronic tongue

1. Introduction

Sensors have become indispensable in chemical and biological analytics. If samples contain more
than one analyte of interest, sensor arrays are advantageous because they enable the detection of more
than one analyte in a single measurement run, particularly if analyte-specific coatings are available.
If only selective coatings are at hand, sensor arrays are even a must for the reliable detection of a single
analyte. The combination of suitable selective coatings and evaluation algorithms, including pattern
recognition methods, also allows qualitative and quantitative determination of several analytes in
mixtures. While the sensor coating determines selectivity or specificity of an assay, the sensor device
(transducer) determines the sensitivity of the assay. Today, a large number of sensors are available,
mainly utilizing electrochemical, optical, or acoustic signal transduction. Sensors with acoustic signal
transduction detect, among others, the mass of an analyte, i.e., an inherent property of every analyte,
which makes them universal in use. The sensor devices can be manufactured very small down to
submillimeter dimensions, which enables the design of correspondingly small arrays. Furthermore,
acoustic transducers can easily be integrated in wireless communication systems [1–5].

Acoustic sensors and biosensors offer label-free, fast, sensitive, and low-cost detection of analytes in
both gaseous and liquid samples. A large variety of acoustic sensor devices is available using mainly
bulk or surface acoustic waves. The devices have in common that they utilize both the piezoelectric and
the inverse piezoelectric effect, i.e., their operation principle includes interconversion and detection of
electrical energies and acoustic (i.e., mechanical) waves. The velocity of the acoustic wave and, hence,
the sensor signal response is influenced, among others, by mass changes on the device surface [1,6,7].
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The evaluation of chemical sensor signal responses is mainly based on the signal shifts and the resulting
signal patterns. Sometimes the signal development over time is also considered, including compensation
of potential sensor drifts [8–11]. Biosensor signals obtained by diffusion-limited analyte binding on the
surface are linear with the slope being proportional to the analyte concentration. Evaluation of signals
resulting from kinetically controlled analyte binding on the surface is mainly used for the determination
of kinetic and thermodynamic constants of the surface reaction [12,13].

Chemical sensor arrays with selective coatings for the characterization of complex gaseous mixtures
are also called “electronic noses” (e-noses), while their counterparts for liquid samples are known as
“electronic tongues” (e-tongues) [14,15]. A variety of coating materials for acoustic chemical sensor
arrays has been developed, with polymer-based coatings representing the largest group. Even the pure
polymers offer a wide range of coatings because of the multitude of functional groups and structures
available. Additionally, molecularly imprinted polymers (MIPs) have been developed to obtain higher
selectivities. Highly selective MIP-coated sensors have also been referred to as “chemosensors” as
a counterpart to the analyte-specific biosensors (see below) [16–20]. Other organic coating materials
have been derived from self-assembled monolayers (e.g., silanes), macrocycles (e.g., calixarenes,
cyclodextrins, phthalocyanines, and porphyrins), and organic salts (ionic liquids and GUMBOS
(group of uniform materials based on organic salts)) [16,21–25]. Inorganic coating materials include
metal oxides and carbonaceous materials, such as graphene or graphene oxide, carbon nanotubes
(CNTs), multi-walled CNTs (MWCNTs), and diamond nanoparticles [16,26–28]. Recent developments
regarding the enhancement of the selectivity of chemical sensors take advantage of biological molecules
as coatings, such as DNA forming loops, peptides, and proteins (e.g., odorant-binding proteins) [29–33].
Biosensors represent the combination of a transducer with an analyte-specific biorecognition element.
They can be used as single components for specific detection of the corresponding analytes. However,
biosensor arrays would be convenient for a higher throughput if several analytes are to be determined.
Coatings for acoustic biosensor arrays have been predominated by antibodies as specific capture
molecules for the corresponding analytes. The use of single-stranded DNA to capture corresponding
DNA strands has also been reported [34–36].

Acoustic sensor array applications include quantitative determination of sample compounds and
qualitative determination of compound patterns, e.g., to determine health profiles or food quality,
where it is not necessarily required to know exactly the contributing components or their concentrations.
Acoustic e-noses have been used for the detection of volatile organic compounds (VOCs), chemical
warfare agents (CWAs), volatile biomarkers, and odors. Correspondingly, gaseous samples have
consisted of indoor, outdoor, or artificial air, breath, and headspace of liquid or solid samples, such as
wastewater, food, and plants [25,37–44]. Further applications include the use as detector for gas
chromatography (GC) instead of mass spectrometry (MS) [45,46] and the use as sensor node in sensor
networks [47]. In contrast to that, the use of acoustic sensor arrays as e-tongues or biosensor arrays for
liquid samples has been much less common. Applications include the detection of contaminants in
water and of biomarkers in body fluids, e.g., for diagnostics [35,48–51].

In the following, the components of acoustic sensor arrays are discussed and an overview of
commercially available acoustic sensor arrays and e-noses is given. After that, applications of multi-sensor
and virtual sensor arrays for multi-analyte detection are summarized, with the main focus on research
work of the past decade.

2. Configuration of Acoustic Sensor Arrays

2.1. Acoustic Sensor Devices

The oldest and still most commonly used acoustic sensor devices are quartz crystal microbalances
(QCMs), also known as quartz microbalances (QMBs), which belong to bulk acoustic wave (BAW)
devices (Figure 1). As the phrase suggests, they are made of quartz, where mostly the AT cut is used.
The typical setup is depicted in Figure 1a. It shows a quartz disk with electrodes mounted on both
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surfaces generating thickness shear modes with common frequencies in the range of 5 to 50 MHz.
QCM sensors have been used for both gas and liquid sensing, including biosensing applications.
The resonance frequency, which is linked to the deposited mass, is the main parameter recorded during
the measurements. Some instruments (see Table 1 in Section 2.4) additionally enable the recording of the
dissipation, allowing conclusions about the viscoelasticity of the deposited layer to be drawn [6,52,53].
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Table 1. Commercially available QCM multi-sensor arrays.

Company (Headquarter
Location), URL 1 Model (s) Channels Fundamental

Frequency (MHz)
Measurement
Parameter (s)

3T (DE), www.3t-analytik.de qCell series
qCell T series

1, 2, or 4
1 or 2 n/a Frequency and

Dissipation

Attana (SE), www.attana.com Attana 200/A200
Attana Cell 200/A200

2
2 n/a Frequency

AWSensors (ES),
https://awsensors.com AWS A20+ RP 1–4 2 5, 9, 10, 50, 100, 150 Frequency and

Dissipation
Biolin Scientific (SE),

www.biolinscientific.com
QSense Analyzer

QSense Pro
4
8 5 Frequency and

Dissipation
Initium (JP),

www.initium2000.com Affinix Q8/Qµ 8/1–4 27 Frequency

MicroVacuum (HU),
https://microvacuum.com QCM-I 2 or 4 5 Frequency and

Dissipation

Nihon Dempa Kogyo (JP),
www.ndk.com

NAPiCOS series monolithic
twin sensor 30 Frequency

1 Access date: 20 September 2019; 2 Array also available with Love wave SAW sensors (120 MHz).

Though QCMs are well known and widespread, other devices using higher frequencies are desired,
as they may promise higher mass sensitivities. QCM sensors at higher frequencies are producible
(see Table 1 in Section 2.4); but the devices get thinner with increasing frequencies, making them
fragile and more difficult to handle. Other approaches to enhance the QCM sensor performance aim at
electrodeless or wireless-electrodeless configurations. Thin piezoelectric devices may also support
other wave types, such as acoustic plate modes (APM) and flexural plate waves (FPW). APM devices,
where the waves are guided within the device by reflection from the surfaces, provide operation
frequencies in the range of 20–200 MHz. However, as usually several plate modes are excited and differ
only slightly in the frequency, expensive evaluation electronics are required. The frequency range of
FPW devices is only in the range of 5–20 MHz, and the devices are still fragile, which therefore means
no advantage compared to QCMs [54–57].

More recent developments in BAW devices comprise film bulk acoustic resonators (FBARs), also
known as thin film bulk acoustic resonators (TFBARs). They are mostly made of aluminum nitride
(AlN) or zinc oxide (ZnO) thin films. A general setup of FBARs is depicted in Figure 1b. The resonator
films are solidly mounted on a support structure, resulting in one of three FBAR types, i.e., back
trench, Bragg acoustic mirror, or air-bag type. In principle, the fabrication of FBARs is compatible to
complementary metal oxide semiconductor (CMOS) technology (unless ZnO is used). FBARs can be
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operated in longitudinal mode or in thickness shear mode, where the latter is to be preferred in liquids
to minimize energy loss. FBARs allow operation frequencies ranging from sub-GHz to tens of GHz.
The resonators have been applied in gas sensing and biosensing applications [58–60].

The other large group of acoustic sensors is represented by surface acoustic wave (SAW) devices
(Figure 2), which allow operation frequencies in the range of a few MHz to a few GHz. The wave
on the surface of the piezoelectric material is excited and received by interdigital transducers (IDTs),
a specific type of electrode. The IDTs are mainly designed in two configurations leading to either delay
line or resonator devices (Figure 2a,b). The spacing between the input and output IDTs in the delay
line configuration causes a time delay between input and output signals, which is why preferably
phase and amplitude shifts of the SAW are recorded, requiring comparatively complex electronics.
In the two-port resonator configuration (Figure 2b), input and output IDTs are closer together and
surrounded by reflective fingers. One-port resonators have only one IDT in the middle of the device,
with reflective fingers on both sides. The reflective structures of SAW resonators lead to very distinct
and sharp resonance frequencies, which can easily be collected by simple and economical electronic
setups, such as oscillators. SAW devices are mainly produced by lithography and subsequent metal
deposition, which can be carried out as mass production processes [53,55,61].
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Figure 2. Schematics of surface acoustic wave (SAW) devices: (a) Delay line device; (b) resonator device;
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The most commonly used piezoelectric materials for SAW sensors are quartz, lithium niobate
(LiNbO3), and lithium tantalate (LiTaO3). Depending on piezoelectric material and crystal cut, different
wave types are obtained. Rayleigh waves are characterized by particle displacement perpendicular to
the surface (Figure 2c). SAW sensors for gas sensing applications are commonly based on Rayleigh
wave devices. If they are used in liquid media, however, an immense attenuation loss is observed
because the particle displacement perpendicular to the surface generates compression waves radiating
into the liquid. Therefore, SAW devices to be used in liquids require waves supporting shear horizontal
particle displacements, such as horizontally polarized shear waves (HPSWs) (Figure 2d). This includes
Love waves and surface transverse waves (STWs), where the wave is guided on top of the device in
a thin guiding layer (Love waves) or by a metal strip grating (STWs). While Rayleigh wave devices are
restricted to gas sensing applications, SAW devices supporting HPSWs can be used for both liquid and
gas sensing applications [55,56,60,61].

2.2. Measuring with Acoustic Sensors

To obtain high-performance sensor setups, the respective application must be considered and both
sensor devices and sensor coatings have to be carefully selected and, if possible, adapted. As mentioned
in Section 2.1, liquid sample applications with acoustic sensors require waves moving in parallel to
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the surface, without particle displacement perpendicular to the surface, such as the (thickness) shear
modes of QCMs or FBARs and the HPSWs of SAW devices. In contrast to that, measurements with
gaseous samples can be performed with both acoustic waves moving in parallel and acoustic waves
moving perpendicular to the surface. The appropriate wave type would be obtained by choosing
the appropriate piezoelectric material and crystal cut. If possible, this choice should also consider
the temperature stability of the crystals. AT-cut quartz, for instance, provides comparatively stable
frequencies over a wide temperature change (variation 0–25 ppm over −50 ◦C to 100 ◦C). Materials used
for SAW devices, however, such as LiNbO3 and LiTaO3, show higher frequency changes associated
with temperature changes. This limitation can be overcome by additional quartz (SiO2) layers reducing
this effect or by providing a suitable external thermostatic control in the final measurement setup.
The latter would also be useful to reduce temperature effects on the kinetics of analyte adsorption or
affinity binding on the sensor surface [5,53,55,62,63].

Acoustic sensors are generally regarded as mass-sensitive sensors. In the gravimetric regime,
increased frequency shifts are obtained by mass loading when acoustic devices with higher operation
frequencies are used. Therefore, newer developments include high-frequency devices, such as FBARs.
However, as long as the higher operation frequencies are associated with higher noise, a higher
mass-sensitivity is not necessarily achieved [5,51,54]. Another parameter influencing the sensor response
is the composition of the sensing layer with regard to viscoelasticity, which is connected with the
penetration depth and, therefore, the sensing zone of the acoustic wave. Changes in viscoelasticity may
add to the effect of mass loading, resulting in increased sensor responses, as observed, for instance,
for SAW chemical sensors with specific polymer coatings. However, viscoelasticity change and mass
loading may also counteract each other, leading to reduced sensor responses, as observed, for instance,
for SAW biosensors with comparatively thick sensing layers. This is associated with the reduction of the
penetration depth of an acoustic wave into the medium by higher device frequencies. In the worst case,
a sensing layer is developed with excellent analyte-binding properties, but if the layer thickness exceeds
the penetration depth of the acoustic wave, binding events too far away from the device surface could not
be detected, leading to reduced signal responses. Using thin, two-dimensional sensing layers allowing
the analyte to bind only on top of the layer can minimize these disadvantageous effects resulting from
viscoelasticity changes [64–69].

Apart from mass loading and viscoelasticity changes, acoustic sensor signals may also be affected
by changes in the electrical environment influencing the electromechanical coupling. This is particularly
an issue for liquid sample applications. For sensors based on QCMs and on SAW delay lines, this effect
has effectively been eliminated by introducing metal coatings, which shield the acoustic wave from the
differential electrical influences of the liquids, such as conductivity. When working with SAW resonators,
however, changes in the electrical environment still have a high impact on the sensor response. One way
to overcome this problem is to adapt the carrier medium transporting the liquid samples to the sample
background in a way that the electrical differences are minimized. Newer approaches include the
combination of SAW resonators with electrical sensors resulting in a dual signal response, which would
allow an improved characterization of the individual sensor responses [54,70–74].

The coating of acoustic sensors has to meet both the requirements based on the acoustic transduction
principle, as mentioned above, and the requirements arising from the sensor application. Thick layers
may be advantageous to capture many analyte molecules for a high sensor response, but the thickness
must not reduce the sensor response because of counteracting effects. Nanostructures to increase the
layer capacity have also been reported. However, for acoustic transducers the structure dimensions
cannot be chosen arbitrarily because structure sizes in the range of the acoustic wavelength could lead
to scattering effects and, hence, to energy loss. While biosensor coatings may be highly specific for
an individual analyte, coatings for chemical sensors are typically selective for a group of chemically
similar analyte molecules. On the other hand, chemical sensors can often be used multiple times when
surface regeneration is possible by flushing with clean air, maybe at a slightly elevated temperature.
Regeneration is not that easily possible for biosensors binding the analyte with high affinity. However,
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biosensors have mainly been developed for clinical applications, where disposable components are
usually preferred. Coatings for both multiple and single-use applications require a certain stability,
be it for multiple measurements or simply for storage. This issue is not yet sufficiently investigated in
the development of new coatings [3,5,16,53,61].

2.3. Array Designs

The design of a multi-sensor array typically includes spatial proximity of the sensor devices, particularly
if the sample volume is limited. Since acoustic sensor devices are operated at high frequencies ranging
from MHz to GHz, multiplexing techniques are recommended to avoid interference and crosstalk resulting
from this closeness as they would affect the signal responses [75,76]. Figure 3 depicts basic array designs
for multi-analyte detection realized with BAW and SAW sensors. The setups can mainly be divided into
modular, monolithic, and virtual sensor arrays.Sensors 2018, 18, x 6 of 30 
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(c) virtual sensor array based on different signal responses obtained from a single sensor; and (d)
virtual sensor array based on the combination of sample separation by gas chromatography (GC) and
subsequent peak detection by a single sensor.

Figure 3a shows the most common form of an array, namely the combination of several sensor
devices into a modular multi-sensor array. In the modular setup, the sensors can be coated and assembled
individually according to application. Defective parts can easily be replaced. Configurations include the
combination of single-sensor devices in one measurement cell, the combination of measurement cells
containing single sensors, and the combination of disposable sensor chips, i.e., single sensor devices with
polymer housings [77]. When working with large-volume gas samples, several single-sensor devices
can be exposed to the gases in a comparatively large measurement chamber as has been realized for
QCM, FBAR, and SAW sensors [21,78,79]. With reduced sample volumes and particularly with liquid
samples, however, the volumes required for uniform sampling of the sensors would be too high in the
chamber setup. Therefore, providing sensor devices with a measurement cell or polymer housing with
flow channel leading the sample flow near the sensors would be more suitable for samples with limited
volume. Gaseous samples would allow measurement cells containing several sensor devices [80], but this
is not suitable for liquid samples because of uncontrollable leakage in between the devices. Measurement
cells with one or more sensor device(s) are typically designed for simple sensor replacement, i.e., the flow
cell itself is made for repeated use. In contrast to that, sensors with polymer housings are rather intended
for use as disposable components as they combine low-cost sensor devices with generally economic
packaging materials and procedures. Furthermore, such devices are easier to miniaturize than flow cells
with replaceable components. Both flow cells and sensor chips must consider array compatibility in their
design to reduce dead volumes and, hence, sample consumption. Otherwise, the connection of single
components to arrays will increase the sample volume disproportionally, which is an issue particularly
when working with liquid samples, such as body fluids for biomedical applications [3,77].
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Close sensor-to-sensor connection is given already in monolithic multi-sensor arrays (Figure 3b),
which have been realized for QCM, FBAR, and SAW sensors [52,81–83]. Since in principle the sensing
elements in monolithic arrays can be brought together more closely than in modular arrays, this approach
has a high potential for miniaturization. On the other hand, if the sensing areas are to be coated and
connected individually, spatially resolved surface functionalization is essential, making the coating
procedures often more complex than required for modular components [52]. Furthermore, if one sensing
structure is defect, the complete array may have to be discarded.

Despite the common use of multi-sensor arrays, they still have some unresolved limitations. First of
all, the set of coating materials in an array must individually be adapted for each application. In addition,
sensor drifts interfering with the sensor signals may be different for each sensor and each coating [84].
Therefore, the use of less sensors per array would be advantageous, provided that the required information
content is still available. This is fulfilled by virtual sensor arrays (Figure 3c) realizing a different approach
for multi-analyte detection. Instead of increasing the degree of parallelization, they use multiple signal
responses extracted from one sensor device. This includes, for instance, the evaluation of a signal
response curve regarding both signal shift and response time. Newly developed signal processing
and evaluation methods even allow detection and quantification of complex mixtures from one signal
response curve [71,85,86]. Furthermore, dual or multiple signal transductions have been exploited, e.g.,
by evaluating both phase and attenuation shifts of a SAW sensor [87], by determining SAW sensor
frequency shifts at different temperatures [88], or by measuring the frequency and dissipation shifts of
a QCM sensor at multiple harmonics [89]. When conductive films are used as sensor coatings, changes
of both the acoustic wave and the electrical properties of the coating can be evaluated [90–92]. As both
multi-sensor arrays and virtual sensor arrays turned out to be well suited for multi-analyte detection,
both were combined to virtual multi-sensor arrays to further enhance the performance [93,94].

Another possibility for multi-analyte detection and quantification with a single acoustic sensor is
the combination of the sensor with a GC column as shown in Figure 3d. This e-nose is also known as
virtual sensor array [95] and has been realized with both QCM and SAW sensors (see Section 3.1.5).
The sample components are separated by the GC column and can be identified via the retention time.
Subsequent quantification is done by mass adsorption on the acoustic sensor. A sensor coating may be
applied but is not required for identification. Therefore, uncoated sensors can also be used, avoiding
any interference from potentially instable layers. GC-SAW instruments with uncoated SAW devices
have been commercialized (see Table 2).

Table 2. Commercially available e-noses based on acoustic sensors.

Company (Headquarter
Location), URL 1 Model (s) Type of Sensor (s) Application

Electronic Sensor Technology
(US), www.estcal.com zNose series GC-SAW

(uncoated sensor)

Determination of a large
variety of gas, VOCs 2,

and vapor mixtures

ENMET (US), www.enmet.com HAZMATCAD SAW sensor array Detection of CWAs 3

(Nerve and blister)
Karlsruhe Institute of

Technology (DE),
www.kit-technology.de

SAGAS SAW sensor array
(8 sensors)

Determination of gas
mixtures

Nihon Dempa Kogyo (JP),
www.ndk.com

Twin-CQCM,
Twin-TQCM

Monolithic twin QCMs
(1 to 4) Outgas sensing

Spectro Scientific (US),
www.spectrosci.com FDM 6000 1 SAW sensor

(polymer-coated)

Determination of fuel
contaminants in

lubricants
1 Access date: 23 September 2019; 2 volatile organic compounds; 3 chemical warfare agents.

www.estcal.com
www.enmet.com
www.kit-technology.de
www.ndk.com
www.spectrosci.com
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2.4. Sampling

As mentioned in the section before, gas sensors can be operated in comparatively large measurement
chambers, allowing the gas to flow over or around the sensors. It has to be ensured that the volume
is large enough for the gaseous medium to be equally distributed, which can easily be obtained, e.g.,
by a fan [78]. Such chambers are less common for liquid samples where the sample volume is typically
limited. A beaker-like setup with 3 × 3 QCM sensors at the wall and a stirrer to distribute the liquid
was introduced for immunoassays, but measurements were not included in this study [96]. Gas sample
volumes, however, can also be limited, for instance, when only the headspace over a liquid or a solid
sample is available or when sample enrichment is required because of low analyte concentrations. Sample
enrichment can be obtained, for instance, by solid phase microextraction (SPME) using an adsorbent-coated
fiber or by utilizing a so-called trap. A trap describes a pre-concentration unit consisting of a tube (e.g., glass
or polytetrafluoroethylene) filled with sorption material. Subsequent heating of the fiber or the trap allows
the volatile sample components to desorb and to be led to the sensors [97–100]. Samples with limited
volume require a more directed flow leading the sample to the respective sensors. This can be realized with
reduced chamber volumes down to flow channels, as typically provided by flow cell setups. Examples of
sampling by flow channels are depicted in Figure 4.
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Serial sample application (Figure 4a) is the most commonly used sampling scheme. Large arrays
are sometimes split into two rows of sensors, allowing more compact setups with either one channel
in between or a split channel for each row of sensors [22,38]. Even though gases spread faster than
liquids, designs must consider and avoid potential turbulences to guarantee stable and consistent
operation of the array [102,103]. Laminar flow conditions are particularly essential for liquid samples.
For instance, a circular flow chamber on a monolithic QCM with 2 × 2 sensing areas showed a highly
turbulent flow leading to inconsistent sensor responses. A fluidic channel addressing the sensing areas
subsequently was required to obtain reproducible results [104,105].

Serial sampling has led to negligible delays in the signal responses of gas sensors. As shown
for SAW sensors, signal responses can further be optimized when the SAW devices are capacitively
connected to the electronics via contact pads beside the fluidic channel instead of using sockets,
such as the TO39 housing, because the glue of the housings may serve as an additional absorbance
layer interfering with the sensor results when gases are released. The miniaturization of the flow cell
showed improved flow profiles for both gas and liquid applications [80]. Further miniaturization
was obtained by manufacturing polymer housings for SAW biosensors in a way that eight of the
resulting SAW biosensor chips were combined with a microfluidic chip to an eight-channel array.
A tailor-made microfluidic setup restricted the media contact of multi-use active components, such as
pumps and valves, to a passive, intermediary liquid. Only the disposable components, i.e., biosensor
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and microfluidic chips, were in contact with the samples, which made the setup highly suitable for
biomedical applications. However, despite the improved flow channel reducing the dead volume to
the first biosensor chip to a minimum, serial sampling of the eight biosensor chips led to a considerable
delay between first and last sensor [77,106]. In addition to the delay between the signal responses,
another disadvantage of serial sampling is the potential risk of sample depletion by cross-reactive
binding on the first sensors, leading to reduced signal responses of the later sensors. This could
be circumvented by parallel sampling (Figure 4b), but design and fabrication of the fluidic system
would be more complex, as signal interferences resulting from changes in the flow conditions must be
avoided. A parallel setup for SAW biosensor chips has been set up but not tested yet [107]. As far as
miniaturization is concerned, FBARs again have an advantage here, as they can be manufactured via
CMOS techniques, and microchannels can be integrated in the same process [108].

A—serial-parallel fluidic combination leading to another form of an array for multi-analyte
detection is depicted in Figure 4c. This sampling scheme was realized using two-port delay-line-SAW
devices; therefore, this concept has been called “µF-on-SAW”, i.e., “microfluidics-on-SAW”. The setup
consists of several flow channels crossing the path of the delay lines. Subsequent sampling of the
channels allows serial recording of signal responses depending on the surface functionalization [101].
Exemplary applications using this technique are summarized in Section 3.3.3.

2.5. Commercially Available Acoustic Sensor Array Instruments and E-Noses

Table 1 summarizes commercially available acoustic sensor arrays utilizing QCMs. They are
mainly designed for liquid applications, but they can also be used for gaseous samples if an appropriate
sampling unit is provided as shown, for instance, for the QSense system from Biolin Scientific [25].
All arrays use the resonance frequency as signal response; many include the dissipation values.
The fundamental frequencies of the QCM sensors are in the typical range of up to 50 MHz. AWsensors
stands out here, as their model AWS A20+ RP additionally offers QCM sensors with high fundamental
frequencies of 50 MHz, 100 MHz, and 150 MHz. Furthermore, this instrument can be equipped
with SAW sensors supporting Love waves at 120 MHz. Apart from the latter, no SAW sensor array
instruments for liquid applications are currently commercially available (regarding e-noses, see Table 2).
The S-sens K5 was an instrument based on a monolithic array with five SAW delay lines supporting
Love waves. It had been introduced by the Center of Advanced European Studies and Research (caesar)
in Bonn, Germany [83] and was commercially available until recently as “Seismos” from Nanotemper
(Germany) [7]. However, according to the current status, the instrument is no longer on the market
and only the Seismos SAW sensor chips (i.e., the monolithic arrays) are still available [109].

The QCM sensor array instruments in Table 1 are mainly designed for use in research laboratories.
The arrays are typically based on modular setups, i.e., the QCM crystals are located in individual flow
cells. For multi-sensor measurements, several flow cells have to be connected serially or in parallel
with an appropriate fluidic system. In contrast to that, Initium offers two systems, Affinix Q8 and
Affinix Qµ, with so-called “cup-typed” sensor cells resembling microplate wells with the QCM sensor
at the bottom. The liquid samples can be pipetted in those cells, e.g., with an eight-channel pipette.
Nihon Dempa Kogyo offers the NAPiCOS series with monolithic twin-QCMs, i.e., a quartz crystal
with a sensing and a reference electrode, where the latter can be coated with a reference layer, such as
a blocking chemical.

Commercially available e-nose instruments based on acoustic sensors are listed in Table 2.
They range from instruments for research laboratories (e.g., SAGAS (Surface Acoustic Wave Aroma
and Gas Analysis System)) to devices ready for the end user (zNose and HAZMATCAD (Hazardous
Material Chemical Agent Detector). While QCM sensors predominate in acoustic sensor arrays for
liquid applications (see Table 1), both QCM- and SAW-based instruments are available as e-noses.
Until recently, there was also LibraNose, a QCM-based e-nose developed at the University of Rome
Tor Vergata and distributed by Technobiochip, Italy [10,110]. However, the company no longer seems
to exist and, therefore, the instrument is no longer available.
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Interestingly, commercial e-nose instruments are not necessarily based on multi-sensor arrays.
The e-noses from Nihon Dempa Kogyo (Twin-CQCM and Twin-TQCM) each provide a monolithic
quartz crystal with a sensing and a reference electrode, similar to the setup for liquid samples (see
Table 1). However, in the e-nose setup, the reference electrode is shielded from the environment and
only the sensing electrode is accessible for the sample. Both the FDM (Fuel Dilution Meter) 6000 from
Spectro Scientific and the zNose series from Electronic Sensor Technology use single SAW sensors for
their e-noses (see Table 2), utilizing the potentially higher operation frequency and, hence, sensitivity of
the SAW sensors compared to the QCMs. The FDM 6000 contains only one polymer-coated SAW device
intended for fuel detection in the headspace of engine oils. As this describes a limited application,
it may be assumed that no other contaminants are present and, therefore, that one sensor is enough to
obtain accurate results. The zNose series includes both benchtop and portable devices. They have
in common that GC is combined with SAW sensor technology, i.e., the components provided by the
gaseous sample are separated by GC and subsequently quantified by the SAW sensor. Uncoated
SAW devices are used, and the identification of the components is made possible by databases for the
GC peaks.

In this section, acoustic sensor arrays used for multi-analyte detection are described for applications
in gaseous and in liquid media. Both multi-sensor and virtual sensor arrays are shown. The sensors
used in the following were based on common piezoelectric materials, i.e., QCM sensors on AT-cut
quartz; FBARs on ZnO and AlN; and SAW sensors on ST-cut quartz, LiNbO3, or LiTaO3.

3. Multi-Analyte Detection with Acoustic Sensor Arrays

3.1. Acoustic Gas Sensor Arrays: E-Noses

The following overview focuses on the e-nose developments of the past decade. The sensor array
applications are grouped according to the sensor coatings and within the groups mainly according to
decreasing number of sensors in the array.

3.1.1. QCM Multi-Sensor Arrays

LibraNose, an e-nose system which was commercially available until recently (see Section 2.4),
provided an e-nose based on eight QCMs which were coated either with polypyrrole polymers modified
by aldehydes or with metalloporphyrins. A study on recognizing incipient wood decay caused by
fungal infestation compared both sets of coatings. Volatile profiles of ten healthy wood types and
wood decayed by nine different fungi were compared. Both coating sets allowed clear discrimination
between healthy and decayed wood, with the polypyrrole coatings showing the best results [111].
Furthermore, polypyrrole and metalloporphyrin coatings were applied for the detection of meat
spoilage, which would be indicated by the volatile profile of the microbial population. Both sets
allowed the biochemical signatures to be evaluated in a way that both the degree of freshness/spoilage
and the microbial load of the respective meat could be predicted to a good extent [112,113].

An array of eight QCM sensors coated with seven metalloporphyrins and the free base of
a functionalized porphyrin was used to identify twelve microorganisms, including eleven bacteria and
one fungus. The assignment of the results to blank culture media and microorganisms was unambiguous.
Furthermore, Gram-positive bacteria and Gram-negative bacteria could be distinguished [114]. If the
metalloporphyrins were grafted on ZnO nanorods using different procedures, an increase in sensitivity
and selectivity was obtained compared to the porphyrin alone. It could be shown that three of such
coated QCM sensors, including ZnO-free porphyrin, were sufficient to separate culture medium
from cells and two different cell lines. Using four of those sensors, including ZnO-free porphyrin
and porphyrin-free ZnO, allowed the separation between four classes of VOCs (alcohols, amines,
aliphatic, and aromatic hydrocarbons) from which six compounds were applied [115]. An array of
six metalloporphyrins varying in the metal ion only was successfully used to identify six VOCs from
six different classes, including an aliphatic and an aromatic hydrocarbon, an alcohol, a carboxylic
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acid, an amine, and an organosulfur compound [116]. An array of eight QCM sensors coated with
metalloporphyrins for the detection of three aliphatic compounds was used to define calibration
procedures as preparation for disease studies using breath samples [117]. In the following, similar
arrays were used for early diagnosis of lung cancer and for tuberculosis diagnosis. The exhaled breath
of lung cancer patients and from patients with pulmonary tuberculosis could be distinguished from
the corresponding samples of healthy controls with sufficient selectivity [40,118].

An array of eleven QCM sensors coated with nine metalloporphyrins and two corroles was used
to detect malaria in the total mouse volatilome. Infected mice were correctly identified if the parasite
infestation was not too low [119]. An array of eight QCM sensors, where three were coated with
metalloporphyrins and five were coated with polymers, was used to determine biogenic volatiles
released by soil to measure the microbial activity. Distinct soil volatile profiles could be determined,
but the clear differentiation between sterilized soil inoculated with microorganisms and non-inoculated
control soil proved to be difficult, probably because of abiotic processes contributing to the soil
volatiles [120].

An array of nine QCM sensors coated with different phthalocyanines, including complexes and
derivatives, was used to detect wastewater odors. The sensors showed reversible signal responses
to odorous substances like organic amines and organosulfur compounds. Characteristic profiles
for sewage samples were obtained; however, they could not be clearly assigned to the stage of the
wastewater treatment plant where the samples had been collected [44]. An array of eight QCMs coated
with fluorinated and non-fluorinated phthalocyanine complexes was used for the detection of twelve
VOCs, including aliphatic and aromatic compounds, of which some were chlorinated. The fluorinated
alkyloxy substituents were particularly suitable for the selective detection of the polar VOCs while the
humidity influence remained moderate [121]. Hybride and nanocomposite coatings were applied on
a monolithic three-channel QCM array. A metallophthalocyanine with silica hybrid film and a metal
oxide with MWCNT nanocomposite were applied on two of the three sensing areas while the third
was left blank as reference. The array was successfully used for the selective detection of acetone and
nitric oxide (including mixtures) as volatile biomarkers for potential application in early asthma and
diabetes diagnosis [122].

GUMBOS compounds based on metallophthalocyanine tetrasulfonate were applied on the QCM
sensors of a four-channel array (Biolin Scientific; see Table 1). The array allowed sufficient discrimination
between ten different VOCs into the corresponding functional group classes (alcohols, aromatic and
aliphatic hydrocarbons, and chlorinated hydrocarbons), which was promising for applications in food
quality control [25]. An array of eight QCM sensors coated with different ionic liquids was applied to
detect three explosives including methane and two aromatic nitro compounds. Both single components
and binary mixtures could reasonably be discriminated [123]. Furthermore, seven ionic liquids were
applied on the sensor surfaces of an array to analyze 31 VOCs from nine different classes, including
alcohols, phenols, acids, esters, aldehydes, ketones, amines, hydrocarbons, and terpenes. The chemical
classes could clearly be discriminated. As the chosen VOCs represented a wide variety of food flavors,
the array should allow the estimation of food quality and origin, which was successfully demonstrated
by the differentiation between the aroma profiles of two botanical varieties of cinnamon [42].

An array of five QCM sensors was coated with three ionic liquids and one GC stationary phase while
one sensor was left uncoated as reference. This array was successfully used to identify four VOCs from
four classes, i.e., an alcohol, a ketone, a chlorinated hydrocarbon, and an aromatic hydrocarbon [124].
Similar to that, a monolithic QCM sensor array was described using two ionic liquids and a conductive
polymer. With this array water and three aliphatic VOCs, an alkane, an alcohol, and a chlorinated
hydrocarbon could be discriminated [125].

Six QCMs were coated with MWCNTs subjected to different treatments. This array was used to
detect twelve aliphatic alcohols and eight aromatic hydrocarbons. However, the frequency shifts were
not sufficient to differentiate within the compound families. Higher selectivities were obtained when the
sorption times were also adapted [27]. Furthermore, MWCNTs were part of an array with four diversely
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coated QCM sensors. The sensors were coated in a way that highly selective affinities were obtained to
hydrogen sulfide (copper oxide coating), ammonia (polyaniline coating), and dimethylamine (MWCNTs
and graphene coating), i.e., compounds representing volatiles emanating from eggs. In the end, batches
of fresh eggs and of eggs stored one, two, or three weeks could effectively be differentiated from each
other [126]. Another array using diverse coatings was based on three QCM sensors and coatings of
graphene oxide, graphene oxide functionalized withβ-cyclodextrin, and a composite of gold nanoparticles
(AuNPs) with N-functionalized pyrrole. Three inorganic toxic gases could reasonably be identified not
only as single components but also in tertiary mixtures [78].

Polymers, lipids, macrocyclic compounds, and biochemical reagents were considered as coatings
for arrays of eight QCM sensors. Such assorted arrays were used to detect foodstuff adulterations
by synthetic flavoring agents and release of aliphatic and aromatic compounds from polymers used
in household products [127,128]. An array of eight QCM sensors was coated with polymers, metal
chlorides, composites, and an antibiotic to determine volatile profiles of Chinese liquor samples.
It was possible to classify ten liquors with good accuracy and to reliably differentiate between twelve
liquors according to flavor type [129,130]. A QCM sensor array consisting of four sensors coated with
polyethylene glycols of different molar mass and four sensors coated with glucose derivatives, including
D-glucose, maltose, maltodextrin, and β-cyclodextrin, was used to monitor black tea fermentation.
The optimum fermentation times of twelve black tea cultivars determined by the QCM sensor array
were in good agreement with the results obtained with the reference method based on ultraviolet-visible
(UV-VIS) spectrophotometry [131].

Six polycyclic aromatic hydrocarbons were used as coatings within an array of six QCM sensors.
Nine VOCs of different polarity, including alkanes, ether, alcohols, and aromatic hydrocarbons, were
detected with good sensitivity and selectivity while the frequency shift remained relatively stable over
a wide range of humidity [132]. Eight anthocyanins were used as array coatings for breath analysis.
The array was calibrated to 15 alkanes, eight alcohols, twelve aldehydes and ketones, five chlorinated
compounds, and twelve aromatics and terpenes. The study showed that a thermal desorption process of
the VOCs adsorbed on the collection cartridge may serve as a pre-separation step. In a first test, chronic
obstructive pulmonary disease (COPD) patients were perfectly discriminated from control individuals [133].
An array of nine QCM sensors was coated with different composites including permanent marker liquids.
This setup yielded satisfactory results for the selective detection of individual gas concentrations in binary
mixtures of three VOCs, i.e., a ketone, an alcohol, and a chlorinated aliphatic compound [134].

MIPs for highly selective terpene detection were prepared for two monolithic quartz arrays carrying
three sensing areas each, i.e., six sensing channels were available. Two sets of six MIPs were prepared
for time-resolved monitoring of terpene emanation from either fresh basil and peppermint or fresh and
dried basil, rosemary, and sage. The results of terpene progression were similar to results obtained
with GC-MS [135,136]. A binary array coated with MIPs selective to benzene and isopropyl methyl
ketone allowed the satisfactory quantification of binary mixtures of the corresponding analytes [137].
Furthermore, molecularly imprinted materials were used for the detection of VOCs representing body
odors. A QCM sensor array using three MIPs was developed for the selective detection of organic acids,
while QCM sensor arrays using three MIPs and one reference (non-imprinted polymer) were used for
the selective detection of aldehydes. When real body odor samples were tested, the presence of all target
analytes detected by the QCM sensor arrays was confirmed by GC-MS measurements [138–140]. It could
be shown by the selective detection of aldehydes with an array that molecularly imprinted sol-gels offer
a promising alternative to MIPs [141]. Furthermore, utilizing a similar array with coatings made of
MIP nanobeads for organic acid detection resulted in enhanced sensitivity and selectivity because of the
nanobead structures [142].

AuNPs functionalized with hairpin DNA loops were used as sensing elements for VOC detection.
An array with eight QCM sensors could discriminate four molecular classes, as shown with eight VOCs,
including alcohols, esters, aldehydes, and ketones, and separate VOC molecules by molecular weight.
Furthermore, seven VOCs representing the aroma of carrots could well be discriminated. The volatile
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profile in real carrot samples detected with the sensor array was similar to the profile obtained with GC-MS.
Changes in the aroma profiles of the samples resulting from different storage times and temperatures could
be detected by the array [29,143].

An array providing 24 peptide-coated QCM sensors was used for breath analysis to identify bacterial
infections in patients with assisted breathing. Though the underlying chemical species responsible for the
sensors’ responses had not been identified before, six different bacterial pathogens could be identified in
the breath samples with good accuracy. The results were validated with cultures from sputum samples
of the same patients [144]. Peptides for chemical sensing were later introduced on an array with up to
eight QCM sensors. It was advantageous to introduce the peptides as peptide-functionalized AuNPs
instead of immobilizing monolayers of peptides as the use of the AuNPs increased the sensitivity by two
orders of magnitude. Aside from VOC discrimination and detecting food aromas in different solvents,
arrays with peptide-functionalized AuNPs differentiated satisfactorily between extra virgin and virgin
olive oils [30,145,146]. Using ZnO nanoparticles instead of AuNPs led to similar results regarding the
discrimination ability between five alcohols and three esters. Furthermore, good results were obtained
for distinguishing between the aroma profiles of water and fruit juices, where the latter is influenced
by fruit and sugar content [147]. Both an array with eight metalloporphyrin-coated QCM sensors and
an array with eight AuNP-peptide-coated QCM sensors were able to discriminate standard chocolate
samples from artificially degraded chocolate samples with good accuracy, albeit the peptide-coated
sensors showed a better prediction performance [148].

3.1.2. FBAR Multi-Sensor Arrays

The potential of an FBAR array with six polymer coatings for indoor air-quality monitoring was
demonstrated by the ability of this array to distinguish between four VOCs representing four classes,
i.e., an alcohol, an ester, and a ketone, and an aromatic hydrocarbon [149]. An FBAR array with two
polymer coatings was successfully applied for quantitative detection of three alkanes and one ketone
after GC. Furthermore, binary mixtures of one of the alkanes and the ketone (i.e., pentane and acetone),
which could not be separated by the GC column, could be differentiated by the array [46].

An array of nine FBARs coated with silane self-assembled monolayers, partially enhanced with
polyethylene glycols, was successfully used for the selective detection of one ketone and four alcohols
and for interaction studies of the VOCs with the different chemical groups on the surface [21]. Similarly,
an array of four FBARs, each one coated with another type of supramolecular monolayer, was used
for the selective detection of six aliphatic compounds from four classes, i.e., two hydrocarbons, one
chlorinated hydrocarbon, two alcohols, and one ketone. Furthermore, kinetic and thermodynamic
constants were calculated out of the response curves to quantify the interactions between the respective
gas molecules and supramolecular monolayers [37].

3.1.3. SAW Multi-Sensor Arrays

SAW multi-sensor arrays in the past decade were mostly based on Rayleigh waves on ST-cut
quartz or 128◦ YX-LiNbO3, but STW devices on 36◦ Y-cut quartz devices have also been reported.

An STW quartz two-port resonator array (SAGAS-type instrument; see Table 2) using eight
polymer-coated sensors detected the changes in the aroma profile of coffee powder caused by ageing
up to 14 days [43]. A similar array with polymer-coated STW resonators was used to test the long-term
stability of the polymer layers. It was shown that the ability of the polymer layers to distinguish between
three VOCs of different classes, i.e., a chlorinated aliphatic compound, an aliphatic hydrocarbon,
and an aromatic hydrocarbon, was maintained for at least three years. Furthermore, the ability to
distinguish between similar VOCs from the same class, i.e., between two aliphatic hydrocarbons or
two aromatic hydrocarbons, lasted for at least one year [38,150].

Other stable coatings can be provided by diamond nanoparticles as shown by an array of eight
SAW quartz two-port resonators (SAGAS instrument; see Table 2). Post-treatment of these surfaces
by oxidation or reduction allowed the selective detection of both inorganic and organic vapors, i.e.,
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ammonia, an alcohol, a nitroaromatic, and an organophosphonic compound [28]. Furthermore, the use
of these surfaces as intermediate layers offers functional groups for covalent coupling. The covalent
immobilization of six major mouse urinary proteins allowed the selective detection of two nitroaromatic
compounds which may occur in explosives [31].

An array of six SAW quartz resonators coated with phthalocyanines was used to selectively
detect six aliphatic compounds with particular emphasis on the differentiation between acetone and
trichloroethylene [151]. Another array of six SAW quartz two-port resonators using five different
polymer coatings and one uncoated reference allowed the discrimination between three CWA simulants,
an ester, and water [152].

An array with five SAW quartz dual two-port resonators containing four polymer coatings and
one uncoated reference was used on 14 different volatile blends made of an alcohol and an ester having
a similar molar mass. The ratiometric information could successfully be collected and evaluated, paving
the way for the development of an info-chemical communication system [153]. Another five-channel
two-port SAW resonator array was provided with four sensors carrying coatings from different classes
(triethanolamine, polyepichlorohydrin, fluoroalcoholpolysiloxane, and L-glutamic acid hydrochloride)
and an uncoated reference sensor. This array was successfully used for the highly selective detection of
two harmful inorganic gases and two CWA simulants by wireless communication technology within
a communication distance of 300 m. The sensor array system was also equipped with a GPS (global
positioning system) module to determine the location of the measurement [154].

Polymers were used to coat three out of five SAW quartz two-port resonators, while two resonators
were left uncoated. The resulting array was successfully applied to selectively detect three CWA
simulants and the CWA sarin [155]. The same array setup but with three types of odorant-binding
proteins instead of polymers was utilized to differentiate between a terpenoid and a mushroom alcohol,
which could be used to assess indoor air-quality or food contamination [33].

An array of four SAW quartz one-port resonators coated with metal oxides was successfully used
to detect and discriminate four CWA simulants even in the presence of four interfering substances
(three fuels and acetone). Furthermore, binary mixtures of one CWA simulant and an alcohol could
clearly be recognized [39,156]. An array with four polymer-coated SAW resonators was introduced
for the selective detection of solvent vapors in breath and ambient air. This was further developed
into a GC-detection array. Daily calibration with a mixture of C6 to C22 n-alkanes allowed the highly
selective detection of volatile biomarkers representing active pulmonary tuberculosis in picomolar
concentrations [157,158]. A set consisting of five polymer-based adsorbents and one cryptand was
evaluated with an array of two SAW quartz one-port resonators for application in polymer plants.
The best pair of polymers enabled clear discrimination between an inorganic and an organic volatile,
i.e., carbon disulfide and methanol [159].

SAW quartz delay line sensor arrays were developed with and without wave-guiding layers.
An array of seven sensors, six coated with rubber-like and amorphous polymers and one left uncoated as
reference, was successfully used to discriminate between six CWA simulants and toluene as reference
with good detection limits in the sub-ppm range [160]. The latter was improved by introducing novolac
or quartz as guiding layers to obtain Love waves with higher sensitivity [161,162]. A similar quartz
Love wave sensor array but with polymer nanofibers, including polymer nanofibers with metal content,
allowed excellent discrimination of four CWA simulants [163]. The array setup was also used with ZnO
as both guiding and sensitive layers. Further coatings were performed with metal oxide nanoparticle
layers which were partially enriched with different metals. This array allowed the differentiation between
ammonia and two aromatic hydrocarbons [164].

An array of five quartz delay line sensors with similar nanocomposite coatings was used for
selective detection of three CWAs. The coatings were metal oxides and nitrides embedded in polymer in
addition to the plain polymer as reference sensor coating. The polymer coatings containing nanoparticles
yielded higher signals than the pure polymer [165]. Another array of five quartz delay line sensors was
coated with two polymers containing two different percentages of MWCNTs while one sensor was left
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uncoated as reference. High, distinguishable responses were obtained for an aliphatic and an aromatic
hydrocarbon, whereas the array yielded no responses to inorganic gases [166].

SAW sensor arrays based on LiNbO3 also included both delay line and resonator devices. In the
following examples, all sensors were coated with polymers except one uncoated reference sensor
per array. SAW LiNbO3 delay line sensors were combined into 2 × 2 arrays to selectively detect
five volatiles, including two alcohols, two amines, and acetone. A further development allowed the
wireless readout of this setup, e.g., for wireless sensor network applications [47,167]. A low noise
CMOS readout circuit was developed for an array consisting of five SAW LiNbO3 resonators for
differentiation between two aliphatic alcohols [79].

3.1.4. Acoustic Virtual Sensor Arrays

A polymer-coated QCM sensor was used to detect four aliphatic oxygen-containing compounds
by utilizing both frequency shift and response time. The polyethylene glycol (PEG) coating allowed
discrimination between the alcohol, the ester, and the group of two ketones. However, both of the
ketones yielded similar signals and, therefore, could not be distinguished from each other. [85].

Another virtual QCM sensor array exploited the frequency shifts at several harmonics. Ionic liquids
were tested as coatings for this array. The appropriate coating and coating thickness allowed both
interclass and intraclass classification of 18 VOCs of four classes (aromatic and aliphatic hydrocarbons,
aliphatic chlorinated hydrocarbons, alcohols, and nitriles) with an accuracy of almost 100% [84].
The same measurement method was performed with a QCM sensor coated with a binary blend made of
an ionic liquid and a polymer, enabling the discrimination of eight closely related alcohols. Additional
evaluation of the respective dissipation values allowed the approximation of the molecular weights
from the quotient frequency shift by dissipation shift [89]. This virtual sensor array consisting of one
QCM was enhanced to a virtual multi-sensor array, i.e., four QCM sensors were coated with different
ionic liquids, and frequency shifts were evaluated at multiple harmonics for each QCM. This setup
was successfully used to discriminate four different petroleum-based fuels and three gasoline grades.
Furthermore, several grades of gasoline contamination by organic solvents (1% to 40% alcohol or
aromatic hydrocarbon) could be estimated, including the nature of the contaminant [94]. A similar
setup was applied to identify five citrus-scented odors. It could be shown that virtual sensor arrays
and multi-sensor arrays yielded comparable results. The identification accuracy was below 100% for
both arrays but could be increased to 100% by combination of the arrays to virtual multi-sensor arrays.
This confirms that this new approach of virtual multi-sensor arrays is highly promising, particularly if
complex mixtures are to be identified [93].

Virtual FBAR arrays using dual signal transduction were recently introduced. The FBARs were
coated with conductive polymer films, and combinations of frequency with resistance or impedance
readouts were evaluated, partly with additional modulation of the temperature. These setups allowed the
differentiation between five aliphatic compounds or one aromatic and five aliphatic compounds [91,92].
A similar approach was performed when a one-port SAW resonator made of 128◦ YX-LiNbO3 was coated
with a conductive material. Parallel to the frequency change, variations of the conductive polymer’s
resistance were measured, the latter through the two terminals of the IDT. Three aliphatic compounds
from three different classes were distinguished by this setup [90]. Furthermore, the frequencies of
a polymer-coated SAW quartz one-port resonator were recorded at different temperatures in the range of
−20 to 70 ◦C. Characteristic signal patterns were obtained for harmful vapors of different VOC classes,
i.e., an alcohol, an aromatic compound, an organophosphonate, and diesel fuel [88].

3.1.5. Acoustic QCM and SAW Single Sensors Combined with GC or SPME

As shown in Figure 3, a single sensor combined with GC may also act as an e-nose for multi-analyte
detection. Over the past decade, such e-noses have been predominated by GC-SAW setups, probably
because of their commercial availability (zNose series; see Table 2).
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GC-QCM was used to classify 16 odors, including organic solvents, fuels, insecticides, and
perfumes. Subsequent training of a neural network to recognize these odors resulted in an identification
rate of 85% [168]. A QCM sensor was coated with 1,10-decanedithiol and connected to a SPME fiber to
follow the degradation of butter. SPME-GC-MS measurements revealed 13 major volatile compounds
during the degradation process which were all detected by the SPME-QCM system, albeit with
different sensitivities. However, both setups detected 2-heptanone, which is a good marker for butter
oxidation for the first three weeks [169]. Another QCM sensor was subsequently coated with a polymer
and a carbonaceous nanomaterial, where the latter increased the sensitivity of the QCM up to three
orders of magnitude compared to the uncoated device. GC-QCM measurements could be performed
at temperatures above 100 ◦C and allowed the determination of eight illegal drugs from sample
collection cotton swabs with the lowest amounts of detection ranging from 0.04-3 µg, according to the
substance [170].

Applications of GC-SAW instruments from the zNose series include the following:

• Breast cancer risk prediction based on volatile biomarkers in breath samples. The zNose results
were similar to results obtained with GC-MS [171].

• Quality control of medicinal plants based on differences in the herbal aroma components. Several
plants of the Lavandula species, including lavenders and lavandins, could clearly be identified
and distinguished from each other [172], as could different plant parts (leaves and arial and
underground stems) of Houttuynia cordata Thunb [173].

• Characterization of fruit ripening and aroma quality based on volatile profiles. Evaluation of
mango maturation was successfully combined with rot prediction to estimate the shelf life of the
fruit [174]. Melons harvested at different stages of ripeness (early and full) could be distinguished
from each other [175]. Several blueberry cultivars were classified according to their genotypes or
their degree of ripeness [176].

• Classification and quality control of processed foods based on volatile profiles. Fatty acids determine
the aroma profile of fats, lards, and oils. Pure animal body fats and lards with varying fat contents
could be distinguished from each other and from adulterated samples. Adulteration of lard with
chicken fat could be detected down to an impurity level of 1% [177]. Contaminations of virgin
coconut oil with palm kernel oil were detected down to an impurity level of 1% [178]. Turkish extra
virgin olive oil samples could be classified according to cultivar, geographical origin, and harvest
year [179]. Cabernet Franc and Merlot wines were identified with regard to different canopy sides.
Furthermore, it could be detected whether the grapes were treated with ethanol at the beginning of
ripening. These differences were not necessarily detectable in sensory tests, showing that the e-nose
recognizes both aroma and non-aroma volatiles [180,181].

3.2. Acoustic Liquid Sensor Arrays: E-Tongues

E-tongue development in the past decade has mainly included QCM multi-sensor arrays and
SAW virtual arrays.

3.2.1. QCM Multi-Sensor Arrays

An array of four QCM sensors coated with different phthalocyanines was successfully applied
to discriminate between four pesticides from four common classes (organophosphate, carbamate,
pyrethroid ester, and azole) in water with limit of detection (LOD) values below 0.09 mg/L (0.09 ppm) [49].
An array with three similarly coated QCM sensors was used to detect and distinguish three organic
solvents (one aromatic and two chlorinated aliphatic hydrocarbons) in water. Both pure substances
as well as binary mixtures were applied in concentrations ranging from 14 to 990 ppm and could
be identified with average prediction errors below 5% [182]. Eight QCM sensors were coated with
polymethyl methacrylate (PMMA)-plasticizer films using varying plasticizer contents. The sensors
were operated in two arrays at four sensors to detect and sufficiently discriminate five aromatic
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hydrocarbons in water at concentrations up to 100 ppm, representing water contamination by
petroleum hydrocarbons [50].

3.2.2. SAW Virtual Sensor Arrays

SAW sensors in the following were based on 36◦ YX-LiTaO3.
Uncoated SH-SAW two-port resonators were used as single sensor devices to investigate liquid

samples representing six tastes, i.e., salty, sweet, sour, bitter, umami, and metallic. Phase and attenuation
values were recorded and plotted against each other, allowing the classification of the 0.1 M taste
samples and the recognition of binary taste mixtures [87].

A polymer-coated SH-SAW delay-line device was used to detect several ppm concentrations of
two organophosphate pesticides in water. Using both frequency shifts after the equilibrium is reached
and the time constants associated with the adsorption process allowed the differentiation between
the two compounds [71]. SH-SAW dual delay-line devices were used as single-sensor devices as one
line served as a sensing line and the other served as a reference line. Polymer coating of the sensing
line and the exploitation of both equilibrium frequency shifts and response times enabled qualitative
and quantitative determination of aromatic compounds and compound mixtures in water at sub-ppm
concentrations. As the signals of the structural isomers ethylbenzene and o-, m-, and p-xylenes were
similar, only a combined concentration for those components in mixtures could be given. Aliphatic
components, however, did not interfere with the signal responses. In mixtures, the concentrations
obtained with the sensor were comparable to those obtained with GC-PID (GC with photoionization
detector), with the average difference being ±6.3% [72,86].

3.3. Acoustic Biosensor and Chemosensor Arrays

Biosensor and chemosensor applications require functionalization with specific recognition layers.
Consequently, multi-analyte detection requires multi-sensor arrays with individual specific coatings.

3.3.1. QCM Bio- and Chemosensor Arrays

QCM biosensors have mainly been developed for medical applications. A 2 × 5 array of QCM
sensors with antibody coatings was developed for monitoring the renal function by quantification of
four nephropathy-related urinary proteins in urine samples. The limits of quantification determined
for a coefficient of variation below 10% for five replicates were few to several µg/L [48]. The same
setup was used for determining five pathogenic bacteria in wound secretion and pus. The pathogens
were detected by means of the bacterial DNA; hence, corresponding single-stranded DNA probes
were immobilized on the sensor surfaces. Measurable bacterial concentrations ranged from 1.5·102 to
1.5·108 CFU/mL (CFU: colony forming unit). The results regarding bacterial content being positive or
negative were in good agreement with those from conventional culture techniques [36]. A 2 × 2 array
of QCM sensors with coatings of leukemic lineage-associated CD (cluster of differentiation) antibodies
was used for immunophenotyping of acute leukemia by detection of leukemia CD cell antigens in
human bone marrow samples. The detection performance of the QCM immunoassay was comparable to
immunohistochemistry, flow cytometry, and fluoroimmunoassay [183]. For the detection of drug residues
in livestock production, an array of three MIP-coated QCMs was developed to detect clenbuterol and
structural analogues of two of its metabolites in swine urine. The analytes could clearly be differentiated.
The LOD for clenbuterol was determined to be 10 nM (3 ng/mL), which was comparable to other
devices [184].

Newer developments of QCM biosensor arrays include a monolithic QCM sensor array with
three sensing areas and a wireless, electrodeless QCM immunosensor array with up to ten channels.
The performances of these arrays regarding multi-analyte detection were demonstrated by detection
of multiple proteins using the corresponding antibody coatings or, in the case of antibody detection,
with an additional protein A coating. The analyte proteins bound preferably on surfaces with the
corresponding binding partners, while nonspecific binding was observed only to a small extent. As the
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research focused mainly on the functionality of the newly introduced array setups, comparatively high
analyte concentrations were applied, ranging from several to several hundred µg/mL [34,105].

3.3.2. FBAR Biosensor Arrays

The development of FBAR biosensor arrays for multi-analyte detection is just beginning. Arrays
made of up to 64 FBARs were introduced for multiple protein detection by means of corresponding
antibody coatings and for multiplexed DNA measurements. Two antibodies applied at a concentration
of 1 µg/mL showed specific binding to the respective corresponding antibody coatings. DNA strands
applied at a concentration of 1 µM in diluted serum (1:100) also bound only to the corresponding
coatings while nonspecific binding from serum components was negligible [51,185].

3.3.3. SAW Biosensor Arrays

SH-SAW dual delay-line devices based on a 42.5◦ rotated Y-cut, z-propagating quartz crystal were
provided with PMMA layers to allow operation with Love waves. Each device was combined with
a four-channel microfluidic setup in a way that, on each line, four subareas were created, i.e., eight
subareas were obtained in total (µF-on-SAW; see Section 2.3). Phase shifts corresponding mainly to mass
adsorption or desorption were used as signal response. Coating each line completely with a different
receptor should allow that only the corresponding proteins would bind on the respective line. This was
confirmed by selective detection of four biotinylated proteins (50 µg/mL) with neutravidin coatings
and by selective antibody detection (50 µg/mL) with protein G coatings. Furthermore, specific protein
detection (100 µg/mL) was obtained via coating the subareas with lipids containing different functional
head groups. Coating the four subareas with four different antibodies enabled the specific detection of
four corresponding cardiac markers, allowing cardiovascular risk assessment. Both established markers
(creatine kinase-MB (CK-MB) and C-reactive protein (CRP)) and potential future heart disease markers
(D-dimer and pregnancy-associated plasma protein A (PAPP-A)) were applied in concentrations ranging
from 0.25–20 µg/mL in buffer, allowing the detection of critically high protein concentrations. However,
the critical cutoff values could be detected only for CRP, with a cutoff concentration range of 1–10 µg/mL.
The cutoff concentrations of the other cardiac markers are in the sub-µg/mL range and, hence, were too
small for detection here. Furthermore, the measurements have not yet been performed with real serum
samples [35,186,187].

4. Conclusions

Despite the many requirements to be met when working with acoustic sensors and sensor arrays,
acoustic sensor arrays have successfully been utilized in numerous applications for multi-analyte
detection in gaseous and liquid samples. In most cases, established BAW and SAW sensor devices and
configurations have been used, with the research focusing on layer optimization and new applications.
Newer sensor developments aim at the introduction of FBARs as sensor devices, which promise higher
sensitivities because of the very high frequencies. However, for higher mass-sensitivities, the noise
of these devices is still to be reduced. Furthermore, fabrication and signal recording of FBARs is not
yet standardized, i.e., more investigations are required to get the desired low-cost, high-performance
devices. Other sensor system developments aim at wireless or wireless and electrodeless readouts.
Such configurations can increase the sensor performance, as shown for QCM devices. Furthermore,
wireless sensor systems will allow monitoring of hazardous substances from a safe distance, particularly
when increased to a network of multiple wireless sensor arrays.

Regarding device coatings, polymers have been and continue to be widely used, with further
developments on newly developed polymers and imprinting processes. A newly introduced approach
is the use of biomolecules (DNA, peptides, and proteins) in gas sensing applications to introduce new
interaction mechanisms for better selectivity. First results are promising, and investigations of the
stability will show in which way the new layers can compete with the conventional ones. However,
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particularly for newly introduced coatings, the layer stability often is not yet sufficiently investigated
regarding storage or, in the case of chemical sensors, performance in multiple measurements.

Array development itself goes in two opposite directions. On the one hand, the number of sensors
is increased (e.g., by using FBARs); on the other hand, the sensor number is reduced while the signal
processing is enhanced, leading to virtual arrays. The latter has the advantage that, by using fewer
sensors, the number of different sensor drifts interfering with the sensor signals is reduced, which
should facilitate the calibration effort. However, particularly if the analytes to be detected are very
similar, a certain number of sensors is still required to ensure selective detection of the individual
components. Recent studies combine both approaches to obtain high-performance arrays with as little
complexity as possible.

While sensor arrays for chemical sensors and e-noses are very common, approaches for biosensor
arrays are still inadequately represented, though their feasibility has been demonstrated. The reason
for this may be that, for instance, biomarker profiles for diagnostic applications, which could easily be
determined with such arrays, have not yet been fully identified, so that the key applications of these
arrays are not yet fully defined.
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