4,794 research outputs found

    A survey of network lifetime maximization techniques in wireless sensor networks

    No full text
    Emerging technologies, such as the Internet of things, smart applications, smart grids and machine-to-machine networks stimulate the deployment of autonomous, selfconfiguring, large-scale wireless sensor networks (WSNs). Efficient energy utilization is crucially important in order to maintain a fully operational network for the longest period of time possible. Therefore, network lifetime (NL) maximization techniques have attracted a lot of research attention owing to their importance in terms of extending the flawless operation of battery-constrained WSNs. In this paper, we review the recent developments in WSNs, including their applications, design constraints and lifetime estimation models. Commencing with the portrayal of rich variety definitions of NL design objective used for WSNs, the family of NL maximization techniques is introduced and some design guidelines with examples are provided to show the potential improvements of the different design criteri

    Optimal Deployment of Solar Insecticidal Lamps over Constrained Locations in Mixed-Crop Farmlands

    Get PDF
    Solar Insecticidal Lamps (SILs) play a vital role in green prevention and control of pests. By embedding SILs in Wireless Sensor Networks (WSNs), we establish a novel agricultural Internet of Things (IoT), referred to as the SILIoTs. In practice, the deployment of SIL nodes is determined by the geographical characteristics of an actual farmland, the constraints on the locations of SIL nodes, and the radio-wave propagation in complex agricultural environment. In this paper, we mainly focus on the constrained SIL Deployment Problem (cSILDP) in a mixed-crop farmland, where the locations used to deploy SIL nodes are a limited set of candidates located on the ridges. We formulate the cSILDP in this scenario as a Connected Set Cover (CSC) problem, and propose a Hole Aware Node Deployment Method (HANDM) based on the greedy algorithm to solve the constrained optimization problem. The HANDM is a two-phase method. In the first phase, a novel deployment strategy is utilised to guarantee only a single coverage hole in each iteration, based on which a set of suboptimal locations is found for the deployment of SIL nodes. In the second phase, according to the operations of deletion and fusion, the optimal locations are obtained to meet the requirements on complete coverage and connectivity. Experimental results show that our proposed method achieves better performance than the peer algorithms, specifically in terms of deployment cost

    Target-Barrier Coverage Improvement in an Insecticidal Lamps Internet of UAVs

    Get PDF
    Insecticidal lamps Internet of things (ILs-IoT) has attracted considerable attention for its applications in pest control to achieve green agriculture. However, ILs-IoTs cannot provide a perfect solution to the migratory pest outbreak if the ILs are fixed on the ground. In this paper, we embed ILs in unmanned aerial vehicles (UAVs) as the mobile nodes, which can be rapidly landed on the ground to kill agricultural pests, and the Internet of UAVs (IoUAV) is introduced to extend the application of ILs-IoTs. To take full advantage of the IL-IoUAVs, we formulate the problem of target-barrier coverage and investigate how to minimise the number of IL-UAVs in constructing the target-barrier coverage. The target-barrier coverage is introduced utilizing the realistic probabilistic sensing model of IL-UAVs, based on which we study how to guarantee the target-barrier coverage while minimizing the number of IL-UAVs needed. The problem is solved by an optimal algorithm to merge multiple target-barriers. Evaluation results show the efficiency of our designed algorithms for constructing target-barrier coverage

    Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas

    Get PDF
    A combination of scientific, economic, technological and policy drivers is behind a recent upsurge in the use of marine autonomous systems (and accompanying miniaturized sensors) for environmental mapping and monitoring. Increased spatial–temporal resolution and coverage of data, at reduced cost, is particularly vital for effective spatial management of highly dynamic and heterogeneous shelf environments. This proof-of-concept study involves integration of a novel combination of sensors onto buoyancy-driven submarine gliders, in order to assess their suitability for ecosystem monitoring in shelf waters at a variety of trophic levels. Two shallow-water Slocum gliders were equipped with CTD and fluorometer to measure physical properties and chlorophyll, respectively. One glider was also equipped with a single-frequency echosounder to collect information on zooplankton and fish distribution. The other glider carried a Passive Acoustic Monitoring system to detect and record cetacean vocalizations, and a passive sampler to detect chemical contaminants in the water column. The two gliders were deployed together off southwest UK in autumn 2013, and targeted a known tidal-mixing front west of the Isles of Scilly. The gliders’ mission took about 40 days, with each glider travelling distances of >1000 km and undertaking >2500 dives to depths of up to 100 m. Controlling glider flight and alignment of the two glider trajectories proved to be particularly challenging due to strong tidal flows. However, the gliders continued to collect data in poor weather when an accompanying research vessel was unable to operate. In addition, all glider sensors generated useful data, with particularly interesting initial results relating to subsurface chlorophyll maxima and numerous fish/cetacean detections within the water column. The broader implications of this study for marine ecosystem monitoring with submarine gliders are discussed

    Design requirements for generating deceptive content to protect document repositories

    Get PDF
    For nearly 30 years, fake digital documents have been used to identify external intruders and malicious insider threats. Unfortunately, while fake files hold potential to assist in data theft detection, there is little evidence of their application outside of niche organisations and academic institutions. The barrier to wider adoption appears to be the difficulty in constructing deceptive content. The current generation of solutions principally: (1) use unrealistic random data; (2) output heavily formatted or specialised content, that is difficult to apply to other environments; (3) require users to manually build the content, which is not scalable, or (4) employ an existing production file, which creates a protection paradox. This paper introduces a set of requirements for generating automated fake file content: (1) enticing, (2) realistic, (3) minimise disruption, (4) adaptive, (5) scalable protective coverage, (6) minimise sensitive artefacts and copyright infringement, and (7) contain no distinguishable characteristics. These requirements have been drawn from literature on natural science, magical performances, human deceit, military operations, intrusion detection and previous fake file solutions. These requirements guide the design of an automated fake file content construction system, providing an opportunity for the next generation of solutions to find greater commercial application and widespread adoption

    Improved Coverage and Connectivity via Weighted Node Deployment in Solar Insecticidal Lamp Internet of Things

    Get PDF
    As an important physical control technology, Solar Insecticidal Lamp (SIL) can effectively prevent and control the occurrence of pests. The combination of SILs andWireless Sensor Networks (WSNs) initiates a novel agricultural Internet of Things (IoT), i.e., SIL-IoTs, to simultaneously kill pests and transmit pest information. In this paper, we study the weighted SIL Deployment Problem (wSILDP) in SIL-IoTs, where weighted locations on ridges are prespecified and some of them are selected to deploy SILs. Different from the existing studies whose optimization objective is to minimise the deployment cost, we consider the deployment cost and the total weight of selected locations jointly. We formulate the wSILDP as the Weighted Set Cover (WSC) problem and propose a Layered Deployment Method based on Greedy Algorithm (LDMGA) to solve the defined optimization problem. The LDMGA is composed of two phases. Firstly, SILs are deployed layer by layer from the boundary to the centre until the entire farmland is completely covered. Secondly, on the basis of three design operations, i.e., substitution, deletion and fusion, the suboptimal locations obtained in the first phase are fine-tuned to achieve the minimum deployment cost together with the maximum total weight for meeting the coverage and connectivity requirements. Simulation results clearly demonstrate that the proposed method outperforms three peer algorithms in terms of deployment cost and total weight

    How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review

    Full text link
    Context: Machine Learning (ML) has been at the heart of many innovations over the past years. However, including it in so-called 'safety-critical' systems such as automotive or aeronautic has proven to be very challenging, since the shift in paradigm that ML brings completely changes traditional certification approaches. Objective: This paper aims to elucidate challenges related to the certification of ML-based safety-critical systems, as well as the solutions that are proposed in the literature to tackle them, answering the question 'How to Certify Machine Learning Based Safety-critical Systems?'. Method: We conduct a Systematic Literature Review (SLR) of research papers published between 2015 to 2020, covering topics related to the certification of ML systems. In total, we identified 217 papers covering topics considered to be the main pillars of ML certification: Robustness, Uncertainty, Explainability, Verification, Safe Reinforcement Learning, and Direct Certification. We analyzed the main trends and problems of each sub-field and provided summaries of the papers extracted. Results: The SLR results highlighted the enthusiasm of the community for this subject, as well as the lack of diversity in terms of datasets and type of models. It also emphasized the need to further develop connections between academia and industries to deepen the domain study. Finally, it also illustrated the necessity to build connections between the above mention main pillars that are for now mainly studied separately. Conclusion: We highlighted current efforts deployed to enable the certification of ML based software systems, and discuss some future research directions.Comment: 60 pages (92 pages with references and complements), submitted to a journal (Automated Software Engineering). Changes: Emphasizing difference traditional software engineering / ML approach. Adding Related Works, Threats to Validity and Complementary Materials. Adding a table listing papers reference for each section/subsection

    A Learning-based Approach to Exploiting Sensing Diversity in Performance Critical Sensor Networks

    Get PDF
    Wireless sensor networks for human health monitoring, military surveillance, and disaster warning all have stringent accuracy requirements for detecting and classifying events while maximizing system lifetime. to meet high accuracy requirements and maximize system lifetime, we must address sensing diversity: sensing capability differences among both heterogeneous and homogeneous sensors in a specific deployment. Existing approaches either ignore sensing diversity entirely and assume all sensors have similar capabilities or attempt to overcome sensing diversity through calibration. Instead, we use machine learning to take advantage of sensing differences among heterogeneous sensors to provide high accuracy and energy savings for performance critical applications.;In this dissertation, we provide five major contributions that exploit the nuances of specific sensor deployments to increase application performance. First, we demonstrate that by using machine learning for event detection, we can explore the sensing capability of a specific deployment and use only the most capable sensors to meet user accuracy requirements. Second, we expand our diversity exploiting approach to detect multiple events using a distributed manner. Third, we address sensing diversity in body sensor networks, providing a practical, user friendly solution for activity recognition. Fourth, we further increase accuracy and energy savings in body sensor networks by sharing sensing resources among neighboring body sensor networks. Lastly, we provide a learning-based approach for forwarding event detection decisions to data sinks in an environment with mobile sensor nodes
    • …
    corecore