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Abstract—Insecticidal lamps Internet of things (ILs-IoTs) has
attracted considerable attention for its applications in pest control
to achieve green agriculture. However, ILs-IoTs cannot provide
a perfect solution to the migratory pest outbreak if the ILs are
fixed on the ground. In this paper, we embed ILs in unmanned
aerial vehicles (UAVs) as the mobile nodes, which can be rapidly
landed on the ground to kill agricultural pests, and the Internet
of UAVs (IoUAV) is introduced to extend the application of ILs-
IoTs. To take full advantage of the IL-IoUAVs, we formulate
the problem of target-barrier coverage and investigate how to
minimise the number of IL-UAVs in constructing the target-
barrier coverage. The c-target-barrier coverage is introduced
utilizing the realistic probabilistic sensing model of IL-UAVs,
based on which we study how to guarantee the e-target-barrier
coverage while minimizing the number of IL-UAVs needed. The
problem is solved by an optimal algorithm to merge multiple
target-barriers. Evaluation results show the efficiency of our
designed algorithms for constructing c-target-barrier coverage.

Index Terms—Internet of things (IoT), insecticidal lamp (IL),
target-barrier coverage, probabilistic sensing model, unmanned
aerial vehicle (UAV).

I. INTRODUCTION

It is critical to enhance crop productivity for the exponential
growth of population in the world while shrinking agricultural
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Fig. 1: Our designed IL-UAV node and the architecture of an
IL-IoUAV.

lands and saving natural resources. As is well known, migra-
tory pests cause serious crop damage and yield loss. Chemical
pesticides have long been used to control pests, which emerge
widespread disadvantages including environmental pollution,
life-threatening, pesticide residues in food, and loss of natural
antagonists to pests [1], [2]. As a fast-growing pest control
technology, insecticidal lamps (ILs) have been widely applied
in the Internet of things (IoT) to control agricultural pests.
ILs-IoTs was introduced by [3] for the first time, where ILs
are combined with wireless sensor networks (WSNs). This
green technology has received increasing attention from both
academia and industry since it is an effective measure to assist
pest control.

However, the ILs-IoTs can handle the surrounding in-
sects and monitor the insect population. However, changes
in climate, interspecific competition, food quality, and other
variables might precipitate the explosive growth of insects.
In this case, the ILs-IoTs may not cope with the explosive
growth of insect pests. In other words, ILs-IoTs cannot provide
a perfect solution to the pest outbreak if the ILs are fixed on
the ground [4]. Besides, insects are active at different times
depending on the species [5]. Due to the limited battery, the
ILs fixed on the ground cannot work all night.

As unmanned aerial vehicles (UAVs) have attractive ad-
vantages of easy deployment, flexible movement and line of
sight (LoS) connections, they have been equipped with various
sensors for a wide range of applications [6], [7]. In smart
agriculture, UAVs are utilised to spread agricultural chemicals
such as pesticides, fungicides, and fertilizer across farms [8],
[9]. In particular, thanks to their adaptive mobilities, UAVs
can be used to track migratory insects and rapidly landed on
the ground to kill these agricultural pests. Inspired by this, we
embed ILs in UAVs and construct the IL-Internet of UAVs
(IoUAV), as shown in Fig. 1.

Since migratory insects with the phototactic feature are
attracted by the ILs and collide with its metal mesh, the



mesh releases high voltage pulse discharge. Then, the faster
the discharge frequency of ILs, the higher insect density. The
highest density locations are scheduled as the pest outbreak
area. Before these ILs run out of batteries, IL-UAV nodes
can be employed in response to an outbreak of agricultural
pests. However, how to schedule IL-UAV nodes to perform the
insecticidal mission is a challenging coverage problem, which
can be classified into three types, i.e., area coverage [10],
target coverage [11], and barrier coverage [12]. To prevent
pests migrating from an area to the other, the IL-UAV nodes
have to be rapidly landed on the ground to form a continuous
circular barrier enclosed the pest control area. Compared with
traditional coverage measurements, this application exhibits
special features and requires different construction considera-
tions. The deployment of an IL-IoUAV needs to form a closed
barrier while keeping a certain distance between the barrier
and the pest area centre. Then, the pest area center can be
considered as a target, and the enclosed barrier is applied in
the pest control using an IL-IoUAV, which refers to target-
barrier coverage [13].

In the target-barrier coverage, two conflicting characteristics
emerge concerning the combination of target coverage and bar-
rier coverage. First, a distance constraint is used to characterise
the pests’ migration. If the deployed IL-UAVs cannot approach
the enclosed region with the distance constraint, more IL-
UAVs need to be scheduled around the pest control region
to yield the distance constraint. From another perspective, to
achieve more benefits from an IL-IoUAYV, the number of IL-
UAVs should be reduced for forming the target-barrier cov-
erage. Driven by the above conflicting characteristics, the IL-
UAVs are deployed evenly on a circle and the centre is located
in the target with radius of the distance constraint. Based on
this, the number of IL-UAVs and the total cost for many targets
are minimised through deploying the IL-UAVs in optimal
locations. Moreover, we consider the simultaneous control of
many pest areas in a vast farmland through the target-barrier
coverage, which refers to a deterministic deployment method
of IL-UAVs for meeting the requirements of all targets.

Furthermore, new challenges are modelled by probabilistic
sensing to applied to the target-barrier coverage in the IL-
IoUAV. The traditional binary sensing model is superseded by
the probabilistic sensing model, which depicts the decreasing
ability with distance [14], [15]. The reason is that not all
phototactic insects are attracted and killed by the IL-UAVs.
Then, the probabilistic sensing model appropriates to inves-
tigate each IL-UAV’s capability of killing pests. Thus, it is
harder to specify the overlapping between the sensing ranges
of individual IL-UAVs. Besides, the traditional converge defi-
nition, which ensures all parts of the surveillance region must
be covered by the employed IL-UAVs’ sensing. Then, it is
not suitable to analyse the performance of coverage using
the binary sensing model in the IL-IoUAVs, which should
take the probabilistic nature of each IL-UAV. However, to
the best of our knowledge, the deployment of IL-IoUAVs in
the probabilistic sensing model to construct the target-barrier
coverage has not yet been investigated.

To address the aforementioned challenges, this paper inves-
tigates the target-barrier coverage problem on the deployment

of IL-IoUAVs in the agricultural pest control. Our goal is to
minimise the employed number of IL-UAVs using the proba-
bilistic sensing model to construct the target-barrier coverage.
In brief, the main contributions of this paper are summarized
as follows:

¢« We combine the advantages of UAVs and ILs-IoTs to
construct a new IL-IoUAVs framework in the practical
applications of pest control for smart agriculture.

o We formulate the optimisation problem of the deployment
as the minimisation of the number of IL-UAVs for
constructing the e-target-barrier coverage, which the first
study of the probabilistic sensing model in the target-
barrier coverage problem, to the best of our knowledge.

o We propose a deterministic deployment strategy to solve
the optimisation problem for the deployment of IL-UAVs.
After we make the analysis of the target-barrier circles
and its properties, a merged algorithm is derived to
construct the optimal e-target-barrier coverage.

The rest of this paper is organized as follows. Section II
reviews the state-of-the-art of the coverage problems. Section
IIT presents the network model and defines the e-target-barrier
coverage. Section IV formulates the optimisation problem
of the deployment of IL-UAVs and proposes the algorithm
to solve the optimisation problem. Section V evaluates the
proposed algorithms by simulations. Finally, we conclude this
paper in Section VI.

II. RELATED WORKS

The coverage problems including three types: area coverage,
target coverage, and barrier coverage, have attracted many
researchers. Among them, the barrier coverage problem is the
most similar one with our target-barrier coverage problem. In
this section, we enclose previous works that are related with
the barrier coverage problem of deployment and the studies
on [oUAVs.

The barrier coverage problem was first investigated in [16],
which put forward the concepts of strong barrier coverage,
weak barrier coverage, and K-barrier coverage. The purpose
of barrier coverage is to construct a narrow and long barrier
belt area of the employed sensors to detect intruders passing
through the barrier area. In [17], the barrier coverage problem
was extended to a concept of two-dimensional barrier coverage
problem, where the barrier was regarded as a belt-shaped
area instead of a single line. Later on, the barrier problems
with various types of sensors have been addressed, e.g., with
radar sensors, camera sensors, and heterogeneous sensors. In
[18] and [19], the deployment of bistatic radar sensors was
investigated in the barrier coverage problem. In [20] and [21],
the full-view barrier coverage problem and the local full-
view barrier coverage problem were discussed, respectively,
in camera sensor networks. To make the best of the detection
ability of heterogeneous sensors, a method was proposed in
[22] to efficiently form barrier coverage.

Based on the traditional barrier coverage, several barrier
coverage models have been proposed to cater for practical
applications. In a large collection of works [23], [24], the
construction of K-barrier coverage has been studied to en-
hance the detection capability of the IoTs. To exploit the



collaboration and information fusion between neighbouring
sensors, a barrier information coverage was defined in [25]
to reduce the number of active sensors needed for covering a
barrier and hence prolong the network lifetime. Moreover, a
widely adopted confident information coverage was exploited
in [26] to provide the coverage service for ocean border
environmental surveillance. Then, a novel coverage model
called target-barrier coverage was introduced in [13], which
considers the target-barrier as an enclosed barrier embracing
the protected target area. The aforementioned works focused
on the how to construct barriers in a distributed way while
minimizing the number of sensors required in each barrier for
satisfying predetermined thresholds.

However, most of these works adopted the classical boolean
sensing model. Although this model helped with researchers’
better understanding of the barrier coverage problem, it is
a rough approximation to the real sensing. To investigate
how many sensors are capable of providing an acceptable
breach detection probability, a probabilistic detection model
was proposed in [27] with a false alarm rate. Further, the
barrier coverage problem using the probabilistic sensing model
was investigated in [25], under the assumption that intruders
have been crossing the barrier area along a straight line. Based
on [25], the probabilistic sensing model was used in [28]
to theoretically analyse the detection probability of arbitrary
path for intruders crossing the barrier formed by sensors,
where the maximum speed of possible intruders was taken
into consideration since the sensor networks were designed
for various intruders in various scenarios. In [29], the genetic
algorithm was developed to solve the problem of combining
point coverage and barrier coverage, with the probabilistic
sensing model. With the aid of probabilistic sensing model,
an optimal control-based solution was proposed in [30] to
solve the sensors’ deterministic deployment problem, where
the proposed optimal control framework provided a theoretical
basis for the resultant solution.

Concerning the applications of [oUAVs, they have been
adopted in a wide range of agricultural aviation operations,
including precision seeding, vegetation testing, and pesticide
spraying [31]-[33]. However, the mobility and the constraints
such as short battery lifetime, limited communications, and
delay result in complicated problems of coverage in IoUAVs.
Considering the anisotropy of monitoring angle, a monitoring
model was established in [34], where the monitoring quality
was anisotropic along with the monitoring angle and varying
with the monitoring distance. Based on the actual trajectories
of UAVs and the real-time control decisions, a coverage
map can be constructed [35]. To achieve better IoUAVs, the
problems on how to deploy UAV base stations have been
investigated for maximising the coverage and reducing the
interference [36], [37].

The combination of UAVs and IoTs has been promoted
the development of precision agriculture, especially in the
applications of aerial crop monitoring and smart spraying
tasks [38]. Furthermore, based on the integration of wireless
radio-frequency modules into existing ILs, the concept of
IoT-based solar insecticidal lamps (ILs-IoTs) is introduced.
In the existing works [4], [39], [40], the authors proposed

some methods to deploy the ILs-IoTs node on the ground.
It is pointed out that these ILs-IoTs cannot provide a perfect
solution to migratory pests with time-varying locations since
all ILs-IoTs nodes are fixed on the ground. The flexibility of
UAVs may provide a better solution for pest control. Thus, we
introduce the IL-IoUAVs to take full advantage of both UAVs
and ILs-IoTs.

To the best of our knowledge, [41] is the first work that
the IL-UAV was put forward for emergency applications after
theft and destruction of IL node, e.g., tracking, patrol inspec-
tion, and so on. However, the IL-UAV is only the auxiliary
equipment of IL fixed on the ground, and the authors do not
discuss how to deploy IL-UAV nodes to form an IL-IoUAVs.
In this paper, for the purpose of agricultural pest control, the
probabilistic sensing model is exploited to construct the target-
barrier coverage in an energy-efficient way. For the practical
implementation of IL-IoUAVs, we first propose the definition
of e-target-barrier coverage, utilizing the probabilistic sensing
model for the target-barrier coverage model. Then, we propose
a deterministic deployment method to construct the e-target-
barrier coverage.

III. SYSTEM MODEL

In this section, we describe the system model, which
consists of the sensing model and the target-barrier coverage
model.

The main notations summarize in Table 1.

TABLE I: Summary of Key Notations

Notation Meaning

T A set of targets

tr The kth target

m The number of targets

S A set of IL-UAVs

Sq The ith IL-UAV

n The number of IL-UAVs

diyt, The distance between targets ¢, and t;

5555 The distance between IL-UAVs s; and s;
ds;t, The distance between IL-UAV s; and target ¢;
0 The distance constraint of target-barrier coverage
(&) The detection probability of escape path &
€ The predetermined threshold of target-barrier coverage
B A set of e-target-barriers
be The vth target-barrier in B
U The number of target-barriers in B
c(t) The target-barrier circle of ¢
E(bv) The perimeter of by,

S(B) A set of IL-UAVs used to construct B
|S(B)| The number of IL-UAVs in S(B)
S(by) A set of IL-UAVs in e-target-barrier b,
|S(by)| The number of IL-UAVs in S(by)

T (by) A set of targets monitored by e-target-barrier b,
[T (by)] The number of targets in 7 (by)

A. Probabilistic sensing model

Most existing works [4], [39], [40] adopted the boolean
sensing model of a circular region for sensors, where a sensor
can detect any event occurring at any point within its sensing
region at probability 1 but it cannot detect anything outside the
region. However, the boolean sensing model is an ideal model
for the insecticidal lamp. The probabilistic sensing model is



appropriate for the deployment of IL-UAVs in the application
of agricultural pest control.

As an important technology of physical prevention and
control, insecticidal lamps (ILs) attract pests by the phototaxis
of insects. The phototaxis of pests drives them to fly to the
launched lamp of an IL, which is equipped with a set of the
high-voltage power grid to kill pests. On the one hand, we
cannot ensure all phototactic insects are attracted by the IL-
UAVs since the phototaxis of insects cannot guarantee that all
insects reach the launched lamp of the IL. Insects are affected
by their habits, size, wind direction, crop height, and other
environmental factors during flight. The farther the distance
between insect pests and the IL, the lower the probability
of insect pests successfully flying to the launched lamp of
the IL. On the other hand, even if pests successfully get to
the launched lamp of the IL, it cannot be guaranteed that all
insects are killed by the IL. The reason is that the success rate
is affected by the size of the insect, the angle of flight, the
ability to withstand electric shocks, and other factors. Thus,
not all the attracted insects will be killed by the IL-UAVs.
Based on the above analysis, the pest control ability of the IL
can be approximate as a probabilistic sensing model.

Besides, It has been demonstrated that the probabilistic
model is more accurate to depict the IL-UAVs in terms of
killing agricultural pests [42], [43]. In this work, we adopt
the Elfes sensing model [44] to describe the probabilistic
characteristics of IL-UAVs. According to this sensing model,
the probability that pest e is killed by IL-UAV s;, is given by

17 dsie < T1
Ps;e = e—)«x, 71 < dsie < T2 (1)
O, dsie > To

where d,,. is the distance between pest e and IL-UAV s;, and
71 and 7y are the starting of uncertainty and the maximum
sensing range of the IL-UAV, respectively. Besides, A is
adjusted according to the physical properties of the IL-UAV,
and a = d,,. — 71. Note that, the probabilistic sensing model
turns into the boolean sensing model when 7 = 7.

Further, the model in (1) can be approximated for 7, = 0

B { ef)\oz’
Psie = 0,

Certainly, pest e is not always killed by IL-UAV s; when
ds,e < T2. The probability that pest e is not killed by IL-UAV
s; can be defined as the miss probability.

as
0 < ds,e < To;
dsie 2 T2.

2

ﬁs,;e =1 — DPs;e (3)
It is obvious that the total miss probability of pest e in
IL-IoUAVs is
Pe=[] (1 =psc) )
s; €S

where S denotes all IL-UAVs landed on the ground to kill
pests in the farmland.
Then, the probability of pest e killed by all IL-UAVs is

pe=1-pe=1-J](1=pse) )

s; €S

B. Target-barrier coverage model

Based on the probabilistic sensing model, we introduce
some definitions for our target-barrier network model.

In the pest area, there are m targets to be monitored contin-
uously and the target set is denoted by 7 = {t1, ¢, - ,tm}-
All targets in 7 are static in a known position. The m targets
are distributed in random in a given region, and all targets
know their locations. Futhermore, these m targets are random
distribution in the farmland. The distance between two targets
ty and t; is denoted by dy,+,, k, 1 =1,2,--- ,m.

Definition 1: Target-barrier coverage. A continuous cir-
cular bound formed around a target is a target-barrier [13]. A
0 distance constrained in the target-barrier by the application
requirements, where ¢ denotes the minimum distance from the
target to each IL-UAV.

Definition 2: Escape path. A curve in the target-barrier
coverage is referred to as an escape path if it crosses the
completed barrier coverage.

As illustrated in Fig. 2, as for the escape path &, which
detection probability is p(£), i.e., p(§) denotes the probability
that a migratory pest fleeing along the escape path &£ is
detected by at least one IL-UAV. It is guaranteed that the pest
can be detected if the binary sensing model is used for IL-
UAVs in the target-barrier coverage networks. In this case,
the detection probability of the pest, p(§) = 1, V€. However,
as the barrier coverage has various breadths, the barrier is
represented by several discrete points in certain parts, where
the pest can escape from IL-UAVs if it flies fast to cross the
fragile barrier. In this case, the detection probability of the
pest may be equal to 0, i.e., p(§) = 0,3¢. Thus, to improve
the detection probability of agricultural pests passing through
the barrier coverage, this paper studies how to achieve the
target-barrier coverage when the detection probability higher
than a predetermined threshold using the probabilistic sensing
model.

*S;i ‘ h S
Fig. 2: An example of the e-target-barrier coverage.

Definition 3: c-target-barrier coverage. In an e-target-
barrier coverage, the detection probability of the pest escaping
across any part of the barrier coverage is higher than the
predetermined threshold € € (0,1), i.e., p(§) > ¢, V&.

An e-target-barrier coverage model is illustrated in Fig.
2, with a distance constraint §, where the e-target-barrier
coverage is constructed by 11 IL-UAVs using the probabilistic
sensing model. And ¢ is the minimum detection probability for
the pest crossing the barrier area.

The target-barrier set is denoted by B = {b1,b2, - , by},
which means that u e-target-barriers will be constructed to
monitor or protect the target set 7 in the farmland. Note that



the maximum number of target-barriers is that of targets. S(b,)
and |S(b,)| denote the set of IL-UAVs landed on the ground
and employed to construct the e-target-barrier b, and the
number of IL-UAVs in S(b,), respectively. Moreover, assume
|7 (b,)| as the number of targets in 7 (b,), and T (b,) is the
set of targets in b,. Let S(B) represent the set of IL-UAVs
employed to achieve the e-target-barriers for 7, and |S(B)| is
the number of IL-UAVs.

To monitor all targets in 7, we adopt a deterministic method
to deploy a set N' = {s1, 82, , 8, } of IL-UAVs for forming
a e-target-barrier coverage. The distance between IL-UAVs s;
and s; is denoted by ds,s;, and the distance between IL-
UAV s; and target ¢; is denoted by ds,:,. The location of
each IL-UAV is known through the localisation mechanisms.
Wireless communications within the IL-IoUAVs comply with
the ZigBee protocol.

IV. OPTIMAL DEPLOYMENT OF IL-UAVS

The optimal deployment problem is first formulated to
construct an e-target-barrier coverage IL-IoUAV, based on
which the e-target-barrier coverage is theoretically analysed,
and then an algorithm is introduced to release the optimal
deployment problem.

A. Problem formulation

In this work, our problem is how to minimise the number
of IL-UAVs landed on the ground and employed to form an
e-target-barrier coverage. The optimal deployment problem is
therefore formulated as

P1l: min|S(B)| (6)
subject to
ds;t, > 0,Ys; € S(by), t; € T(by), b, € B; (7)
p(§) > €,VE,0 <e< 1 8)
f;l IT(by)| = m, Vb, € B. ©)

The constraint (7) imposes that the minimum distance
between each target and its e-target-barrier constructed is
greater than ¢. The constraint (8) indicates that the detection
probability of the pest flying along any escape path is higher
than e. The constraint (9) denotes that the constructed target-
barriers monitor all targets in 7.

Intuitively, to minimise the number of IL-UAVs employed
to construct the e-target-barrier coverage, we have to land
IL-UAVs on the ground evenly around the enclosed target
with the distance constraint. However, it is hard to enumerate
the detection probabilities over all escape paths of a pest in
the farmland. To deal with this dilemma and take advantage
of the probabilistic sensing model, we utilise the detection
probabilities between two IL-UAVs to indicate the monitoring
situation of the target-barrier coverage since all IL-UAVs are
evenly distributed around the enclosed target.

Lemma 1. The point with the minimum detection proba-
bility is located at the midpoint between two IL-UAVs.

Proof. To prove this geometry property, let ds, s, represent the
distance between the IL-UAVs s; and s;, and set d, as the

distance between a point z in the target-barrier coverage and
the IL-UAV s;. Then, the distance between the point = and
the IL-UAV s; is ds,s; — d. Thus, the detection probability
at the point zx is:

Pz = 1- (1 - pslr)(l 7p5jac)
— 1 _ (1 _ e*)\(dzf‘rl))(l o e*)\(dsisj 7dw771))(10)
Note that we only consider the exponential part of the

probabilistic sensing model, i.e., in the condition that dsisj <
279, since it does not make sense to analyse the detection
probability for the target-barrier coverage if IL-UAVs do not
have sensing capability.

To achieve the extremum value of the detection probability
at point x, p,, we acquire the first-order and the second-order
derivatives of (10) with respect to d, as

p;(dx) _ )\(e)\(dm—n) _ e)\(fdgdesisj 77'1))87)\(11%5]- —271)+1
(11
and
p;’ (d:c) — )\2(e>\(d1—‘rl) + eA(_de"dsiSj _Tl))e_)\(dsis‘j—27—l)+1’
12)
respectively.
Obviously, p, (d,) is a monotonic increasing function since
p,(dz) > 0. Therefore, p, is a convex function of d, as it
is a continuous function on the interval d, € [0, d,,s,]. Thus,

Pz achieves its extremum value, i.e., the minimum detection
probability, in the condition that p,(d,) = 0, where d, =

dsvs, /2.
Thus, the proof is concluded. O
s
=
é .
g |
a 06 L. G -
5
8
8 02, -
100 N\
Sy
M g
TN S 0o 2
Y "’/“(60 80
Width (m) \5-7'/‘(;0 40
0 9 Length (m)

Fig. 3: Illustration of the minimum detection probability at the
midpoint between two IL-UAVs.

Since all IL-UAVs have to land on the ground to perform the
prevention and control of migratory insects, the altitude of IL-
UAVs equal to 0 and we simplify the problems. Fig. 3 depicts
two IL-UAVs, which locate in the points (40, 50) and (80,
50), respectively. The midpoint between these two IL-UAVs,
(60, 50), is of the minimum detection probability. In other
words, the point of the minimum detection probability has
the same distance from each IL-UAV. As our aimed detection



probability is higher than e, the distance from the midpoint to
each IL-UAV should be shorter than

- i;/_111(1—;/1—6).

Then, the problem P1 can be simplified to the optimisation
as

de = 13)

P2: min|S(B)|
subject to (7), (9), and
de <dgs,y < 2de, 8150,y = 5155 € S(by), by, € B. (15)

(14)

i+1
The constraint (15) represents that the distance between two
adjacent IL-UAVs constructing each target-barrier should be
shorter than 2d. to guarantee the detection probability of the
pest. Besides, the distance between two adjacent IL-UAVs is
greater than or equal to d., which can be defined as the safe
distance to avoid the collision of the adjacent IL-UAVs.

B. Discussions

Since targets are randomly distributed in the farmland, it is
hard to solve the problem P2 directly. To minimise the number
of required IL-UAVs, we will make full use of the sensing
probability for each IL-UAV to meet the tight constraint
(15). Then, for the optimisation problem to be bounded, the
minimisation of the number of required IL-UAVs is converted
into the construction of the target-barriers accompanying the
shortest perimeter.

How to construct the target-barrier coverage for one target
using the minimum number of employed IL-UAVs is first
discussed.

Definition 4 (Target-barrier circle): A target-barrier circle
is that a circle with its centre is target ¢ and its radius is
distance constraint d, which is denoted by c(t).

According to the definition, L£.;) = 274 is the circumstance
of a target-barrier circle. Furthermore, a portion of target-
barrier circle is referred to as target-barrier arc. The target-
barrier circle ¢(t) is the blue circle in Fig. 2. Then, the
minimum number of IL-UAVs required pertains to the case
that all the employed IL-UAVs are distributed on ¢(¢), whose
centre is t. Then, the IL-UAVs s; and s;4; are both located at

the target-barrier circle, and the distance is dys, = dis,,, = 0.
Besides, the connection point of the sensing regions of s;
and s;y1 is h, and the distance is ds;;, = ds; ;0 = de.

Thus, the isosceles triangle is denoted by Ats;s;4+1, in which
thls;s;11. Then, we have

(16)

where the angle between th and ts;41 is 6.
Then, to construct the target-barrier for one target in Fig. 2,
the minimum number of IL-UAVs required is

S0 = | i |

In the target-barrier coverage, if all IL-UAVs are located
at the target-barrier circle for every target in 7', these target-
barriers are independent of each other. Then, the number of IL-
UAVs employed is |S(B)| = m [Ww/aﬂ for all targets.

a7

Note that it is unnecessary to deploy IL-UAVs on each
target-barrier circle when the targets are scattered densely
and the distance between targets is short. To achieve a larger
target-barrier for enclosing a portion of targets in 7, we can
further reduce the number of employed IL-UAVs in the way
of merging several target-barrier circles. We will start with
the investigation on the method of merging two target-barrier
circles.

Lemma 2. Once the distance between the two targets is
shorter than 74, a merged target-barrier can be achieved from
these two target-barrier circles.

Proof. Tt is easy to see 27 is the circumference of a target-
barrier circle. As illustrated by the red convex hull in Fig. 4,
the perimeter £} of the merged target-barrier will be equal to
twice the circumference of a target-barrier circle if the distance
di, 1, = w6. Thus, we can easy get the result that the perimeter
of a merged target-barrier is less than twice the circumference
of a target-barrier circle (£, < 4wd) if the distance between
two targets is shorter than 7d. O

Fig. 4: The merged target-barrier of ¢; and t,.

Before introducing the method of merge more target-barrier
circles, we present a theorem.

Theorem 1. The length of all target-barrier arcs is a fixed
value in a merged target-barrier.

Fig. 5: The merged target-barrier of four targets.

Proof. As we know, the length of the target-barrier (a target-
barrier circle) for a single target is 27J.

The length of two target-barrier arcs for two targets is 276,
which is shown in Fig. 4. The reason is that the semicircle
reserves for each target-barrier arc.

As for m targets, m > 2, sum all angles for these m target-
barrier circles is 2m, as shown in Fig. 5. (m — 2)7 is equal
to the sum of interior angles in m polygons, whose vertices
are the m targets. Moreover, there are another mm angles for



all target-barrier circles since that m tangent lines emerge in
every two target-barriers. Thus, 2mm — (m — 2)7 —mn = 27,
which is the sum of all m target-barrier arcs.

As a result, we can conclude that there is a fixed value (276)
for the length of all target-barrier arc. O

Note that we assume that all targets know their locations.
In the actual agricultural applications, ILs-IoTs should first
construct to kill insects and monitor the insect population.
Then, we utilize the phototactic feature of migratory insects
to calculate the insect density by the discharge frequency of
the ILs fixed on the ground. And the highest density locations
are the locations of targets.

C. Algorithm

A merged algorithm is proposed to optimise a target-
barrier set using the minimum number of IL-UAVs from our
discussions.

To achieve the optimal target-barrier set B,,;,, we first
construct a a target-barrier enclosing all targets. Based on
Theorem 1, we can get the perimeter £;, of the merged target-
barrier

Ly = Loy + 275, (18)

Note that L., is the perimeter of a convex polygon, whose
vertices set is the outside targets, e.g., the targets {¢1, t2, 3} in
Fig. 5. Resort to the Graham scan algorithm, it can be easily
to generate the convex polygon. The common tangent of every
two target-barrier circles will be obtained if each polygon edge
moves along the normal line with J. Then, for constructing the
merged target-barrier, the minimum number of IL-UAVs is

SO = | s |+ |22

These IL-UAVs are all deployed on the merged target-
barrier b, which includes all target-barrier arcs and common
tangents.

Next, resort to the Kruskal algorithm, we can construct
the minimum spanning tree G. Then, the targets are denoted
by the vertices and the distance between two targets ¢; and
tj is represented by ey;,. Moreover, to facilitate the next
computation, we sort all edges in the descending order.

Each edge in £ is repeat removed and two convex polygons
are generated using the Graham scan algorithm for the first
edge. Besides, each target in the merged target-barrier can be
regarded as a simple point convex polygon, whose perimeter is
zero. Futhermore, let a line convex polygon denote two targets,
between whose the distance is the perimeter.

Thus, resort to the convex polygons accompanying their
corresponding target-barrier arcs, we can achieve two optimal
target-barriers. If the perimeter of B,,;, is greater than the
summation, which is the sum of these two target-barriers and
26, the optimal target-barrier set B,,,;,, will be updated. Given
v elements in the optimal target-barrier set B,,;,,, the minimum
number of required IL-UAVs is

k=1

19)

|S(Bmin)] (20)

Algorithm 1 The merged algorithm

Input: A set of targets 7, the distance constraint &
QOutput: The optimal set of target-barriers using the minimum
number of IL-UAVs required, B,

1: Construct the convex polygon cpy of all targets
20 Ly, = Lep, + 216

3: Boin < {bo}

4: Generate a minimum spanning tree G = (7, &)
5: Descending sort of e, in &

6: for e;;, in £ do

7. Remove ey,

8:  Construct convex polygons cp; and cp;

9: Ly, < Lep, +2m6 and Ly, < Loy, + 270
10 if £y, + Ebj + 276 < |Bpin| then

11: Bonin < {bl,b]}

12: end if

13: end for

14: return B,

Algorithm 1 describes our designed method. Due to the
Graham scan algorithm with the complexity of O(mlogm)
in time, the optimal deployment problem for the e-target-
barrier coverage can be solved in O(m?logm) in time. And
m denotes the number of targets that we should be protect
with the designed e-target-barriers.

V. PERFORMANCE EVALUATIONS

In this section, we provide illustrative results to evaluate
the performance of the merged algorithm for the optimal
deployment problem.

A. Effectiveness of the Algorithm

7 e-target-barriers for 10 targets using 63 IL-UAVs

i
% o ©
w00 o °

0 400 800 1200 1600 2000

Y/m

Fig. 6: An example of the e-target-barrier coverage.

We present an example to verify the effectiveness of our
algorithm to land the minimum IL-UAVs and construct an e-
target-barrier coverage. We adopt the exponential attenuation
probabilistic model, and the parameters are setting according
to [45] for simulations. The predetermined threshold is € =
0.5. As shown in Fig. 6, t = 10 targets, i.e., pest control areas,
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Fig. 7: The number of required IL-UAVs versus the number
of targets in different methods.

are uniformly distributed in the farmland at random with areas
of 2000m x 2000m. At the beginning, based on the distance
constraint 6 = 100 m, we construct 10 target-barrier circles.
Each target-barrier circle requires 7 IL-UAVs, and 70 IL-UAVs
are required in total for 10 target-barrier circles. By executing
our proposed algorithm, we sort out 7 e-target-barriers for 10
targets, using 63 IL-UAV nodes.

B. Advantage of the Algorithm

The following simulations are executed to verify the advan-
tage of the proposed algorithm over those without the merged
method or the target-barrier construction in [13]. Moreover,
the effect of the number of targets, m, the distance constraint
0, and the predetermined threshold e on the number of required
IL-UAVs, n are respectively investigated. Note that the target-
barrier construction algorithm is an IL-UAV selection method,
which needs to deploy a vast number of IL-UAVs in advance.
In our simulations, the farmland is set to be a square with a size
of 2000m x 2000m, where all targets are uniformly distributed
at random. The exponential attenuation probabilistic model is
taken as our testing probabilistic model, and the parameters
are set according to [45] for our simulations.

First, we examine the number of required IL-UAVs, n,
versus the number of targets, m € [1,10]. The distance
constraint is set to § = 100m, and the predetermined threshold
is set to € = 0.5 for the e-target-barrier. As shown in Fig. 7,
we can find that our algorithm is the one with the minimum
number of IL-UAVs in the construction of e-target-barriers for
various number of targets. Compared with the target-barrier
construction algorithm, the benefit from our merged algorithm
is that the number of required IL-UAVs is drastically reduced.
Besides, we observe that the number of required IL-UAVs is
increased along with the number of targets increasing. How-
ever, once the number of targets is larger than 6, the number
of required IL-UAVs will not be continuously increased as the
number of targets increases. This is because that most of the
e-target-barriers will be merged by our proposed algorithm.

Second, the number of required IL-UAVs, n, is examined
versus the distance constraint § € [50m ,140m]. The prede-
termined threshold is set to € = 0.5 for the e-target-barrier,
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Fig. 8: The number of IL-UAVs versus the distance constraint

in different methods.

and there are m = 10 targets distributed at random in the
given region. The simulation results are shown in Fig. 8, where
our algorithm always utilises fewer IL-UAVs for the coverage
for various distance constraints. However, once the distance
constraint is less than 110m, the number of required IL-UAVs
in our algorithm is the same as that without merged algorithm.
This is because that many sparse scenarios of targets are
generated from the small distance constraint, while more dense
scenarios are generated from larger distance constraint, and
more target-barriers will be merged. Furthermore, we observe
that the number of required IL-UAVs is no longer changed
when the distance constraint is larger than 120m, in the target-
barrier construction algorithm [45], mainly because the same
set of IL-UAVs are selected when the IL-UAVs are deployed
in advance.
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Fig. 9: The umber of required IL-UAVs versus the predeter-
mined threshold in different methods.

Third, we examine the number of required IL-UAVs, n,
versus the predetermined threshold e € [0.1,0.9]. The prede-
termined threshold is set to e = 0.5 for the e-target-barrier. The
distance constraint is set to § = 100m for the e-target-barrier,
and there are m = 10 targets distributed at random in the given
region. The simulation results are shown in Fig. 9, where our
proposed algorithm always utilises fewer IL-UAVs concerning



various predetermined thresholds, compared with the other two
algorithms, while the number of required IL-UAVs is gradually
increased as the pre-defined threshold increases. However, the
number of required IL-UAVs will not be changed if there is
little variation with the predetermined threshold. The reason
behind this is that the detection probability changes along with
the distance between the adjacent IL-UAVs. Then, we have to
deploy more IL-UAVs for a larger predetermined threshold
to construct the e-target-barrier coverage. However, there is a
certain number of IL-UAVs to construct any target-barrier.

VI. CONCLUSION AND DISCUSSION

A. Summary

Motivated by the advantage of ILs-IoTs and UAVs for
pest control, this paper introduced a novel IL-UAV design to
form IL-IoUAVs. We formulated the target-barrier coverage
using the probabilistic sensing model and defined an e-target-
barrier coverage model for IL-IoUAVs. To solve the optimal
deployment problem of IL-UAVs, the target-barrier circle is
introduced. And we utilised the properties to convert the prob-
lem of an IL-IoUAV formulation into a minimisation of the
length of all target-barrier problem. Then, a merged algorithm
is proposed to solve the problem of how to minimise the
number of required IL-UAVs. Finally, the simulation results
demonstrated the effectiveness and advantages of the proposed
algorithm, and the designed IL-IoUAVs can be competent for
pest control in green agriculture.

Although this paper focuses on the optimal deployment
problem of IL-UAVs that is solved by the e-target-barrier
coverage, several limitations need to be considered for better
applications in green agriculture. On the one hand, improving
energy management strategy should be considered since the
power sources of IL-UAVs available are inadequate for a long
time task. On the other hand, the price of each IL-UAV is
higher than the IL node fixed on the ground. Therefore, efforts
to lower hardware costs in the IL-IoUAV implementations,
together with maximizing system performance, need to be
implemented.

B. Future Work

For future work, we plan to conduct further research in the

following three aspects.

o Since the mobility of IL-UAVs can support a more
resilient deployment, how to combine IL-UAVs with IL
nodes fixed on the ground to construct a new IL-IoUAVs
framework is another work in the future.

e Due to the power limitation of IL-UAVs and ILs- IoTs,
we plan to explore a network state model combining
network coverage distribution and energy distribution.
And the multi-objective optimization will be established
involving better coverage performance and less energy
consumption.

« Different kinds of insects are usually present diverse pho-
totaxis and activity time, which will affect the deployed
locations of each IL-UAV. With the development of data
forecast, how to schedule IL-UAVs through the whole
night for pest control is another work in the future.
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