352 research outputs found

    A Single-Stage LED Driver Based on ZCDS Class-E Current-Driven Rectifier as a PFC for Street-Lighting Applications

    Get PDF
    This paper presents a light-emitting diode (LED) driver for street-lighting applications that uses a resonant rectifier as a power-factor corrector (PFC). The PFC semistage is based on a zero-current and zero-derivative-switching (ZCDS) Class-E current-driven rectifier, and the LED driver semistage is based on a zero-voltage-switching (ZVS) Class-D LLC resonant converter that is integrated into a single-stage topology. To increase the conduction angle of the bridge-rectifier diodes current and to decrease the current harmonics that are injected in the utility line, the ZCDS Class-E rectifier is placed between the bridge-rectifier and a dc-link capacitor. The ZCDS Class-E rectifieris driven by a high-frequency current source, which is obtained from a square-wave output voltage of the ZVS Class-D LLC resonant converter using a matching network. Additionally, the proposed converter has a soft-switching characteristic that reduces switching losses and switching noise. A prototype for a 150-W LED street light has been developed and tested to evaluate the performance of the proposed approach. The proposed LED driver had a high efficiency (>91%), a high PF (>0.99), and a low total harmonic distortion (THD i <; 8%) under variation of the utility-line input voltage from 180 to 250 V rms . These experimental results demonstrate the feasibility of the proposed LED scheme

    Single-stage electronic ballast with power factor corrector

    Get PDF
    У роботі розглянуто високочастотний електронний пускорегулювальний апарат з корекцією коефіцієнта потужності для розрядних джерел світла. В однокаскадному апараті поєднано понижувальний перетворювач напруги та напівмостовий резонансний інвертор напруги. Понижувальний перетворювач напруги в режимі переривчастого струму працює як коректор коефіцієнта потужності. Отримано аналітичні залежності для проектування апарата. Результати аналізу, моделювання та експерименту добре узгоджуються між собою.Single-stage high-frequency electronic ballast with power factor corrector discharge lamps is presented in this paper. The proposed ballast is the combination of a buck converter and a half-bridge series-resonant parallel-loaded voltage inverter. The buck semistage works in the discontinuous conduction mode as a power factor corrector. The analytical expressions for ballast design are derived. The analysis, simulation and experimental results are in good agreement

    Novel Offline Switched Mode Power Supplies for Solid State Lighting Applications

    Get PDF
    In recent years, high brightness light emitting diodes (HBLEDs) have increasingly attracted the interest of both industrial manufacturers and academic research community. Among the several aspects that make LED technology so attractive, the most appreciated characteristics are related to their robustness, high efficiency, small size, easy dimming capability, long lifetime, very short switch-on/switch-off times and mercury free manufacturing. Even if all such qualities would seem to give to solid state lighting a clear advantage over all the other kinds of competing technologies, the issues deriving from the need of LED technology improvement, on one hand, and of the development of suitable electronic ballasts to properly drive such solid state light sources, on the other, have so far hindered the expected practical applications. The latter problem, in particular, is nowadays considered the main bottleneck in view of a widespread diffusion of solid state technology in the general lighting market, as a suitable replacement of the still dominant solutions, namely halogen and fluorescent lamps. In fact, if it is true that some aspects of the devices’ technology (e.g. temperature dependent performance, light quality, efficiency droop, high price per lumen, etc…) still need further improvements, it is now generally recognized that one of the key requirements, for a large scale spread of solid state lighting, is the optimization of the driver. In particular, the most important specifications for a LED lamp ballast are: high reliability and efficiency, high power factor, output current regulation, dimming capability, low cost and volume minimization (especially in domestic general lighting applications). From this standpoint, the main goal is, therefore, to find out simple switched mode power converter topologies, characterized by reduced component count and low current/voltage stresses, that avoid the use of short lifetime devices like electrolytic capacitors. Moreover, if compactness is a major issue, also soft switching capability becomes mandatory, in order to enable volume minimization of the reactive components by increasing the switching frequency in the range of the hundreds of kHz without significantly affecting converter’s efficiency. It is worth mentioning that, in order to optimize HBLED operation, also other matters, like the lamp thermal management concern, should be properly addressed in order to minimize the stress suffered by the light emitting devices and, consequently, the deterioration of the light quality and of the expected lamp lifetime. However, being this work focused on the issues related to the research of innovative driving solutions, the aforementioned thermal management problems, as also all the topics related to the improvement of solid state devices’ technology, will be left aside. The main goal of the work presented in this thesis is, indeed, to find out, analyze and optimize new suitable topologies, capable of matching the previously described specifications and also of successfully facing the many challenges dictated by the future of general lighting. First of all, a general overview of solid state lighting features, of the state of the art of lighting market and of the main LED driving issues will be provided. After this first introduction, the offline driving concern will be extensively discussed and different ways of approaching the problem, depending on the specific application considered, will be described. The first kind of approach investigated is based on the use of a simple structure relying on a single power conversion stage, capable of concurrently ensuring: compliance with the standards limiting the input current harmonics, regulation of the load current and also galvanic isolation. The constraints deriving from the need to fulfil the EN 61000-3-2 harmonics standard requirements, when using such kind of solution for low power (<15W) LED driving purposes, will be extensively discussed. A low cost, low component count, high switching frequency converter, based on the asymmetrical half bridge flyback topology, has been studied, developed and optimized. The simplicity and high compactness, characterizing this solution, make it a very good option for CFL and bulb replacement applications, in which volume minimization is mandatory in order to reach the goal of placing the whole driving circuitry in the standard E27 sockets. The analysis performed will be presented, together with the design procedure, the simulation outcomes and the different control and optimization techniques that were studied, implemented and tested on the converter's laboratory prototype. Another interesting approach, that will be considered, is based on the use of integrated topologies in which two different power conversion stages are merged by sharing the same power switch and control circuitry. In the resulting converter, power factor correction and LED current regulation are thus performed by two combined semi-stages in which both the input power and the output current have to be managed by the same shared switch. Compared with a conventional two-stages configuration, lower circuit complexity and cost, reduced component count and higher compactness can be achieved through integration, at cost of increased stress levels on the power switch and of losing a degree of freedom in converter design. Galvanic isolation can be provided or not depending on the topologies selected for integration. If non-isolated topologies are considered for both semi-stages, the user safety has to be guaranteed by assuring mechanical isolation throughout the LED lamp case. The issue, deriving from the need of smoothing the pulsating power absorbed from the line while avoiding the use of short lifetime electrolytic capacitors, will be addressed. A set of integrated topologies, used as HBLED lamp power supplies, will be investigated and a generalized analysis will be presented. Their input line voltage ripple attenuation capability will be examined and a general design procedure will be described. Moreover, a novel integrated solution, based on the use of a double buck converter, for an about 15W rated down-lighting application will be presented. The analysis performed, together with converter design and power factor correction concerns will be carefully discussed and the main outcomes of the tests performed at simulation level will be provided. The last kind of approach to be discussed is based on a multi-stage structure that results to be a suitable option for medium power applications, like street lighting, in which compactness is not a major concern. By adopting such kind of solution it is, indeed, possible to optimize converter’s behavior both on line and on load side, thereby guaranteeing both an effective power factor correction at the input and proper current regulation and dimming capability at the output. Galvanic isolation can be provided either by the input or the output stage, resulting in a standard two stage configuration, or by an additional intermediate isolated DC-DC stage (operating in open loop with a constant input/output voltage conversion ratio) that namely turns the AC/DC converter topology into a three stage configuration. The efficiency issue, deriving from the need of multiple energy processing along the path between the utility grid and the LED load, can be effectively addressed thanks to the high flexibility guaranteed by this structure that, relaxing the design constraint, allows to easily optimize each stage. A 150W nominal power rated ballast for street solid state lighting applications, based on the latter (three stage) topology, has been investigated. The analysis performed, the design procedure and the simulations outcomes will be carefully described, as well as the experimental results of the tests made on the implemented laboratory prototype

    Electronic operation and control of high-intensity gas-discharge lamps

    Get PDF
    The ever increasing amount of global energy consumption based on the application of fossil fuels is threatening the earth’s natural resources and environment. Worldwide, grid-based electric lighting consumes 19 % of total global electricity production. For this reason the transition towards energy efficient lighting plays an important environmental role. One of the key technologies in this transition is High-Intensity Discharge (HID) lighting. The technical revolution in gas-discharge lamps has resulted in the highlyefficient lamps that are available nowadays. As with most energy efficient light solutions, all HID lighting systems require a ballast to operate. Traditionally, magnetic ballast designs were the only choice available for HID lighting systems. Today, electronic lampdrivers can offer additional power saving, flicker free operation, and miniaturisation. Electronic lamp operation enables additional degrees of freedom in lamp-current control over the conventional electro-magnetic (EM) ballasts. The lamp-driver system performance depends on both the dynamics of the lamp and the driver. This thesis focuses on the optimisation of electronically operated HID systems, in terms of highly-efficient lamp-driver topologies and, more specifically, lamp-driver interaction control. First, highly-efficient power topologies to operate compact HID lamps on low-frequency-square-wave (LFSW) current are explored. The proposed two-stage electronic lamp-driver consists of a Power Factor Corrector (PFC) stage that meets the power utility standards. This converter is coupled to a stacked buck converter that controls the lamp-current. Both stages are operated in Zero Voltage Switching (ZVS) mode in order to reduce the switching losses. The resulting two-stage lamp-drivers feature flexible controllability, high efficiency, and high power density, and are suitable for power sandwich packaging. Secondly, lamp-driver interaction (LDI) has been studied in the simulation domain and control algorithms have been explored that improve the stability, and enable system optimisation. Two HID lamp models were developed. The first model describes the HID lamp’s small-signal electrical behaviour and its purpose is to aid to study the interaction stability. The second HID lamp model has been developed based on physics equations for the arc column and the electrode behaviour, and is intended for lampdriver simulations and control applications. Verification measurements have shown that the lamp terminal characteristics are present over a wide power and frequency range. Three LDI control algorithms were explored, using the proposed lampmodels. The first control principle optimises the LDI for a broad range of HID lamps operated at normal or reduced power. This approach consists of two control loops integrated into a fuzzy-logic controller that stabilises the lamp-current and optimises the commutation process. The second control problem concerns the application of ultra high performance (UHP) HID lamps in projection applications that typically set stringent requirements on the quality of the light generated by these lamps, and therefore the lampcurrent. These systems are subject to periodic disturbances synchronous with the LFSW commutation period. Iterative learning control (ILC) has been examined. It was experimentally verified that this algorithm compensates for repetitive disturbances. Third, Electronic HID operation also opens the door for continuous HID lamp dimming that can provide additional savings. To enable stable dimming, an observer-based HID lamp controller has been developed. This controller sets a stable minimum dim-level and monitors the gas-discharge throughout lamp life. The HID lamp observer derives physical lamp state signals from the HID arc discharge physics and the related photometric properties. Finally, practical measurements proved the proposed HID lamp observer-based control principle works satisfactorily

    Model predictive current control of a proposed single-switch three-level active rectifier applied to EV battery chargers

    Get PDF
    This paper presents a model predictive current control applied to a proposed new topology of single-switch three-level (SSTL) active rectifier, which is exemplified in an application of single-phase battery charger for electric vehicles (EVs). During each sampling period, this current control scheme selects the state of the SSTL active rectifier that minimizes the error between the grid current and its reference. Using this strategy it is possible to obtain sinusoidal grid currents with low total harmonic distortion and unitary power factor, which is one of the main requirements for EVs chargers. The paper presents in detail the principle of operation of the SSTL active rectifier, the digital control algorithm and the EV battery charger (where is incorporated the SSTL active rectifier) that was used in the experimental verification. The obtained experimental results confirm the correct application of the model predictive current control applied to the proposed SSTL active rectifier.This work was supported in part by the FCT–Fundação para a Ciência e Tecnologia in the scope of the project: PEst UID/CEC/00319/2013. Vítor Monteiro was supported by the scholarship SFRH/BD/80155/2011 granted by the FCT agency

    Direct AC/DC Rectifier With Mitigated Low-Frequency Ripple Through Inductor-Current Waveform Control

    Get PDF
    In a rectification system with unity power factor, the input power consists of a dc and a double-line frequency power component. Traditionally, an electrolytic capacitor (E-Cap) is used to buffer the double-line frequency power such that the dc output presents a small voltage ripple. The use of E-Cap significantly limits the lifetime of the rectifier system. In this paper, a differential ac/dc rectifier based on the use of an inductor-current waveform control methodology is proposed such that a single-stage direct ac/dc rectification without the need of an E-Cap for buffering the double-line frequency power, and a front-stage diode rectifier circuit can be achieved. The feasibility of the proposal has been practically confirmed in an experimental prototype.published_or_final_versio

    A Novel Power Conversion Approach for Single Phase Systems

    Get PDF
    A novel single phase rectification technique with a new architecture and control scheme is proposed. The new rectifier consists of switched capacitor branch in parallel with the diode bridge rectifier. The switched capacitor branch includes a capacitor and a bidirectional switch arranged in series so the switch can control the charging and discharging of the capacitor. The control strategy is carefully designed to ensure the output voltage of the rectifier is above a chosen threshold level and to maintain high input power factor with reduced line current harmonics. Circuit configuration, design parameters, principles of operation and the mathematical analysis are presented. The new architecture provides a reduction in the size of the DC side capacitor. This reduction can be as low as less than 10% of the size of the typical smoothing capacitor in the conventional single phase rectifier. The proposed concept is verified by the experimental results over a range of case studies. A novel buck-boost DC-DC converter architecture is also proposed. This converter utilises the close inversely-coupled inductors topology in both its conversion stages (buck and boost). The new converter aims to reduce the switching noise that usually accompanies the buck and boost circuits. This can be done by maintaining a continuous flow of current in both converter stages which results in a large reduction in the back e.m.f induced in the main inductor and thus reduces the switching noise. The new converter architecture also provides a unique design of the passive clamped circuit. This circuit is used to recycle the leakage energies of the coupled inductors which results in an efficiency improvement of the converter and to limit the voltage stress on the power switches. Circuit con figuration, principles of operation and the transfer function are presented. The proposed concept is verified by the experimental and the simulated results of a range of case studies. The highest achieved efficiency observed in the experiments was 97:7%.MOHES

    Direct AC/DC rectifier with mitigated low-frequency ripple through waveform control

    Get PDF
    In a rectification system with unity power factor, the input power consists of a DC and a double-line frequency power component. Traditionally, an electrolytic capacitor (E-Cap) is used to buffer the double-line frequency power such that the DC output presents a small voltage ripple. The use of E-Cap significantly limits the lifetime of the rectifier system. In this paper, a differential AC/DC rectifier based on the use of an inductor-current waveform control methodology is proposed. The proposed configuration achieves single-stage direct AC/DC rectification without the needs of a front-stage diode rectifier circuit, an input EMI filter, and an E-Cap for buffering the double-line frequency power. The feasibility of the proposal has been practically confirmed in an experimental prototype. © IEEE.published_or_final_versio
    corecore