5 research outputs found

    Trace-level reuse

    Get PDF
    Trace-level reuse is based on the observation that some traces (dynamic sequences of instructions) are frequently repeated during the execution of a program, and in many cases, the instructions that make up such traces have the same source operand values. The execution of such traces will obviously produce the same outcome and thus, their execution can be skipped if the processor records the outcome of previous executions. This paper presents an analysis of the performance potential of trace-level reuse and discusses a preliminary realistic implementation. Like instruction-level reuse, trace-level reuse can improve performance by decreasing resource contention and the latency of some instructions. However, we show that trace-level reuse is more effective than instruction-level reuse because the former can avoid fetching the instructions of reused traces. This has two important benefits: it reduces the fetch bandwidth requirements, and it increases the effective instruction window size since these instructions do not occupy window entries. Moreover, trace-level reuse can compute all at once the result of a chain of dependent instructions, which may allow the processor to avoid the serialization caused by data dependences and thus, to potentially exceed the dataflow limit.Peer ReviewedPostprint (published version

    Dynamically Reducing Pressure on the Physical Register File through Simple Register Sharing (Best Paper Award)

    Get PDF
    Using register renaming and physical registers, modern microprocessors eliminate false data dependences from reuse of the instruction set defined registers (logical registers). High performance processors that have longer pipelines and a greater capacity to exploit instruction-level parallelism have more instructions in-flight and require more physical registers. Simultaneous multithreading architectures further exacerbate this register pressure. This paper evaluates two register sharing techniques for reducing register usage. The first technique dynamically combines physical registers having the same value. The second technique combines the demand of several instructions updating the same logical register and share physical register storage among them. While similar techniques have been proposed previously, an important contribution of this paper is to exploit only special cases that provide most of the benefits of more general solutions but at a very low hardware complexity. Despite the simplicity, our design reduces the required number of physical registers by more than 10% on some applications, and provides almost half of the total benefits of an aggressive (complex) scheme. More importantly, we show the simpler design to reduce register pressure has significant performance effects in a simultaneous multithreaded (SMT) architecture where register availability can be a bottleneck. Our results show an average of 25.7% performance improvement for an SMT architecture with 160 registers or, equivalently, similar performance as an SMT with 200 registers (25% more) but no register sharing

    Register Renaming Algorithm for Fast Branch Misprediction Recovery in Superscalar Processor

    Get PDF

    Microarchitectural Techniques to Exploit Repetitive Computations and Values

    Get PDF
    La dependencia de datos es una de las principales razones que limitan el rendimiento de los procesadores actuales. Algunos estudios han demostrado, que las aplicaciones no pueden alcanzar más de una decena de instrucciones por ciclo en un procesador ideal, con la simple limitación de las dependencias de datos. Esto sugiere que, desarrollar técnicas que eviten la serialización causada por ellas, son importantes para acelerar el paralelismo a nivel de instrucción y será crucial en los microprocesadores del futuro.Además, la innovación y las mejoras tecnológicas en el diseño de los procesadores de los últimos diez años han sobrepasado los avances en el diseño del sistema de memoria. Por lo tanto, la cada vez mas grande diferencia de velocidades de procesador y memoria, ha motivado que, los actuales procesadores de alto rendimiento se centren en las organizaciones cache para tolerar las altas latencias de memoria. Las memorias cache solventan en parte esta diferencia de velocidades, pero a cambio introducen un aumento de área del procesador, un incremento del consumo energético y una mayor demanda de ancho de banda de memoria, de manera que pueden llegar a limitar el rendimiento del procesador.En esta tesis se proponen diversas técnicas microarquitectónicas que pueden aplicarse en diversas partes del procesador, tanto para mejorar el sistema de memoria, como para acelerar la ejecución de instrucciones. Algunas de ellas intentan suavizar la diferencia de velocidades entre el procesador y el sistema de memoria, mientras que otras intentan aliviar la serialización causada por las dependencias de datos. La idea fundamental, tras todas las técnicas propuestas, consiste en aprovechar el alto porcentaje de repetición de los programas convencionales.Las instrucciones ejecutadas por los programas de hoy en día, tienden a ser repetitivas, en el sentido que, muchos de los datos consumidos y producidos por ellas son frecuentemente los mismos. Esta tesis denomina la repetición de cualquier valor fuente y destino como Repetición de Valores, mientras que la repetición de valores fuente y operación de la instrucción se distingue como Repetición de Computaciones. De manera particular, las técnicas propuestas para mejorar el sistema de memoria se basan en explotar la repetición de valores producida por las instrucciones de almacenamiento, mientras que las técnicas propuestas para acelerar la ejecución de instrucciones, aprovechan la repetición de computaciones producida por todas las instrucciones.Data dependences are some of the most important hurdles that limit the performance of current microprocessors. Some studies have shown that some applications cannot achieve more than a few tens of instructions per cycle in an ideal processor with the sole limitation of data dependences. This suggests that techniques for avoiding the serialization caused by them are important for boosting the instruction-level parallelism and will be crucial for future microprocessors. Moreover, innovation and technological improvements in processor design have outpaced advances in memory design in the last ten years. Therefore, the increasing gap between processor and memory speeds has motivated that current high performance processors focus on cache memory organizations to tolerate growing memory latencies. Caches attempt to bridge this gap but do so at the expense of large amounts of die area, increment of the energy consumption and higher demand of memory bandwidth that can be progressively a greater limit to high performance.We propose several microarchitectural techniques that can be applied to various parts of current microprocessor designs to improve the memory system and to boost the execution of instructions. Some techniques attempt to ease the gap between processor and memory speeds, while the others attempt to alleviate the serialization caused by data dependences. The underlying aim behind all the proposed microarchitectural techniques is to exploit the repetitive behaviour in conventional programs. Instructions executed by real-world programs tend to be repetitious, in the sense that most of the data consumed and produced by several dynamic instructions are often the same. We refer to the repetition of any source or result value as Value Repetition and the repetition of source values and operation as Computation Repetition. In particular, the techniques proposed for improving the memory system are based on exploiting the value repetition produced by store instructions, while the techniques proposed for boosting the execution of instructions are based on exploiting the computation repetition produced by all the instructions
    corecore