21 research outputs found

    Low Complexity V-BLAST MIMO-OFDM Detector by Successive Iterations Reduction

    Full text link
    V-BLAST detection method suffers large computational complexity due to its successive detection of symbols. In this paper, we propose a modified V-BLAST algorithm to decrease the computational complexity by reducing the number of detection iterations required in MIMO communication systems. We begin by showing the existence of a maximum number of iterations, beyond which, no significant improvement is obtained. We establish a criterion for the number of maximum effective iterations. We propose a modified algorithm that uses the measured SNR to dynamically set the number of iterations to achieve an acceptable bit-error rate. Then, we replace the feedback algorithm with an approximate linear function to reduce the complexity. Simulations show that significant reduction in computational complexity is achieved compared to the ordinary V-BLAST, while maintaining a good BER performance.Comment: 6 pages, 7 figures, 2 tables. The final publication is available at www.aece.r

    Performance evaluation of detection algorithms for MOMI OFDM systems

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 79-86).Introduction of Multi Input Multi Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) as the base air interface method for Next Generation Network (NGN) will face a number of challenges from hostile channel conditions to interference from other users. This would result in an increase of detection complexity required for mobile systems. Complex detection will reduce the battery life of mobile devices because of the many calculations that have to be done to decode the signal. Very powerful detection algorithms exist but they introduce high detection complexity. NGN will employ different MIMO systems, but this research will consider spatially multiplexed MIMO which is used to improve the data rate and network capacity. In NGN different multi access modulation schemes will be used for uplink and downlink but they both have OFDM as the basic building block. In this work performance of MIMO OFDM is investigated in different channels models and detection algorithms. A low complexity detection scheme is proposed in this research to improve performance of MIMO OFDM. The proposed detection scheme is investigated for different channel characteristics. Realistic channels conditions are introduced to evaluate the performance of the proposed detection scheme. We analyze weaknesses of existing linear detectors and the enhancements that can be done to improve their performance in different channel conditions. Performance of the detectors is evaluated by comparison of Bit Error Rate (BER) and Symbol Error Rate (SER) against signal to noise ratio (SNR). This thesis proposes a detector which shows a higher complexity than linear detectors but less than Maximum Likelihood Detector (MLD). The proposed detector shows significant BER improvement in all channel conditions. For better performance evaluation this work also investigates performance of MIMO OFDM detectors in realistic channels like Kronecker and Weichselberger channel models

    Multicarrier CDMA systems with MIMO technology

    Get PDF
    The rapid demand for broadband wireless access with fast multimedia services initiated a vast research on the development of new wireless systems that will provide high spectral efficiencies and data rates. A potential candidate for future generation wireless systems is multi-carrier code division multiple access (MC-CDMA). To achieve higher user capacities and increase the system data rate, various multiple-input multiple-output (MIMO) technologies such as spatial multiplexing and spatial diversity techniques have been proposed recently and combined with MC-CDMA.This research proposes a chip level coded ordered successive spatial and multiuser interference cancellation (OSSMIC) receiver for downlink MIMO MC-CDMA systems. As the conventional chip level OSIC receiver [1] is unable to overcome multiple access interference (MAI) and performs poorly in multiuser scenarios, the proposed receiver cancels both spatial and multiuser interference by requiring only the knowledge of the desired user's spreading sequence. Simulation results show that the proposed receiver not only performs better than the existing linear detectors [2] but also outperforms both the chip and symbol level OSIC receivers. In this work we also compare the error rate performance between our proposed system and MIMO orthogonal frequency division multiple access (MIMO OFDMA) system and we justify the comparisons with a pairwise error probability (PEP) analysis. MIMO MC-CDMA demonstrates a better performance over MIMO OFDMA under low system loads whereas in high system loads, MIMO OFDMA outperforms MIMO MC-CDMA. However if all users' spreading sequences are used at the desired user receiver, MIMO MC-CDMA performs better than MIMO OFDMA at all system loads.In the second part of this work, user grouping algorithms are proposed to provide power minimisation in grouped MC-CDMA and space-time block code (STBC) MC-CDMA systems. When the allocation is performed without a fair data rate requirement, the optimal solution to the minimisation problem is provided. However when some fairness is considered, the optimal solution requires high computational complexity and hence we solve this problem by proposing two suboptimal algorithms. Simulation results illustrate a significantly reduced power consumption in comparison with other techniques.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    MIMOシステムにおける格子基底縮小を用いた信号検出法及びその応用に関する研究

    Get PDF
    Multiple-input multiple-output (MIMO) technology has attracted attention in wireless communications, since it provides signi cant increases in data throughput and the high spectral efficiency. MIMO systems employ multiple antennas at both ends of the wireless link, and hence can increase the data rate by transmitting multiple data streams. To exploit the potential gains o ered by MIMO, signal processing involved in a MIMO receiver requires a large computational complexity in order to achieve the optimal performance. In MIMO systems, it is usually required to detect signals jointly as multiple signals are transmitted through multiple signal paths between the transmitter and the receiver. This joint detection becomes the MIMO detection. The maximum likelihood (ML) detection (MLD) is known as the optimal detector in terms of minimizing bit error rate (BER). However, the complexity of MLD obstructs its practical implementation. The common linear detection such as zero-forcing (ZF) or minimum mean squared error (MMSE) o ers a remarkable complexity reduction with performance loss. The non-linear detection, e.g. the successive interference cancellation (SIC), detects each symbol sequentially withthe aid of cancellation operations which remove the interferences from the received signal. The BER performance is improved by using the SIC, but is still inferior to that of the ML detector with low complexity. Numerous suboptimal detection techniques have been proposed to approximately approach the ML performance with relatively lower complexity, such as sphere detection (SD) and QRM-MLD. To look for suboptimal detection algorithm with near optimal performance and a ordable complexity costs for MIMO gains faces a major challenge. Lattice-reduction (LR) is a promising technique to improve the performance of MIMO detection. The LR makes the column vectors of the channel state information (CSI) matrix close to mutually orthogonal. The following signal estimation of the transmitted signal applies the reduced lattice basis instead of the original lattice basis. The most popular LR algorithm is the well-known LLL algorithm, introduced by Lenstra, Lenstra, and Lov asz. Using this algorithm, the LR aided (LRA) detector achieves more reliable signal estimation and hence good BER performance. Combining the LLL algorithm with the conventional linear detection of ZF or MMSE can further improve the BER performance in MIMO systems, especially the LR-MMSE detection. The non-linear detection i.e. SIC based on LR (LR-SIC) is selected from many detection methods since it features the good BER performance. And ordering SIC based on LR (LR-OSIC) can further improve the BER performance with the costs of the implementation of the ordering but requires high computational complexity. In addition, list detection can also obtain much better performance but with a little high computational cost in terms of the list of candidates. However, the expected performance of the several detections isnot satis ed directly like the ML detector, in particular for the high modulation order or the large size MIMO system. This thesis presents our studies about lattice reduction aided detection and its application in MIMO system. Our studies focus on the evaluation of BER performance and the computational complexity. On the hand, we improve the detection algorithms to achieve the near-ML BER performance. On the other hand, we reduce the complexity of the useless computation, such as the exhaustive tree search. We mainly solve three problems existed in the conventional detection methods as - The MLD based on QR decomposition and M-algorithm (QRMMLD) is one solution to relatively reduce the complexity while retaining the ML performance. The number of M in the conventional QRM-MLD is de ned as the number of the survived branches in each detection layer of the tree search, which is a tradeo between complexity and performance. Furthermore, the value of M should be large enough to ensure that the correct symbols exist in the survived branches under the ill-conditioned channel, in particular for the large size MIMO system and the high modulation order. Hence the conventional QRM-MLD still has the problem of high complexity in the better-conditioned channel. - For the LRA MIMO detection, the detection errors are mainly generated from the channel noise and the quantization errors in the signal estimation stage. The quantization step applies the simple rounding operation, which often leads to the quantization error. If this error occurs in a row of the transmit signal, it has to propagate to many symbols in the subsequent signal estimation and result in degrading the BER performance. The conventional LRA MIMO detection has the quantization problem, which obtains less reliable signal estimation and leads to the BER performance loss. - Ordering the column vectors of the LR-reduced channel matrix brings large improvement on the BER performance of the LRSIC due to decreasing the error propagation. However, the improvement of the LR-OSIC is not su cient to approach the ML performance in the large size MIMO system, such as 8 8 MIMO system. Hence, the LR-OSIC detection cannot achieve the near-ML BER performance in the large size of MIMO system. The aim of our researches focuses on the detection algorithm, which provides near-ML BER performance with very low additional complexity. Therefore, we have produced various new results on low complexity MIMO detection with the ideas of lattice reduction aided detection and its application even for large size MIMO system and high modulation order. Our works are to solve the problems in the conventional MIMO detections and to improve the detection algorithms in the signal estimation. As for the future research, these detection schemes combined with the encoding technique lead to interesting and useful applications in the practical MIMO system or massive MIMO.電気通信大学201

    Enhanced carrierless amplitude and phase modulation for optical communication systems

    Get PDF
    This thesis develops and investigates enhanced techniques for carrierless amplitude and phase modulation (CAP) in optical communication systems. The CAP scheme is studied as the physical layer modulation technique due to its implementation simplicity and versatility, that enables its implementation as a single carrier (CAP) or multi-carrier technique (m-CAP). The effect of timing jitter on the error performance of CAP is first investigated. The investigation indicates that synchronization is a critical requirement for CAP receiver and as a result, a novel low-complexity synchronization algorithm is developed with experimental demonstration for CAP-based visible light communication (VLC) systems. To further reduce the overall link complexity, a fractionally-spaced equalizer (FSE) is considered to mitigate the effects of inter-symbol interference (ISI) and timing jitter. The FSE implementation, which eliminates the need for a separate synchronization block, is shown through simulation and VLC experimental demonstration to outperform symbol-spaced equalizers (SSE) that are reported in literature for CAP-based VLC systems. Furthermore, in this thesis, spectrally-efficient index modulation techniques are developed for CAP. The proposed techniques can be divided into two broad groups, namely spatial index CAP (S-CAP) and subband index CAP (SI-CAP). The proposed spatial index techniques leverage the fact that in VLC, multiple optical sources are often required. The spatial CAP (S-CAP) transmits CAP signal through one of Nt available LEDs. It is developed to reduce equalization requirement and improve the spectral efficiency of the conventional CAP. In addition to the bits transmitted through the CAP symbol, the S-CAP encodes additional bits on the indexing/spatial location of the LEDs. The generalised S-CAP (GS-CAP) is further developed to relax the S-CAP limitation of using a single LED per symbol duration. In addition to the S-CAP scheme, multiple-input multiple-output (MIMO) techniques of repetitive-coded CAP (RC-CAP) and spatial multiplexing CAP (SMux-CAP) are investigated for CAP. Low-complexity detectors are also developed for the MIMO schemes. A key challenge of the MIMO schemes is that they suffer power penalty when channel gains are similar, which occur when the optical sources are closely located. The use of multiple receivers and power factor imbalance (PFI) techniques are proposed to mitigate this power penalty. The techniques result in significant improvement in the power efficiency of the MIMO schemes and ensure that the spectral efficiency gain is obtained with little power penalty. Finally, subband index CAP (SI-CAP) is developed to improve the spectral efficiency of m-CAP and reduce its peak-to-average power ratio (PAPR). The SI-CAP encodes additional information bits on the selection of ‘active’ subbands of m-CAP and only modulate data symbols on these ‘active’ subbands. The error performance of the proposed SI-CAP is evaluated analytically and verified with computer-based simulations. The SI-CAP technique is also experimented for both VLC and step-index plastic optical fibre (SI-POF) communication links. The experimental results show that for a fixed power efficiency, SI-CAP achieves higher data rate compared tom-CAP. For example, at a representative bit error rate (BER) of 10-5, the SI-CAP achieves a data rate and power efficiency gain of 26:5 Mb/s and 2:5 dB, respectively when compared to m-CAP. In addition, an enhanced SI-CAP (eSI-CAP) is developed to address the complexity that arises in SI-CAP at higher modulation order. The results of the experimental demonstrations in VLC and 10 m SI-POF link shows that when compared with m-CAP, eSI-CAP consistently yields a data rate improvement of between 7% and 13% for varying values of the SNR

    Modelling and and measurement analysis of the satellite MIMO radio channel

    Get PDF
    The increasing demand for terrestrial and satellite delivered digital multimedia services has precipitated the problem of spectrum scarcity in recent years. This has resulted in deployment of spectral efficient technologies such as MIMO for terrestrial systems. However, MIMO cannot be easily deployed for the satellite channel using conventional spatial multiplexing as the channel conditions here are very different from the terrestrial case, and it is often dominated by line of sight fading. Orthogonal circular polarization, which has long been used for increasing both frequency reuse and the power spectral density available to earth-bound satellite terminals, has recently been recommended for directly increasing the throughput available to such devices. Following that theme, this thesis proposes a novel dual circular polarisation multiplexing (DCPM) technique, which is aimed at the burgeoning area of throughput-hungry digital video broadcasting via satellite to handheld devices (DVB-SH) and digital video broadcast to the next generation of hand held (DVB-NGH) systems. In determining the working limits of DCPM, a series of measurement campaigns have been performed, from which extensive dual circular polarised land mobile satellite (LMS) channel data has been derived. Using the newly available channel data and with the aid of statistical channel modelling tools found in literature, a new dual circular polarised LMS MIMO channel model has been developed. This model, in contrast with previously available LMS MIMO channel models, is simpler to implement since it uses a distinct state-based empirical-stochastic approach. The model has been found to be robust and it easily lends itself to rapid implementation for system level MIMO and DCPM analysis. Finally, by way of bit error rate (BER) analysis in different channel fading conditions, it has been determined when best to implement polarisation multiplexing or conventional . MIMO techniques for DVB-type land mobile receivers. It is recommended that DCPM be used when the channel in predominantly Ricean, with eo-polar channel Rice factors and sub-channel cross correlation values greater than 1dB and 0.40 respectively. The recommendations provided by this research are valuable contributions, which may help shape the evolving DVB-NGH standardisation process.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore