5,866 research outputs found

    Near-optimal energy management for plug-in hybrid fuel cell and battery propulsion using deep reinforcement learning

    Get PDF
    Plug-in hybrid fuel cell and battery propulsion systems appear promising for decarbonising transportation applications such as road vehicles and coastal ships. However, it is challenging to develop optimal or near-optimal energy management for these systems without exact knowledge of future load profiles. Although efforts have been made to develop strategies in a stochastic environment with discrete state space using Q-learning and Double Q-learning, such tabular reinforcement learning agents’ effectiveness is limited due to the state space resolution. This article aims to develop an improved energy management system using deep reinforcement learning to achieve enhanced cost-saving by extending discrete state parameters to be continuous. The improved energy management system is based upon the Double Deep Q-Network. Real-world collected stochastic load profiles are applied to train the Double Deep Q-Network for a coastal ferry. The results suggest that the Double Deep Q-Network acquired energy management strategy has achieved a further 5.5% cost reduction with a 93.8% decrease in training time, compared to that produced by the Double Q-learning agent in discrete state space without function approximations. In addition, this article also proposes an adaptive deep reinforcement learning energy management scheme for practical hybrid-electric propulsion systems operating in changing environments

    Serving Deep Learning Model in Relational Databases

    Full text link
    Serving deep learning (DL) models on relational data has become a critical requirement across diverse commercial and scientific domains, sparking growing interest recently. In this visionary paper, we embark on a comprehensive exploration of representative architectures to address the requirement. We highlight three pivotal paradigms: The state-of-the-artDL-Centricarchitecture offloadsDL computations to dedicated DL frameworks. The potential UDF-Centric architecture encapsulates one or more tensor computations into User Defined Functions (UDFs) within the database system. The potentialRelation-Centricarchitecture aims to represent a large-scale tensor computation through relational operators. While each of these architectures demonstrates promise in specific use scenarios, we identify urgent requirements for seamless integration of these architectures and the middle ground between these architectures. We delve into the gaps that impede the integration and explore innovative strategies to close them. We present a pathway to establish a novel database system for enabling a broad class of data-intensive DL inference applications.Comment: Authors are ordered alphabetically; Jia Zou is the corresponding autho

    Predictive auto-scaling with OpenStack Monasca

    Get PDF
    Cloud auto-scaling mechanisms are typically based on reactive automation rules that scale a cluster whenever some metric, e.g., the average CPU usage among instances, exceeds a predefined threshold. Tuning these rules becomes particularly cumbersome when scaling-up a cluster involves non-negligible times to bootstrap new instances, as it happens frequently in production cloud services. To deal with this problem, we propose an architecture for auto-scaling cloud services based on the status in which the system is expected to evolve in the near future. Our approach leverages on time-series forecasting techniques, like those based on machine learning and artificial neural networks, to predict the future dynamics of key metrics, e.g., resource consumption metrics, and apply a threshold-based scaling policy on them. The result is a predictive automation policy that is able, for instance, to automatically anticipate peaks in the load of a cloud application and trigger ahead of time appropriate scaling actions to accommodate the expected increase in traffic. We prototyped our approach as an open-source OpenStack component, which relies on, and extends, the monitoring capabilities offered by Monasca, resulting in the addition of predictive metrics that can be leveraged by orchestration components like Heat or Senlin. We show experimental results using a recurrent neural network and a multi-layer perceptron as predictor, which are compared with a simple linear regression and a traditional non-predictive auto-scaling policy. However, the proposed framework allows for the easy customization of the prediction policy as needed

    Toward Reliable, Secure, and Energy-Efficient Multi-Core System Design

    Get PDF
    Computer hardware researchers have perennially focussed on improving the performance of computers while stipulating the energy consumption under a strict budget. While several innovations over the years have led to high performance and energy efficient computers, more challenges have also emerged as a fallout. For example, smaller transistor devices in modern multi-core systems are afflicted with several reliability and security concerns, which were inconceivable even a decade ago. Tackling these bottlenecks happens to negatively impact the power and performance of the computers. This dissertation explores novel techniques to gracefully solve some of the pressing challenges of the modern computer design. Specifically, the proposed techniques improve the reliability of on-chip communication fabric under a high power supply noise, increase the energy-efficiency of low-power graphics processing units, and demonstrate an unprecedented security loophole of the low-power computing paradigm through rigorous hardware-based experiments

    Model-Based Dynamic Resource Management for Service Oriented Clouds

    Get PDF
    Cloud computing is a flexible platform for software as a service, as more and more applications are deployed on cloud. Major challenges in cloud include how to characterize the workload of the applications and how to manage the cloud resources efficiently by sharing them among many applications. The current state of the art considers a simplified model of the system, either ignoring the software components altogether or ignoring the relationship between individual software services. This thesis considers the following resource management problems for cloud-based service providers: (i) how to estimate the parameters of the current workload, (ii) how to meet Quality of Service (QoS) targets while minimizing infrastructure cost, (iii) how to allocate resources considering performance costs of virtual machine reconfigurations. To address the above problems, we propose a model-based feedback loop approach. The cloud infrastructure, the services, and the applications are modelled using Layered Queuing Models (LQM). These models are then optimized. Mathematical techniques are used to reduce the complexity of the models and address the scalability issues. The main contributions of this thesis are: (i) Extended Kalman Filter (EKF) based techniques improved by dynamic clustering for scalable estimation of workload parameters, (ii) combination of adaptive empirical models (tuned during runtime) and stepwise optimizations for improving the overall allocation performance, (iii) dynamic service placement algorithms that consider the cost of virtual machine reconfiguration

    A Survey and Taxonomy of Self-Aware and Self-Adaptive Cloud Autoscaling Systems

    Get PDF
    Autoscaling system can reconfigure cloud-based services and applications, through various configurations of cloud software and provisions of hardware resources, to adapt to the changing environment at runtime. Such a behavior offers the foundation for achieving elasticity in a modern cloud computing paradigm. Given the dynamic and uncertain nature of the shared cloud infrastructure, the cloud autoscaling system has been engineered as one of the most complex, sophisticated, and intelligent artifacts created by humans, aiming to achieve self-aware, self-adaptive, and dependable runtime scaling. Yet the existing Self-aware and Self-adaptive Cloud Autoscaling System (SSCAS) is not at a state where it can be reliably exploited in the cloud. In this article, we survey the state-of-the-art research studies on SSCAS and provide a comprehensive taxonomy for this field. We present detailed analysis of the results and provide insights on open challenges, as well as the promising directions that are worth investigated in the future work of this area of research. Our survey and taxonomy contribute to the fundamentals of engineering more intelligent autoscaling systems in the cloud
    • …
    corecore