
Near-optimal energy management for plug-in hybrid fuel cell and

battery propulsion using deep reinforcement learning

Peng Wu∗, Julius Partridge, Enrico Anderlini, Yuanchang Liu, Richard Bucknall

Marine Research Group, Department of Mechanical Engineering, University College London, London
WC1E 7JE, UK

Abstract

Plug-in hybrid fuel cell and battery propulsion systems appear promising for decarbonising

transportation applications such as road vehicles and coastal ships. However, it is challenging

to develop optimal or near-optimal energy management for these systems without exact

knowledge of future load profiles. Although efforts have been made to develop strategies in

a stochastic environment with discrete state space using Q-learning and Double Q-learning,

such tabular reinforcement learning agents’ effectiveness is limited due to the state space

resolution. This article aims to develop an improved energy management system using

deep reinforcement learning to achieve enhanced cost-saving by extending discrete state

parameters to be continuous. The improved energy management system is based upon the

Double Deep Q-Network. Real-world collected stochastic load profiles are applied to train

the Double Deep Q-Network for a coastal ferry. The results suggest that the Double Deep

Q-Network acquired energy management strategy has achieved a further 5.5% cost reduction

with a 93.8% decrease in training time, compared to that produced by the Double Q-learning

agent in discrete state space without function approximations. In addition, this article also

proposes an adaptive deep reinforcement learning energy management scheme for practical

hybrid-electric propulsion systems operating in changing environments.

Keywords:

Hybrid fuel cell and battery propulsion, Coastal ferry, Continuous monitoring, Deep

reinforcement learning, Energy Management System

Preprint submitted to Elsevier September 2, 2021

1. Introduction

1.1. Background and motivation

Plug-in hybrid fuel cell and battery propulsion systems are promising to revolutionise

emission from transportation applications such as coastal ships [1] and road vehicles [2],

provided that the fuel cells operate on sustainable fuels (e.g. H2) [3] and the decarbonisation

of grid electricity is successful [4]. However, it remains challenging to adopt such systems

due to high costs from equipment degradation and energy consumption [5, 6]. Minimising

the costs of such systems is essential [7].

This article focuses on reducing the costs of such hybrid systems from the operational

perspective, i.e. by optimal energy management of the power sources. Efforts have been

made by the authors to optimise the cost and emission performance of the plug-in hybrid

systems concurrently in the system design phase [6]. However, developing a cost-effective

Energy Management System (EMS) that can provide long-term optimal control references for

the hybrid system remains challenging due to the uncertainty of read-world power demands

[8]. The optimal energy management can be modelled as a sequential decision-making

problem, i.e. what actions to be taken with observed system states to achieve objectives

such as minimum mission costs and Greenhouse Gas (GHG) emissions, such that the system

can ‘plan’ to make overall optimal decisions to guide the control of the power sources [4].

1.2. Previous work

The authors have attempted to solve the energy management problem in their previous

work [9], using Double Q-learning Reinforcement Learning (RL) with large scale real-world

stochastic continuous monitoring data from [10]. However, the cost-effectiveness of the en-

ergy management strategies generated by tabular reinforcement learning approaches without

function approximations is limited due to the ‘curse of dimensionality’, as the computational

requirements grow exponentially with the number of state parameters and their resolutions

∗Corresponding author
Email address: peng.wu.14@ucl.ac.uk (Peng Wu)

2

[11]. In addition, the results in [9] suggest that overestimates of action values can be prob-

lematic in real-world stochastic environments.

1.3. Aim

This article aims to further enhance the cost-saving performance of the EMS using Deep

Reinforcement Learning (DRL) that could potentially mitigate function overestimates in

real-world stochastic environments. Previously, the energy management problem was solved

in discrete space, which limits the resolution of EMS and its performance [9]. The intro-

duction of deep neural networks extends the state space to be continuous, enabling better

perceiving of system states. In addition, this article also provides a practical adaptive EMS

updating scheme based on DRL, to achieve long-term near-optimal operations for hybrid-

electric propulsion systems.

1.4. Literature review

Conventional approaches such as rule-based, equivalent minimisation strategies and Model

Predictive Control (MPC) have been widely adopted to advance the research of EMS for

hybrid-electric propulsion systems [12]. Banvait et al. [13] developed a rule-based EMS for

a plug-in hybrid electric road vehicle, which improved the gas mileage by 16% for standard

driving cycles. Peng et al. [14] proposed a rule-based EMS for a plug-in hybrid electric

bus optimised by dynamic programming, which reduced both fuel and electricity consump-

tions for a fixed load profile. Wang et al. [15] developed a rule-based EMS with power

prediction for a hybrid-electric propulsion system, which was evaluated by two driving cy-

cles. Kalikatzarakis et al. [16] applied an equivalent consumption minimisation strategy to

a plug-in hybrid ship propulsion system. Their simulation results showed a 6% fuel saving

could be realised under several load profiles. Another example of equivalent factor opti-

misation strategy can be found in [17]. Ebrahim et al. [18] implemented a self-adaptive

Harris Hawks Optimisation-based scheme for a hybrid fuel cell and battery power system

with improved efficiency and system performance. Bassam et al. [19] developed an EMS

with multi schemes for a hybrid passenger ship powered by fuel cell and battery, which

3

comprised several sub-strategies for different load conditions. Wang et al. [20] conducted a

comparative study between the Proportional–Integral–Derivative and rule-based EMS, and

applied dynamic programming to evaluate the performance of the EMS under investigation.

Another comparative study on EMS can be found in [21]. Hou et al. [22] proposed an MPC

algorithm to control the hybrid electric propulsion systems using additional penalties on the

rapid change of energy storage system State of Charge (SOC) to overcome the limitations

caused by short predictive horizon of MPC. More comprehensive reviews on EMS can be

found from [23] for road vehicles, and [24] for ships.

It should be noted that deterministic dynamic programming requires complete knowledge

of the load profile before generating an energy management strategy. Therefore, the strategy

generated by such an approach is typically applied to calculate an optimum off-line strategy

to evaluate other online strategies’ effectiveness. Moreover, real-world load profiles could

deviate significantly from the standard cycles used to calibrate the EMS, making the EMS

perform well only in the specific calibration cycles. It remains a challenge to develop EMS

which can perform optimally in unseen load cycles over long terms [8]. Additionally, as

both fuel cells and batteries can degrade rapidly under certain operating conditions, it is

necessary to consider power degradation characteristics in the EMS [9, 25, 26, 27].

Recently, novel intelligent approaches such as RL and DRL have been applied to advance

EMS for hybrid-electric propulsion systems. Liu et al. [28] adopted Q-learning to solve the

optimal energy management problem for a tracked hybrid-electric vehicle with a specific

load profile, stochastic dynamic programming generated strategy was applied to evaluate

the performance of the developed EMS. Their Q-learning approach has reduced computa-

tion time. Xiong et al. [29] adopted RL to develop the hybrid system control strategy, and

applied Kullback–Leibler divergence rate to determine whether the strategy needs an up-

date. However, the additional parameter can be avoided as one can easily calculate optimal

energy management strategies for past load profiles and their corresponding objective values

which can be used as direct EMS updating indicators. Xu et al. [30] proposed an ensemble

RL-based energy management strategy, using Q-learning with thermostatic and equivalent

consumption minimization strategies to improve the fuel economy. The authors Wu et al.

4

[9] applied Double Q-learning to generate generic energy management strategies for unseen

load profiles using large scale stochastic load profiles and suggested that the stochasticity

of the load profiles can lead to diverged agent training. Although the RL-based EMS can

significantly improve system efficiency, the resolution of the discrete state space prohibits

further improvements due to the ‘curse of dimensionality’ [11]. The work of Wu et al. [31]

suggests that DRL with deep neural networks as function approximators can further im-

prove the RL-based EMS. Further efforts of applying DRL to develop intelligent EMS for

hybrid-electric propulsion systems have been observed in studies such as [32], [33] and [34].

However, none of those studies mentioned above has applied DRL agents with large-scale

stochastic load profiles.

1.5. Research gap and contributions

From the analysis above, it is evident that various approaches have been applied to

develop EMS for hybrid-electric propulsion systems, including conventional (e.g. rule-based)

and novel intelligent ones. Although RL and DRL have been applied to generate energy

management strategies for the hybrid systems, there is a lack of EMS in continuous state

space and capable of dealing with unseen load profiles, especially the highly stochastic ones

in marine applications. Existing approaches are mostly based on certain standard load

profiles or very limited number of load profiles. The EMS performance can be achieved in

long-term real-world operations is yet to be better investigated.

This article narrows the research gaps in the literature by:

• Training the Double Deep Q-Network (Double DQN) [35], i.e. a variant of Deep Q-

Network (DQN) [36] developed to mitigate action value overestimations, with large-

scale real-world stochastic load profiles with continuous state parameters, to generate

near-optimal energy management strategies for unseen future load profiles.

• The concept of Double DQN is applied with Huber loss function to further reduce the

impact of overestimation due to real-world stochasticity.

5

• This article also discusses an adaptive EMS updating scheme that can guide the prac-

tical applications of the DRL-based EMS to achieve long-term near-optimal energy

management of hybrid-electric systems.

1.6. Organisation

The remainder of this article is arranged as follows. Section 2 formulates the optimal

energy management problem. Section 3 details the DQN and Double DQN agents. Section 4

details the environment formulation. Section 5 presents the training of the agent. Section 6

details the results by applying the Double DQN EMS to sample validation voyages. Section

7 discusses the adaptive EMS updating scheme for long-term operations of hybrid-electric

propulsion systems. Section 8 details the conclusions.

2. Problem formulation

Figure 1 illustrates the schematic the agent-environment interaction framework proposed

to generate the EMS using Double DQN and the procedure of applying the generated EMS.

The environment comprises the plug-in hybrid PEMFC and battery propulsion system model

and historical load profiles. The Double DQN interacts with the environment by controlling

the fuel cell power and observing the reward signal and resulting system state returned by

the environment. The EMS is designed to minimise the voyage costs. In other words, the

energy management strategy or policy of the EMS maximises the cumulative rewards that

represent the cost-effectiveness of the system. With a finite horizon T , for an episodic task,

the action-value function (Q function), is the expected return of taking action a following a

policy π(s|a) in state s [9]:

Q(s, a) = E

[
T∑
k=0

γkrt+k|st = s, at = a, π

]
(1)

Solving the optimal energy management problem is to find an optimal strategy π∗:

π∗(s) = arg max
a

E

[
T∑
k=0

γkrt+k|st = s, at = a

]
(2)

6

which corresponds to the optimal Q function [11]:

Q∗(s, a) = max
π

E

[
T∑
k=0

γkrt+k|st = s, at = a

]
(3)

where the subscripts denote time steps, γ ∈ [0, 1] is the discount rate, reward rt is a measure-

ment of the cost-effectiveness of taking action at in state st that results in the next system

state st+1.

Double DQN

Agent

Hybrid system model and

historical load data

Action

at

State
st

Reward
rt

st+1

rt+1

Double DQN

Agent

Hybrid system model and

historical load data

Action

at

State
st

Reward
rt

st+1

rt+1

Energy Management System

Unseen future voyages

EMS validation

Strategy extraction

Energy Management System

Unseen future voyages

EMS validation

Strategy extraction

Agent training

EMS application
π

Safety protection

EMS application

Figure 1: Schematic of the agent-environment interaction and EMS application. The environment consists

of historical load profiles and the hybrid system model. The Double DQN agent is trained by the historical

data to generate the energy management strategy parametrised by the Q-network, which is subsequently

validated by a dataset unseen by the agent.

The objective of the DRL agent training is to find a policy π∗, i.e. an energy management

strategy with near-optimal cost-effectiveness which can be applied as the core of the EMS to

provide control references to the hybrid propulsion system, such that the hybrid system can

7

have the capability of ‘planning’ to maximise the overall cost-effectiveness of the system.

Once the DRL agent has been trained and validated, the EMS can instantaneously output

an action by observing the current system state. Additional safety functions, such as battery

over-discharge protection, can also be added to the application procedure. However, such

functions are beyond the DRL training scope.

3. Deep reinforcement learning agent

3.1. Deep Q-Network

For RL problems with large or continuous state spaces, function approximators are typ-

ically needed to generalise from previously encountered states which are similar in some

sense to current ones [11]. A function approximator can be linear or non-linear [37, 38].

However, the training process of RL agents can be unstable or even diverge when a non-

linear function approximator such as a neural network is used [39]. Lin [40] developed the

concept of ‘experience replay’ to store the agent experience into a memory pool to train a RL

agent with a neural network. Later work of Mnih et al. [41] proposed deep Q-learning using

a deep neural network with convolution layers to approximate high dimensional raw pixel

state inputs. Mnih et al. [36] further improved the deep Q-learning agents by adding target

networks to improve training stability. Mnih et al. [36]’s Deep Q-Network (DQN) achieved

performance levels comparable to professional human game testers in 49 Atari 2600 games.

The DQN is a model-free, off-policy reinforcement learning algorithm [36]. The agent

maintains an experience memory pool with capacity M , storing the most recent M transition

sequences. A transition sequence, collected via agent-environment interaction, at time step

t, is denoted by:

φ = (st, at, st+1, rt+1) (4)

i.e. in state st, action at is performed by the agent (following ε-greedy policy) and observes

next environment state st+1 and a reward signal rt+1 is returned from the environment.

In each agent training step, a mini-batch with capacity D is randomly sampled from the

experience memory pool such that previous experiences can be used effectively. In addi-

8

tion, the random sampling breaks the correlations of consecutive samples which can lead to

unstable neural network training. The DQN agent includes two deep neural networks with

identical structure, i.e. the Q-network Q(s, a; θ) parametrised by θ, and the Q-target net-

work Q̂(s, a; θ−) parametrised by θ−. These neural networks approximate the action-value

function with state (s) inputs for all actions (a) in the action space A.

As an improvement to the work of Mnih et al. [41], the additional Q-target network

enhances the agent training stability by providing fixed target action value yj for non-

terminal states:

yj = rj+1 + γmax
a′

Q̂
(
sj+1, a

′; θ−
)

(5)

where j denotes j − th sample in the mini-batch. In the original DQN algorithm of [36],

the Q-target network is updated periodically, while in this work it is soft-updated at each

training step to further improve training stability:

θ− ← τθ + (1− τ) θ− (6)

where τ � 1 [42].

Considering the overestimations of the action-value function can affect the agent training

[9], the Huber loss [43] is employed in this study to improve agent training stability, and

to generate the energy management strategies. In addition, to investigate the influences

of the loss function over training stability and EMS quality in a stochastic environment,

experiments using Mean Squared Error (MSE) loss function have also been conducted to

investigate the influences of the loss function over training stability and EMS quality in a

stochastic environment.

The MSE loss is defined as the mean squared error of the temporal difference (denoted

by δ) between the action values given by the Q-network and the targets yj (j ∈ [1, D]) over

a mini-batch:

L (θ) =
1

D

D∑
j=1

δ2j (7)

where the temporal difference δj of j − th sample in the mini-batch is:

δj = yj −Q (sj, aj; θ) (8)

9

In the work of Mnih et al. [36], δj was clipped to between -1 and +1 to improve the

DQN algorithm stability. Such a technique corresponds to using an absolute value loss

function for temporal differences outside (−1, 1). Note that the clipping reduces the chances

of overestimations for the action-value function when values given by the networks are noisy

over large ranges. In [9], the Q-learning agent failed due to overestimations caused by the

maximisation operation which approximated the expected action value. The concept of

error clipping may provide a new approach to dealing with overestimations in the stochastic

environment.

Instead of clipping the error term, the Huber loss, which performs similar function has

been employed in this study. The Huber loss is calculated by [43]:

L (θ) =
1

D

D∑
j=1

σj (9)

where:

σj =

1

2
δ2j , if |δj| < 1

|δj| −
1

2
, otherwise

(10)

The Huber loss is the mean squared error when the temporal difference δj is small (|δj| < 1)

but acts like the mean absolute error (|δ| − 1

2
) when the difference is large, which makes it

more robust when overestimations of action-value function may degrade the agent training.

The Q-network and Q-target network share an identical network structure. The Q-

network is trained by minimising the loss function L (θ) with respect to its parameters

θ. The optimiser adopted in this study is the Adam optimiser [44]. The neural networks

output action-value function values for each possible action with given state inputs. Note

that the continuous signals (battery SOC, power demand and fuel cell per unit power) are

not discretised as in [9]. Instead, these states are used as direct inputs to the Q-network

such that the environment states can be accurately represented by continuous actual values.

The state inputs are forward propagated sequentially from the input layer via hidden layers

to output Q-values for all actions. Note that each neuron of the output layer corresponds

to an action in the action space.

10

The DQN agent training starts with randomly initialised network parameters θ and θ−.

The exploration probability ε of the ε-greedy policy decreases linearly from a large initial

value with the increase of training episode number, and is fixed at a small final value in the

later stage of the training (i.e. training episode n > Nd). Note that completely random

explorations initially fill the experience memory pool before the neural network training

starts. The Q-network is trained every Z steps to gain sufficient experience.

3.2. Double Deep Q-Network

The results of Wu et al. [9] suggest that maximisation biases introduced during the

construction of the action-value function can lead to poor learning performance if such biases

are not addressed properly. The Double Q-learning agent achieved satisfactory performance

using two Q-functions, while the Q-learning agent diverged with identical hyperparameters.

It is not clear whether the DQN agent (as a deep variant of Q-learning) can succeed in the

highly stochastic environment based on recorded historical power profiles. Therefore, the

authors have explored solving the energy management problem with Double DQN.

The Double DQN (Algorithm 1) is proposed by [35] based on the concept of Double

Q-learning [45] and DQN [36]. In Double Q-learning, two Q-functions are used to re-

duce the overestimations by decomposing the maximisation in the target into action se-

lection and action evaluation [35, 45]. Without introducing additional neural networks to

DQN, the Double DQN utilises the Q-target network to evaluate the maximising action (i.e.

arg maxa (Q (sj+1, a; θ))) given by the Q-network (see Figure 2) such that, the target value

is calculated by:

yj = rj + γQ

(
sj+1, arg max

a
(Q (sj+1, a; θ)) ; θ−

)
(11)

4. Environment

4.1. Candidate ship and the data

The candidate ship is a typical coastal ferry operating between two fixed ports [6, 10]. It

is intended that the plug-in hybrid fuel cell and battery propulsion system will replace the

11

Algorithm 1 Double Deep Q Network RL agent, adapted from [35] and [36].

1: Initialise replay memory D to capacity M

2: Initialise action-value function Q with random weights θ

3: Initialise target action-value function Q̂ with weights θ− = θ

4: while n < Nmax do

5: Initialise initial state s1

6: for t = 1 : T do

7: if rand < ε then

8: Select action at randomly from A

9: else

10: at ← arg maxa (Q (st, a; θ))

11: end if

12: Take action at, observe rt, st+1 and Termination Flag

13: Store transition (st, at, rt+1, st+1) in D

14: Every Z steps sample random mini-batch of transitions (sj , aj , rj+1, sj+1) from D

15: Set yj+1 =

rj+1, if episode terminates at step j + 1

rj+1 + γQ (sj+1, arg maxaQ (sj+1, a; θ) ; θ−) , otherwise

16: Perform a gradient decent on (yj+1 −Q (sj+1, aj ; θ))
2 with respect to the network

parameters θ

17: Soft update the target network: θ− ← τθ + (1− τ) θ−

18: Terminate if Termination Flag is true

19: end for

20: if n ≤ Nd then

21: α← α−∆α× n

22: ε← ε−∆ε× n

23: end if

24: end while

original diesel-based propulsion system, which has a power capacity of 4370 kW (five diesel

generator sets, with each prime mover rated at 874 kW). The annual operating duty is 300

12

ε -greedy

policy

Store

transition

into

Memory

M

Mini-batch

(S, A, S’, R)

D

st atst+1

Transition

sequence

(st,at,st+1,rt+1)

rt+1

S’

S’

A’

T
arg

et

v
alu

e Y

R

C
u
rren

t Q

v
alu

e

L
o
ss fu

n
ctio

n

Soft update

Q-target network

Update Q-network

Environment

Agent

..
.
. ...

Q-network

...

Q-target

network

Load

profile pool

Hybrid system

model

Hybrid system

model

Figure 2: Double Deep Q-Network agent and environment schematic.

days, and the ship operates between two fixed ports accomplishing 16 voyages per day, with

each voyage being of 60 min duration [6]. It is assumed that battery charging can be carried

out in both ports of the defined route, and hydrogen will be replenished overnight and never

during the operational period [9].

The load profiles used to train and validate the EMS were from [10]. There are 1081

voyages training in total, collected from 01/07/2018 to 31/08/2018. Another dataset with

392 voyages collected from 01/09/2018 to 30/09/2018 will be used for EMS validation [9].

Figure 3 shows 6 randomly selected sample power profiles in the training dataset. To reduce

measurement noise, the raw data has been processed by a Gaussian-weighted moving average

filter. The filter’s moving average window is 4. The standard error is acquired from 20% of

the whole window length. Although the power profiles follow a specific pattern in general,

13

each of them varies from the others.

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

P
ow

er
 [

kW
]

Raw data
Processed data

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

P
ow

er
 [

kW
]

Raw data
Processed data

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

P
ow

er
 [

kW
]

Raw data
Processed data

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

P
ow

er
 [

kW
]

Raw data
Processed data

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

P
ow

er
 [

kW
]

Raw data
Processed data

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

P
ow

er
 [

kW
]

Raw data
Processed data

(a) (b)

(c) (d)

(e) (f)

Figure 3: Sample load profiles from the training dataset. Measurement noise in the raw data has been

reduced by a Gaussian-weighted moving average filter.

Figure 4 illustrates the power transition probability map with a grid length of 50 kW (a

power index is assigned every 50 kW). The vertical and horizontal axes are about current

and next power demand indices, respectively. The colour of the plot represents the transition

probability from the current power demand index to the next power demand index. The

diagonal line from lower left to the upper right of the figure corresponds to the situations

14

those with current and next power demand indies are identical. In general, the next power

demand is more likely to have the same power demand index (see the highlighted diagonal

line). However, the power transition pattern varies in different power regions. For example,

in the low power regions (0–300 kW, 0–6 power demand indices), the probability of having

the same power demand index is close to 1 (colour close to red). In the power regions

from 350 to 1250 kW (7–25 power indices), the probability of having the same power index

in the next time step is around 0.3. In the power regions from 1300 to 1750 kW (26–35

power indices), the probability of having the same power index in the next time step is

approximately 0.5. More scattered transition probability pattern can be observed in the

high power regions (3000–3500 kW, 60–75 power demand indices).

Note that these transition probabilities are not explicitly used in the EMS training since

all RL agents adopted in this study are model-free. Instead, the agents are trained contin-

uously by experiencing different power profiles from the training dataset in each training

episode.

0 10 20 30 40 50 60 70
Next power demand index

0

10

20

30

40

50

60

70

C
ur

re
nt

 p
ow

er
 d

em
an

d
in

de
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y

Figure 4: Case ship power transition probability map with grid length of 50 kW.

4.2. System model

Figure 5 provides an overview of the plug-in hybrid PEMFC and battery propulsion

system model, which has been developed and optimised using the methodologies proposed

15

...

Energy Management System

Fuel cell stack Battery

Boost DC/DC

converter

Bidirectional

DC/DC converter

AC/DC

converter

Propulsion

motor

drive

Propulsion

motor

Ship

service

drive

Ship

service

loads

DC Bus

H2

supply

H2

supply

pfc SOC spA pdema

ActionAction

StateState

H2 flowH2 flow

Electrical

power

Electrical

power

Mechanical

connection

Mechanical

connection

Action

State

H2 flow

Electrical

power

Mechanical

connection

Figure 5: Overview of the plug-in hybrid PEMFC and battery propulsion system model.

in [46] and [6]. This model has also been used in the authors’ previous work for EMS

development [9]. The model consists of a PEMFC operating on H2, a Lithium battery,

a shore electricity supply, an EMS, power converters and a total system power demand

including both the propulsion and service loads. The shore electricity supply can provide

power when the ship is in the port. Note that the PEMFC power (2940 kW), battery

capacity (581 kW h) and other model settings are identical as in [9]. Readers are referred to

[9] for more details. The EMS controls the PEMFC power by seeing current system states,

including shore power availability, power demand, battery SOC and current PEMFC power.

The individual battery cell outputs are connected in parallel and series to model the

battery module. The open circuit voltage of an individual cell is a function of cell SOC as

presented in Figure 6a. The fuel cell model outputs fuel cell specific H2 consumption (see

Figure 6b) which can be used to derive H2 consumption. Note that the degradation effects

16

of the fuel cell and battery have been considered, which determine the degradation costs

from the two power sources [6].

(a) (b)

Figure 6: (a) Battery individual cell open circuit voltage-SOC curve, and (b) PEMFC system efficiency and

its specific H2 consumption.

The cost output from the model consists of two parts, i.e. the energy costs of H2 fuel

and shore-generated electricity to charge the battery, as well as the fuel cell and battery

degradation costs. The battery is charged to its higher State of Charge (SOC) limit before

starting a voyage by shore-generated electricity while at port. In sailing mode, the battery

can discharge or be charged by the fuel cell when excessive power is available from the

system. For each time step, the model outputs the cost incurred in this time step:

ct = cb + cf + ch + ce (12)

where cb, cf , ch and ce are the costs incurred by battery degradation, fuel cell degradation,

H2 and shore-generated electricity consumption, respectively. It is worth mentioning that

the model parameters would require customisation for different types of power sources to

capture unique features, and the model is developed with the flexibility of being calibrated

by specific experimental data [4].

17

4.3. Reward function

In [9], the agent was trained throughout all time steps of the voyages, i.e. from the first

moments of departure to last moments in ports. However, the ship was designed to operate

purely on shore based electricity when in port mode (i.e. cold ironing). Although the Double

Q agent has demonstrated its ability to maintain zero fuel cell power state in port mode,

removing the training steps in port mode can simplify the training processes due to the cold

ironing logic would only utilise shore provided power. Control of the fuel cell when in port

mode appears unnecessary. Also, it has been observed that, the Double Q agent struggled

to maintain final battery SOC constraint in some high power profiles. In practice, it would

be feasible to increase the port time slightly to get the battery charged to SOCH . Therefore,

the reward function of the environment is reshaped as:

rt+1 =

−1, spA=0, if st+1 is infeasible

−1, spA=0, if pfc + at /∈ [0, 1]

tanh

(
1

ct+1

)
, spA=0, else

K∑
k=t+1

tanh

(
1

ck

)
, spA=1

(13)

where when shore power is available (spA = 1), the environment returns a summed reward

of all the costs incurred in port mode of the current episode. In sailing mode, i.e. spA = 0,

the reward function is defined identically as in [9]. Note that K is the time step when the

entire profile is completed; and ck = ∞ if k > T (i.e. extra time required to charge the

battery), otherwise ck is calculated as described in [9].

4.4. State space

Previously, in [9], the four-dimensional state space was discretised to state indices to store

the action-value function into tables indexed by discrete state indices. Such a discretisation

process is necessary for tabular RL approaches. However, the discretisation process and

its resolution limit the quality of the generated policy [11]. In this work, discretisation of

18

continuous state parameters has been removed. The actual state space:

s(t) = [spA(t), pdem(t), x(t), SOC(t)]T (14)

is directly applied to represent the environment states, where spA denotes the shore power

availability (spA = 0 for sailing mode, spA = 1 for port mode), pdem is normalised system

power demand by dividing the actual power demand in kW by 1500 (i.e. pdem ← pdem
1500

, such

that the power demand input to the Q-network is around 1), x(t) is fuel cell per unit power

level at time step t (x ∈ [0, 1]), and SOC ∈ [0, 1] denotes battery state of charge (SOC).

4.5. Action

The action space is defined identically as in [9], i.e. a tuple of PEMFC power level

changes:

A = [a1, a2, ..., am, ..., an−1, an]T (15)

where an > 0 is the maximum increase and a1 < 0 is the maximum decrease of PEMFC

output in a time step. The power change notification of am = 0 indicates there is no change

and the fuel cell output remains the same as in the previous time step.

In sailing mode, the environment overrides any action that would result the PEMFC

power output becoming negative or higher than the rated power. With an action at ∈ A

chosen at current time step t, the PEMFC power level at the next time step is determined

by:

xt+1 =

0, xt + at < 0

1, xt + at > 1

xt + at, else

(16)

In port mode, the agent is not required to control the fuel cell. The environment would

decrease the PEMFC power to zero if it is not zero. The environment would extend episode

length whenever necessary to charge the battery SOC to SOCH (the power demand would

be extrapolated from the last power demand that appears in original power profile). Such

settings vary from the ones defined in [9], in which the agents were required to explore

actions in port mode to maintain cold ironing.

19

5. Agent training

The agents were trained on a workstation with two Intel Xeon E5-2683 V3 processors.

The environment and the agent were coded in Python. The agent’s neural networks were

built and trained with PyTorch V1.20. Each agent was trained with 10 different random

seeds for reproducibility. During training, the agent policy performance was assessed by

calculating the average values and standard deviations across the 10 instances running with

different random seeds. Note that as the neural networks are relatively small, only one

CPU thread is assigned to each running instance to avoid training speed degradation due

to unnecessary parallelisation.

Also, the actual policy performance was periodically tested (every 100 training episodes)

with 10 random training voyages during training. Note that in test mode, the ε − greedy

exploration probability was set at 0 with battery over-discharge protection enabled (disabled

in training mode). Once the training of all the 10 instances was completed, the agent with

the lowest episode cost was chosen to generate detailed EMS results in the following sections.

5.1. Neural network settings

Figure 7 illustrates the neural network configuration for the Q and Q-target networks.

The environment state inputs are processed by the input layer with four neurons with

Rectified Linear Unit (ReLU) activation function. Two fully-connected hidden layers are

configured with 256 neurons each. Note that both hidden layers are applied with an ReLU

activation function, while no activation function is applied to the output layer to allow

negative action-value outputs. The neural network outputs five Q-values, corresponding to

the 5 actions in the action space, respectively.

5.2. Hyperparameter settings

Table 1 details the hyperparameter settings applied. The policy is updated every 32

transition sequences (φ). In each training step, a mini-batch with 32 transition sequences

is randomly sampled from the experience memory with a capacity of 1× 106. Such a mini-

batch is applied to train the Q-network using an Adam optimiser. The learning rate of the

20

Hidden layer 1

(256×256)

Hidden layer 2

(256×256)

...

...

Input layer

(4×256)

Output layer

(256×5)

...

State

(s)
Q(s,a)

ReLU

activation

ReLU

activation

ReLU

activation

Figure 7: Q-network and Q-target network settings.

Adam optimiser is fixed at 0.0001 throughout the training. The exponential decay rates of

first and second moment estimates (β1 and β2) are set at 0.9 and 0.999 respectively [44].

Note that the Q-target network is soft-updated with a soft-update weight of τ = 0.001 in

each training step. The exploration probability ε of ε−greedy policy starts with 1 and fixes

at 0.05 after 5× 103 episodes of training. Note that these parameters require careful tuning

to achieve satisfactory performance.

21

Table 1: Hyperparameter settings.

Parameter Description Value

B Mini-batch size 32

M Experience memory size 1× 106

τ Target network update weight 0.001

γ Discount factor 1

Z Policy update frequency 32

α Learning rate of Adam optimiser 0.001

β1 Exponential decay rate for the first moment estimates of Adam optimiser 0.9

β2 Exponential decay rate for the second moment estimates of Adam optimiser 0.999

ε0 Initial exploration probability 1

εf Final exploration probability 0.05

5.3. Training

Figure 8 details the training process of the Double DQN agent with the Huber loss

function. The strategy is tested (exploration probability ε set to 0) 10 times with random

load profiles every 100 training episodes. The training was terminated after 8,000 training

episodes. In test mode, the moving average line of the Double DQN strategy converged to a

value of around $780 (Figure 8b). Note that the voyage cost is a sum of the costs incurred

in all time steps of a voyage, including the energy (H2 and electricity) and degradation (fuel

cell and battery) costs (see Section 2). The success rate, i.e. the rate of completing voyages,

converged to 100%.

In contrast, as shown in Figure 9, the training process of the Double DQN agent with

the Mean Squared Error (MSE) diverged, suggesting that the concept of ‘Double Deep Q-

learning’ alone is not sufficient to deal with the highly stochastic load profiles. Also, the

22

(a) (b)

0 200 400 600 800
Episode

0 200 400 600 800
Episode

0

200

400

600

800

1000

1200

E
pi

so
de

 c
os

t [
$]

Test cost

0 200 400 600 800
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

0 200 400 600 800
Episode

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

Test success rate

0 200 400 600 800
Episode

-50

0

50

100

E
pi

so
de

 r
ew

ar
d

Test reward

0 200 400 600 800
Episode

0

200

400

600

800

1000

1200

E
pi

so
de

 c
os

t [
$]

Test cost

0 200 400 600 800
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

0.8

1

at
e

Test success rate

0 200 400 600 800
Episode

-50

0 200 400 600 800
Episode

0

200

400

600

800

1000

1200

E
pi

so
de

 c
os

t [
$]

Test cost

0 200 400 600 800
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

0 200 400 600 800
Episode

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

Test success rate

0 200 400 600 800
Episode

-50

0

50

100

E
pi

so
de

 r
ew

ar
d

Test reward

0 200 400 600 800
Episode

0

200

400

600

800

1000

1200

E
pi

so
de

 c
os

t [
$]

Test cost

0 200 400 600 800
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

1
Test success rate

0 200 400 600 800
Episode

-50

0 200 400 600 800
Episode

0

200

400

600

800

1000

1200

E
pi

so
de

 c
os

t [
$]

Test cost

0 200 400 600 800
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

0 200 400 600 800
Episode

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

Test success rate

0 200 400 600 800
Episode

-50

0

50

100

E
pi

so
de

 r
ew

ar
d

Test reward

0 200 400 600 800
Episode

0

200

400

600

800

1000

1200

E
pi

so
de

 c
os

t [
$]

Test cost

0 200 400 600 800
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

0 8

1
Test success rate

(a) (b)

Figure 8: Double DQN agent training and testing with Huber loss function. The deep blue lines are moving

average values across 10 instances running with different random seeds. The light blue shadows are the

confidence bounds calculated by mean values ± standard deviations across the 10 instances. As shown in

(a), after 4,400 episodes of training, all the instances have converged to a policy of completing the training

voyages with the maximised reward. The converged training is also confirmed by periodic tests of the agents

as in (b), i.e. the voyage cost starts to decrease from test episode of 180 with the success rate converged to

100%.

Huber loss function has improved Double DQN training stability. It is worth mentioning

that extensive hyperparameter tuning experiments have been conducted for the combination

23

of Double DQN and MSE by iterating through predefined hyperparameter grids, without

achieving stable agent training.

0 200 400 600 800 1000 12
Episode

-50

0

50

100

E
pi

so
de

 r
ew

ar
d

Test reward

0 200 400 600 800 1000 12
Episode

0

200

400

600

800

1000

1200
E

pi
so

de
 c

os
t [

$]
Test cost

0 200 400 600 800 1000 12
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

0 200 400 600 800 1000 12
Episode

-50

0

50

100

E
pi

so
de

 r
ew

ar
d

Test reward

0 200 400 600 800 1000 12
Episode

0

200

400

600

800

1000

1200
E

pi
so

de
 c

os
t [

$]

Test cost

0 200 400 600 800 1000 12
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

T

0 200 400 600 800 1000 1
Episode

0

200

400

600

800

1000

1200

E
pi

so
de

 c
os

t [
$]

0 200 400 600 800 1000 1
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

0 200 400 600 800 1000 1
Episode

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

Test success rate

0 200 400 600 800 1000 1200
Episode

-50

0

50

100

E
pi

so
de

 r
ew

ar
d

Test reward

0 200 400 600 800 1000 1200
Episode

0

200

400

600

800

1000

1200
E

pi
so

de
 c

os
t [

$]
Test cost

0 200 400 600 800 1000 1200
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

0 200 400 600 800 1000 1200
Episode

-50

0

50

100

E
pi

so
de

 r
ew

ar
d

Test reward

0 200 400 600 800 1000 1200
Episode

0

200

400

600

800

1000

1200
E

pi
so

de
 c

os
t [

$]
Test cost

0 200 400 600 800 1000 1200
Episode

0

50

100

150

200

250

E
pi

so
de

 s
te

p

Test step

T

0 200 400 600 800 1000 1200
Episode

0

200

400

600

800

1000

1200

E
pi

so
de

 c
os

t [
$]

0 200 400 600 800 1000 1200
Episode

0

50

100

150

200

250
E

pi
so

de
 s

te
p

Test step

0 200 400 600 800 1000 1200
Episode

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 r
at

e

Test success rate

(b)(a) (b)

Figure 9: Double DQN agent training and testing with MSE loss function. The deep blue lines are moving

average values across 10 instances running with different random seeds. The light blue shadows are the

confidence bounds calculated by mean values ± standard deviations across the 10 instances.

24

6. Validation results

6.1. Overview

The results presented in this section were acquired with the Double DQN agent trained by

the Adam optimiser with Huber loss function. Note that the training and validation datasets,

sample voyages and model parameters are identical to those used in [9]. Table 2 compares

the average voyage cost of the strategies generated by Double DQN of this study with the

discrete Double Q-learning and off-line DDP (with a SOC resolution of 0.0125) solutions

from [9]. The strategy generated by the Double DQN achieves average costs of $782.5

and $768.9 for the training and validation voyages respectively. The off-line (Deterministic

Dynamic Programming) DDP strategy average voyage cost is 94.6% and 94.3% of those of

the Double DQN strategy, for the training and validation datasets respectively. It is worth

mentioning that the DDP strategy is acquired for each voyage independently by providing

complete power profiles before solving, representing the best that could theoretically be

achieved but requires pre-existing knowledge of power profiles, which is not possible in a

real stochastic environment. Therefore, the DDP strategy can only be used as a benchmark

to assess other on-line EMS performance. Compared to the Double Q strategy in discrete

state space, the Double DQN strategy further reduces the average voyage costs by 5.5% with

continuous state space. Note that the Double Q strategy is obtained with a SOC resolution

0.05, while it is continuous for the Double DQN strategy.

Table 2: Double DQN, Double Q and DDP strategy average voyage costs comparison.

DDP [$] Double Q [$] Double DQN [$] DDP
Double Q [%] DDP

Double DQN [%]

SOC resolution 0.0125 0.05 Continuous - -

Training voyages 740.0 831.8 782.5 89.0 94.6

Validation voyages 724.9 813.8 768.9 88.9 94.5

The computation time required by the Double DQN agent to generate a strategy is

25

approximately 27 min using a single thread of an Intel Xeon E5-2683 V3 processor (18 min on

an Intel i7-4790 processor). The Double Q agent requires 288 min to generate a strategy using

a single thread of an Intel i7-4790 processor. The Double DQN agent managed to reduce the

voyage cost by 5.5% with 93.8% less computational resource required, in comparison with

the Double Q agent.

As the EMS is intended for use on future voyages for which, of course, there would be no

predetermined data, the Double DQN strategy is applied to a set of validation voyages to

examine its performance against load profiles that have not been experienced by the agent.

6.2. Validation sample 1 with low power demand

Figure 10 compares the Double DQN strategy (Figure 10b) with the Double Q strategy

(Figure 10a) for a validation sample voyage with low power demand. As in Figure 10b, the

Double DQN strategy delays the increase of the fuel cell power until the battery SOC has

dropped to 0.36 (750 s). During cruising, the fuel cell power is maintained in a narrow band.

However, the Double DQN strategy tends to adjust PEMFC power output repeatedly. Nev-

ertheless, unnecessary large adjustments as in Figure 10a (1950–2300 s) have been avoided.

Moreover, the minimum battery SOC of the Double DQN strategy is 0.35, while it is 0.4 for

the Double Q strategy.

Table 3 details the cost and Global Warming Potential (GWP) emission breakdowns for

validation sample voyage 1. The Double DQN strategy reduces the voyage cost by 7.0%,

while increasing the GWP emission by 6.9%. This is due to the conflict between voyage cost

and GWP emission. PEMFC degradation cost is reduced by 8.3% by avoiding unnecessary

PEMFC power adjustments and by making more use of the battery.

26

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000

P
ow

er
 s

ou
rc

e
po

w
er

 [
kW

]

Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000

P
ow

er
 s

ou
rc

e
po

w
er

 [
kW

]
Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

(a) (b)

Figure 10: Double Q and Double DQN energy management strategies for validation sample voyage 1 with

a low overall power demand: (a) Double Q strategy and (b) Double DQN strategy.

27

Table 3: Double DQN and Double Q strategy voyage cost and GWP emission breakdowns of validation

sample voyage 1.

Voyage cost Voyage GWP Emission

Double DQN Double Q Double DQN
Double Q Double DQN Double Q Double DQN

Double Q

[$] [$] [%] [kg] [kg] [%]

PEMFC 224.3 244.7 91.7 - - -

Battery 63.7 63.7 100.0 - - -

Electricity 40.0 31.2 128.2 74.8 58.3 128.2

H2 366.5 406.8 90.1 66.7 74.1 90.1

Sum 694.5 746.5 93.0 141.5 132.4 106.9

6.3. Validation sample 2 with moderate power demand

Figure 11 illustrates the Double DQN strategy (Figure 11b) in comparison with the

Double Q strategy (Figure 11a) for a sample voyage with an overall moderate power demand

from the validation voyage load profiles. The Double DQN strategy starts ramping up the

PEMFC output at 700 s. As in Figure 11b, the power trajectory of the PEMFC is much

smoother compared to that in Figure 11a. The batteries absorb the small power transients

by frequent charging and discharging. In addition, when approaching port (2300–2750 s),

the Double DQN starts to decrease fuel cell power in advance. Such behaviour has not been

observed with the Double Q strategy.

28

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000

P
ow

er
 s

ou
rc

e
po

w
er

 [
kW

]

Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

(a)

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000

P
ow

er
 s

ou
rc

e
po

w
er

 [
kW

]
Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

(b)

Figure 11: Double Q and Double DQN energy management strategies for validation sample voyage 2 with

a moderate overall power demand: (a) Double Q strategy and (b) Double DQN strategy.

Table 4 compares the voyage cost and GWP emission breakdowns of the two strategies

for validation sample 2. The Double DQN strategy reduces the voyage cost by 8.4% for this

voyage. As the PEMFC power adjustments are less frequent, the PEMFC degradation cost

of the Double DQN strategy is reduced by 14.7%. The Double DQN strategy increases the

electricity cost by $9.6 but reduces the H2 cost by $43.2. The Double DQN strategy tends to

use more shore-generated electricity to achieve lower overall voyage cost. Such a tendency

29

would increase the electricity cost slightly but would bring greater cost reduction from H2

consumption. However, the Double DQN strategy increases voyage GWP emission by 7.0%.

Table 4: Double DQN and Double Q strategy voyage cost and GWP emission breakdowns of validation

sample voyage 2.

Voyage cost Voyage GWP Emission

Double DQN Double Q Double DQN
Double Q Double DQN Double Q Double DQN

Double Q

[$] [$] [%] [kg] [kg] [%]

PEMFC 204.5 239.6 85.3 - - -

Battery 63.7 63.7 100.0 - - -

Electricity 42.0 32.4 129.9 78.6 60.5 129.9

H2 434.4 477.6 91.0 79.1 86.9 91.0

Sum 744.7 813.2 91.6 157.7 147.4 107.0

6.4. Validation sample 3 with high power demand

Figure 12 details the Double DQN and Double Q strategies for validation sample 3.

This sample has a relatively high power demand (with an average power requirement of

1597.8 kW). Although the PEMFC power trajectories of the two strategies follow similar

trends in general, the Double DQN strategy maintains the PEMFC power more consistently

and only makes adjustments when significant power transients have been observed (e.g. at

1450 s). Also, the Double DQN discharges the battery to a SOC of around 0.26 (close to the

lower SOC limit). In addition, the Double DQN decreases the PEMFC output in advance of

reaching the port and reduces fuel cell power output to zero when shore power is available.

30

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000

P
ow

er
 s

ou
rc

e
po

w
er

 [
kW

]

Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0

1000

2000

3000

4000

R
eq

ui
re

d
po

w
er

 [
kW

]

0 500 1000 1500 2000 2500 3000 3500
Time [s]

-4000

-2000

0

2000

4000

P
ow

er
 s

ou
rc

e
po

w
er

 [
kW

]
Fuel cell power
Battery power
Shore power

0 500 1000 1500 2000 2500 3000 3500
Time [s]

0.2

0.4

0.6

0.8

1

B
at

te
ry

 S
O

C

(a) (b)

Figure 12: Double Q and Double DQN energy management strategies for validation sample voyage 3 with

a high overall power demand: (a) Double Q strategy and (b) Double DQN strategy.

Detailed voyage cost and GWP emission breakdowns of the two strategies for this voyage

are detailed in Table 5. The voyage costs of the Double DQN and Double Q strategies are

$1056.7 and $1093.0, respectively, corresponding to a 3.3% voyage cost difference. The cost

saving of 3.3% is lower compared to those voyages discussed in Section 6.2 and 6.3. The

reason for the reduced cost-saving is that the Double DQN strategy only adjusts fuel cell

power when necessary.

31

Table 5: Double DQN and Double Q strategy voyage cost and GWP emission breakdowns of validation

sample voyage 3.

Voyage cost Voyage GWP Emission

Double DQN Double Q Double DQN
Double Q Double DQN Double Q Double DQN

Double Q

[$] [$] [%] [kg] [kg] [%]

PEMFC 245.7 257.4 95.5 - - -

Battery 63.7 63.7 100.0 - - -

Electricity 43.5 36.9 117.9 81.4 69.1 117.9

H2 703.7 734.9 95.8 128.1 133.8 95.8

Sum 1056.7 1093.0 96.7 209.5 202.8 103.3

6.5. Summary of results

Table 6 summaries the Double DQN strategy performance in comparison with that of

the Double Q strategy. The Double DQN strategy further reduces the average cost for the

validation dataset by and 5.5%. Compared to the off-line optimum acquired by DDP (see

Table 2), the Double DQN strategy cost is only 6.0% higher than that of the DDP strategy

in the validation dataset. It appears that the Double DQN gives greatest cost savings

for lower power demand profiles. The results are much closer for the high power demand

ones, possibly because there is less flexibility in how the system can operate to meet the

performance criteria. Additionally, as the agent aims to achieve long-term near-optimum

cost performance, consequently the learned policy is better suited for profiles with moderate

power demands which are much more common in both training and validation datasets.

It is worth noting that the reduced voyage cost has led to increased GWP emission,

owing to the increased usage of shore-generated electricity which is more carbon-intensive

in the current simulation settings, from a life-cycle perspective. Readers are referred to the

authors’ previous work [46, 6] for the trade-offs between costs and GWP emissions which

32

have been determined in the system design phase. Although the EMS developed in this

study has led to a slight increase of in GWP emission, it is acceptable as the plug-in hybrid

fuel cell and battery propulsion system is mainly constrained by high costs, and the GWP

emission reduction is significant compared to a conventional diesel-based system [4].

Table 6: Comparison of Double DQN and Double Q strategy average voyage costs and GWP emissions.

Category Profile

Voyage cost Voyage GWP emission

Double DQN Double Q Double DQN
Double Q Double DQN Double Q Double DQN

Double Q

[$] [$] [%] [kg] [kg] [%]

Validation

Sample 1 694.5 746.2 93.1 141.5 132.4 106.9

Sample 2 744.7 813.0 91.6 157.7 147.4 107.0

Sample 3 1056.7 1092.7 96.7 209.5 202.8 103.3

Average all profiles 768.9 813.8 94.5 157.5 149.2 105.5

7. Discussion

As power transition patterns may change over time, a self-adaptive EMS updating proce-

dure can be applied with minimum human intervention. Figure 13 shows the training process

of an adaptive EMS. The ship starts with an EMS trained by an initial set of power profiles.

A dynamic profile pool is maintained throughout the ship’s operation by replacing the oldest

profile with the most recent profile. Periodically, the EMS performance is evaluated by com-

paring the actual EMS performance against those solved via DDP. The agent would need

training if the deviation between the on-line and DDP strategies exceeds the performance

threshold; otherwise, existing EMS would be applied until the next performance evaluation

point. Note that the EMS update indicator can be changed. Nevertheless, the on-line and

DDP strategies’ cost deviation can be directly interpreted by the vessel operators.

However, this adaptive EMS update scheme is not implemented in this study as the

developed Double DQN strategy has shown consistent performance throughout the total

33

382 validation load profiles in the available dataset. This work has further improved the

RL-based EMS developed in [9], with improved energy management performance and signif-

icantly reduced training time, making it more realistic for practical applications that would

require frequent updates throughout the vessel’s deployments.

Collect initial profile

pool
Start

Train DRL agent with

dynamic profile pool

DRL training

converged?
No

Yes

DRL EMS feasible?

Yes

No

Safety protection

Set DRL training

parameters

DRL EMS to future

voyages

Yes

Performance deviation

> threshold?
No

Assess EMS performance

periodically

New

profiles

Dynamic

profile pool

Update

Collect

voyage profiles

Initial

profiles

Old

profiles

Figure 13: Adaptive EMS update procedure.

8. Conclusions

This work aimed to further improve the cost-effectiveness of reinforcement learning-

based energy management strategies by extending discrete state space to be continuous. A

34

novel approach using deep reinforcement learning has been proposed to solve the optimal

energy management problem of the plug-in hybrid Proton Exchange Membrane Fuel Cell

and battery propulsion system with continuous state parameters. This novel approach is

effective in dealing with large-scale real-world stochastic load profiles, by reducing the impact

of function overestimation due to real-world stochasticity.

Two types of loss functions, i.e. Mean Squared Error and Huber loss functions, have been

explored to deal with value overestimations in the stochastic environment. The training

processes suggest that Double Deep Q-learning with Mean Squared Error loss function is

not sufficient to deal with the highly stochastic load profiles. In contrast, the combination

of Huber loss function with Double Deep Q-learning has overcome the training instability

issue and has produced an energy management strategy with improved cost-effectiveness.

The energy management strategy acquired by the Double Deep Q-Network with Huber loss

function was examined in detail in comparison to that obtained by the Double Q agent.

The Double Deep Q-Network has achieved a further 5.5% voyage cost reduction with 93.8%

computational time reduction. The cost reduction is achieved by more accurate fuel cell

control and reduced H2 consumption. However, the Double Deep Q-Network based energy

management strategy leads to a 5.5% increase in voyage Global Warming Potential emission

because of the conflicts between voyage emission and cost.

Additionally, an adaptive energy management update procedure has been discussed,

which can be further tested and developed in future work. The agent-environment frame-

work, training procedures and the energy management update scheme developed in this

study can be extended to other hybrid propulsion and power systems with continuous mon-

itoring, to achieve long-term near-optimal performance in changing environments. The en-

ergy management system will be extended to control multiple power sources in continuous

action space using advanced Deep Reinforcement Learning algorithms in future work.

Acknowledgements

This work is partially supported by Royal Society (Grant no. IEC\NSFC\191633). The

authors thank Jens Christian Bjeldorf and Molslinje A/S for approving using the ship data

35

in this study. The authors are grateful to Stig Eriksen and his colleagues for collecting the

ship data.

References

[1] L. van Biert, M. Godjevac, K. Visser, P. Aravind, A review of fuel cell systems for maritime applications,

Journal of Power Sources 327 (2016) 345–364.

[2] H. S. Das, C. W. Tan, A. Yatim, Fuel cell hybrid electric vehicles: A review on power conditioning

units and topologies, Renewable and Sustainable Energy Reviews 76 (2017) 268–291.

[3] Y. Bicer, I. Dincer, Clean fuel options with hydrogen for sea transportation: a life cycle approach,

International Journal of Hydrogen Energy 43 (2018) 1179–1193. doi:10.1016/j.ijhydene.2017.10.

157.

[4] P. Wu, Decarbonising coastal shipping using fuel cells and batteries, Ph.D. thesis, University College

London, 2020.

[5] P. Wu, R. Bucknall, Marine propulsion using battery power, Shipping in Changing Climates Conference

2016, 2016.

[6] P. Wu, R. Bucknall, Hybrid fuel cell and battery propulsion system modelling and multi-objective

optimisation for a coastal ferry, International Journal of Hydrogen Energy 45 (2020) 3193–3208. doi:10.

1016/j.ijhydene.2019.11.152.

[7] S. Ma, M. Lin, T.-E. Lin, T. Lan, X. Liao, F. Maréchal, Y. Yang, C. Dong, L. Wang, et al., Fuel cell-

battery hybrid systems for mobility and off-grid applications: A review, Renewable and Sustainable

Energy Reviews 135 (2020) 110119. doi:10.1016/j.rser.2020.110119.

[8] C. M. Martinez, X. Hu, D. Cao, E. Velenis, B. Gao, M. Wellers, Energy management in plug-in hybrid

electric vehicles: Recent progress and a connected vehicles perspective, IEEE Transactions on Vehicular

Technology 66 (2016) 4534–4549. doi:10.1109/TVT.2016.2582721.

[9] P. Wu, J. Partridge, R. Bucknall, Cost-effective reinforcement learning energy management for plug-in

hybrid fuel cell and battery ships, Applied Energy 275 (2020) 115258. doi:10.1016/j.apenergy.2020.

115258.

[10] S. Eriksen, M. Lützen, J. B. Jensen, J. C. Sørensen, Improving the energy efficiency of ferries by

optimizing the operational practices, in: Proceedings of the Full Scale Ship Performance Conference

2018: The Royal Institution of Naval Architects, The Royal Institution of Naval Architects, 2018, pp.

101–111.

[11] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT press, 2018.

[12] N. Sulaiman, M. Hannan, A. Mohamed, E. Majlan, W. W. Daud, A review on energy management

36

http://dx.doi.org/10.1016/j.ijhydene.2017.10.157
http://dx.doi.org/10.1016/j.ijhydene.2017.10.157
http://dx.doi.org/10.1016/j.ijhydene.2019.11.152
http://dx.doi.org/10.1016/j.ijhydene.2019.11.152
http://dx.doi.org/10.1016/j.rser.2020.110119
http://dx.doi.org/10.1109/TVT.2016.2582721
http://dx.doi.org/10.1016/j.apenergy.2020.115258
http://dx.doi.org/10.1016/j.apenergy.2020.115258

system for fuel cell hybrid electric vehicle: Issues and challenges, Renewable and Sustainable Energy

Reviews 52 (2015) 802–814. doi:10.1016/j.rser.2015.07.132.

[13] H. Banvait, S. Anwar, Y. Chen, A rule-based energy management strategy for plug-in hybrid electric

vehicle (phev), in: 2009 American control conference, IEEE, 2009, pp. 3938–3943. doi:10.1109/ACC.

2009.5160242.

[14] J. Peng, H. He, R. Xiong, Rule based energy management strategy for a series–parallel plug-in hybrid

electric bus optimized by dynamic programming, Applied Energy 185 (2017) 1633–1643. doi:10.1016/

j.apenergy.2015.12.031.

[15] Y. Wang, Z. Sun, Z. Chen, Development of energy management system based on a rule-based power

distribution strategy for hybrid power sources, Energy 175 (2019) 1055–1066. doi:10.1016/j.energy.

2019.03.155.

[16] M. Kalikatzarakis, R. Geertsma, E. Boonen, K. Visser, R. Negenborn, Ship energy management for

hybrid propulsion and power supply with shore charging, Control Engineering Practice 76 (2018)

133–154. doi:10.1016/j.conengprac.2018.04.009.

[17] H. Gao, Z. Wang, S. Yin, J. Lu, Z. Guo, W. Ma, Adaptive real-time optimal energy management

strategy based on equivalent factors optimization for hybrid fuel cell system, International Journal of

Hydrogen Energy 46 (2021) 4329–4338. doi:10.1016/j.ijhydene.2020.10.205.

[18] M. Ebrahim, B. Talat, E. Saied, Implementation of self-adaptive harris hawks optimization-based

energy management scheme of fuel cell-based electric power system, International Journal of Hydrogen

Energy 46 (2021) 15268–15287. doi:10.1016/j.ijhydene.2021.02.116.

[19] A. M. Bassam, A. B. Phillips, S. R. Turnock, P. A. Wilson, Development of a multi-scheme energy

management strategy for a hybrid fuel cell driven passenger ship, International Journal of Hydrogen

Energy 42 (2017) 623–635. doi:10.1016/j.ijhydene.2016.08.209.

[20] Y. Wang, Z. Sun, X. Li, X. Yang, Z. Chen, A comparative study of power allocation strategies used in

fuel cell and ultracapacitor hybrid systems, Energy 189 (2019) 116142. doi:10.1016/j.energy.2019.

116142.

[21] H. Rezk, A. M. Nassef, M. A. Abdelkareem, A. H. Alami, A. Fathy, Comparison among various energy

management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery

system, International Journal of Hydrogen Energy (2019). doi:10.1016/j.ijhydene.2019.11.195.

[22] J. Hou, J. Sun, H. Hofmann, Control development and performance evaluation for battery/flywheel

hybrid energy storage solutions to mitigate load fluctuations in all-electric ship propulsion systems,

Applied energy 212 (2018) 919–930. doi:10.1016/j.apenergy.2017.12.098.

[23] D.-D. Tran, M. Vafaeipour, M. El Baghdadi, R. Barrero, J. Van Mierlo, O. Hegazy, Thor-

ough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated

37

http://dx.doi.org/10.1016/j.rser.2015.07.132
http://dx.doi.org/10.1109/ACC.2009.5160242
http://dx.doi.org/10.1109/ACC.2009.5160242
http://dx.doi.org/10.1016/j.apenergy.2015.12.031
http://dx.doi.org/10.1016/j.apenergy.2015.12.031
http://dx.doi.org/10.1016/j.energy.2019.03.155
http://dx.doi.org/10.1016/j.energy.2019.03.155
http://dx.doi.org/10.1016/j.conengprac.2018.04.009
http://dx.doi.org/10.1016/j.ijhydene.2020.10.205
http://dx.doi.org/10.1016/j.ijhydene.2021.02.116
http://dx.doi.org/10.1016/j.ijhydene.2016.08.209
http://dx.doi.org/10.1016/j.energy.2019.116142
http://dx.doi.org/10.1016/j.energy.2019.116142
http://dx.doi.org/10.1016/j.ijhydene.2019.11.195
http://dx.doi.org/10.1016/j.apenergy.2017.12.098

energy management strategies, Renewable and Sustainable Energy Reviews 119 (2020) 109596.

doi:10.1016/j.rser.2019.109596.

[24] R. Geertsma, R. Negenborn, K. Visser, J. Hopman, Design and control of hybrid power and propulsion

systems for smart ships: A review of developments, Applied Energy 194 (2017) 30–54. doi:10.1016/

j.apenergy.2017.02.060.

[25] J. Li, Z. Hu, L. Xu, M. Ouyang, C. Fang, J. Hu, S. Cheng, H. Po, W. Zhang, H. Jiang, Fuel cell system

degradation analysis of a chinese plug-in hybrid fuel cell city bus, international journal of hydrogen

energy 41 (2016) 15295–15310. doi:10.1016/j.ijhydene.2016.06.136.

[26] Y. Zhou, H. Obeid, S. Laghrouche, M. Hilairet, A. Djerdir, A novel second-order sliding mode control

of hybrid fuel cell/super capacitors power system considering the degradation of the fuel cell, Energy

Conversion and Management 229 (2021) 113766. doi:10.1016/j.enconman.2020.113766.

[27] L. Vichard, N. Y. Steiner, N. Zerhouni, D. Hissel, Hybrid fuel cell system degradation modeling

methods: A comprehensive review, Journal of Power Sources 506 (2021) 230071. doi:10.1016/j.

jpowsour.2021.230071.

[28] T. Liu, Y. Zou, D. Liu, F. Sun, Reinforcement learning of adaptive energy management with transition

probability for a hybrid electric tracked vehicle, IEEE Transactions on Industrial Electronics 62 (2015)

7837–7846. doi:10.1109/TIE.2015.2475419.

[29] R. Xiong, J. Cao, Q. Yu, Reinforcement learning-based real-time power management for hybrid energy

storage system in the plug-in hybrid electric vehicle, Applied energy 211 (2018) 538–548. doi:10.1016/

j.apenergy.2017.11.072.

[30] B. Xu, X. Hu, X. Tang, X. Lin, H. Li, D. Rathod, Z. Filipi, Ensemble reinforcement learning-based

supervisory control of hybrid electric vehicle for fuel economy improvement, IEEE Transactions on

Transportation Electrification 6 (2020) 717–727. doi:10.1109/TTE.2020.2991079.

[31] J. Wu, H. He, J. Peng, Y. Li, Z. Li, Continuous reinforcement learning of energy management with

deep q network for a power split hybrid electric bus, Applied energy 222 (2018) 799–811. doi:10.1016/

j.apenergy.2018.03.104.

[32] Y. Wu, H. Tan, J. Peng, H. Zhang, H. He, Deep reinforcement learning of energy management with

continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus,

Applied Energy 247 (2019) 454–466. doi:10.1016/j.apenergy.2019.04.021.

[33] G. Du, Y. Zou, X. Zhang, T. Liu, J. Wu, D. He, Deep reinforcement learning based energy management

for a hybrid electric vehicle, Energy (2020) 117591. doi:10.1016/j.energy.2020.117591.

[34] S. Hasanvand, M. Rafiei, M. Gheisarnejad, M.-H. Khooban, Reliable power scheduling of an emission-

free ship: Multi-objective deep reinforcement learning, IEEE Transactions on Transportation Electri-

fication (2020). doi:10.1109/TTE.2020.2983247.

38

http://dx.doi.org/10.1016/j.rser.2019.109596
http://dx.doi.org/10.1016/j.apenergy.2017.02.060
http://dx.doi.org/10.1016/j.apenergy.2017.02.060
http://dx.doi.org/10.1016/j.ijhydene.2016.06.136
http://dx.doi.org/10.1016/j.enconman.2020.113766
http://dx.doi.org/10.1016/j.jpowsour.2021.230071
http://dx.doi.org/10.1016/j.jpowsour.2021.230071
http://dx.doi.org/10.1109/TIE.2015.2475419
http://dx.doi.org/10.1016/j.apenergy.2017.11.072
http://dx.doi.org/10.1016/j.apenergy.2017.11.072
http://dx.doi.org/10.1109/TTE.2020.2991079
http://dx.doi.org/10.1016/j.apenergy.2018.03.104
http://dx.doi.org/10.1016/j.apenergy.2018.03.104
http://dx.doi.org/10.1016/j.apenergy.2019.04.021
http://dx.doi.org/10.1016/j.energy.2020.117591
http://dx.doi.org/10.1109/TTE.2020.2983247

[35] H. van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-learning, in: Proceedings

of the AAAI conference on artificial intelligence, volume 30, 2016.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,

A. K. Fidjeland, G. Ostrovski, et al., Human-level control through deep reinforcement learning, Nature

518 (2015) 529. doi:10.1038/nature14236.

[37] J. A. Boyan, A. W. Moore, Generalization in reinforcement learning: Safely approximating the value

function, in: Advances in neural information processing systems, 1995, pp. 369–376.

[38] R. S. Sutton, D. A. McAllester, S. P. Singh, Y. Mansour, Policy gradient methods for reinforcement

learning with function approximation, in: Advances in neural information processing systems, 2000,

pp. 1057–1063.

[39] J. Tsitsiklis, B. Van Roy, An analysis of temporal-difference learning with function approximation,

IEEE Transactions on Automatic Control 42 (1997) 674–690.

[40] L. Lin, Reinforcement learning for robots using neural networks, Ph.D. thesis, Carnegie-Mellon Uni-

versity Pittsburgh PA School of Computer Science, 1993.

[41] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, Playing

atari with deep reinforcement learning, arXiv preprint (2013).

[42] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous

control with deep reinforcement learning, arXiv preprint (2015).

[43] P. J. Huber, Robust estimation of a location parameter, in: Breakthroughs in statistics, Springer,

1992, pp. 492–518.

[44] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint (2014).

[45] H. van Hasselt, Double q-learning, in: J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,

A. Culotta (Eds.), Advances in Neural Information Processing Systems 23, Curran Associates, Inc.,

2010, pp. 2613–2621.

[46] P. Wu, R. Bucknall, On the design of plug-in hybrid fuel cell and lithium battery propulsion systems

for coastal ships, in: P. Kujala, L. Lu (Eds.), 13th International Marine Design Conference (IMDC

2018), volume 2, CRC Press/Balkema, London, 2018, pp. 941–951.

39

http://dx.doi.org/10.1038/nature14236

	Introduction
	Background and motivation
	Previous work
	Aim
	Literature review
	Research gap and contributions
	Organisation

	Problem formulation
	Deep reinforcement learning agent
	Deep Q-Network
	Double Deep Q-Network

	Environment
	Candidate ship and the data
	System model
	Reward function
	State space
	Action

	Agent training
	Neural network settings
	Hyperparameter settings
	Training

	Validation results
	Overview
	Validation sample 1 with low power demand
	Validation sample 2 with moderate power demand
	Validation sample 3 with high power demand
	Summary of results

	Discussion
	Conclusions

