1,577 research outputs found

    Socio-economic aware data forwarding in mobile sensing networks and systems

    Get PDF
    The vision for smart sustainable cities is one whereby urban sensing is core to optimising city operation which in turn improves citizen contentment. Wireless Sensor Networks are envisioned to become pervasive form of data collection and analysis for smart cities but deployment of millions of inter-connected sensors in a city can be cost-prohibitive. Given the ubiquity and ever-increasing capabilities of sensor-rich mobile devices, Wireless Sensor Networks with Mobile Phones (WSN-MP) provide a highly flexible and ready-made wireless infrastructure for future smart cities. In a WSN-MP, mobile phones not only generate the sensing data but also relay the data using cellular communication or short range opportunistic communication. The largest challenge here is the efficient transmission of potentially huge volumes of sensor data over sometimes meagre or faulty communications networks in a cost-effective way. This thesis investigates distributed data forwarding schemes in three types of WSN-MP: WSN with mobile sinks (WSN-MS), WSN with mobile relays (WSN-HR) and Mobile Phone Sensing Systems (MPSS). For these dynamic WSN-MP, realistic models are established and distributed algorithms are developed for efficient network performance including data routing and forwarding, sensing rate control and and pricing. This thesis also considered realistic urban sensing issues such as economic incentivisation and demonstrates how social network and mobility awareness improves data transmission. Through simulations and real testbed experiments, it is shown that proposed algorithms perform better than state-of-the-art schemes.Open Acces

    DESIGN OF MOBILE DATA COLLECTOR BASED CLUSTERING ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Networks (WSNs) consisting of hundreds or even thousands of nodes, canbe used for a multitude of applications such as warfare intelligence or to monitor the environment. A typical WSN node has a limited and usually an irreplaceable power source and the efficient use of the available power is of utmost importance to ensure maximum lifetime of eachWSNapplication. Each of the nodes needs to transmit and communicate sensed data to an aggregation point for use by higher layer systems. Data and message transmission among nodes collectively consume the largest amount of energy available in WSNs. The network routing protocols ensure that every message reaches thedestination and has a direct impact on the amount of transmissions to deliver messages successfully. To this end, the transmission protocol within the WSNs should be scalable, adaptable and optimized to consume the least possible amount of energy to suite different network architectures and application domains. The inclusion of mobile nodes in the WSNs deployment proves to be detrimental to protocol performance in terms of nodes energy efficiency and reliable message delivery. This thesis which proposes a novel Mobile Data Collector based clustering routing protocol for WSNs is designed that combines cluster based hierarchical architecture and utilizes three-tier multi-hop routing strategy between cluster heads to base station by the help of Mobile Data Collector (MDC) for inter-cluster communication. In addition, a Mobile Data Collector based routing protocol is compared with Low Energy Adaptive Clustering Hierarchy and A Novel Application Specific Network Protocol for Wireless Sensor Networks routing protocol. The protocol is designed with the following in mind: minimize the energy consumption of sensor nodes, resolve communication holes issues, maintain data reliability, finally reach tradeoff between energy efficiency and latency in terms of End-to-End, and channel access delays. Simulation results have shown that the Mobile Data Collector based clustering routing protocol for WSNs could be easily implemented in environmental applications where energy efficiency of sensor nodes, network lifetime and data reliability are major concerns

    Uav-assisted data collection in wireless sensor networks: A comprehensive survey

    Get PDF
    Wireless sensor networks (WSNs) are usually deployed to different areas of interest to sense phenomena, process sensed data, and take actions accordingly. The networks are integrated with many advanced technologies to be able to fulfill their tasks that is becoming more and more complicated. These networks tend to connect to multimedia networks and to process huge data over long distances. Due to the limited resources of static sensor nodes, WSNs need to cooperate with mobile robots such as unmanned ground vehicles (UGVs), or unmanned aerial vehicles (UAVs) in their developments. The mobile devices show their maneuverability, computational and energystorage abilities to support WSNs in multimedia networks. This paper addresses a comprehensive survey of almost scenarios utilizing UAVs and UGVs with strogly emphasising on UAVs for data collection in WSNs. Either UGVs or UAVs can collect data from static sensor nodes in the monitoring fields. UAVs can either work alone to collect data or can cooperate with other UAVs to increase their coverage in their working fields. Different techniques to support the UAVs are addressed in this survey. Communication links, control algorithms, network structures and different mechanisms are provided and compared. Energy consumption or transportation cost for such scenarios are considered. Opening issues and challenges are provided and suggested for the future developments

    Design of implicit routing protocols for large scale mobile wireless sensor networks

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T13189Most developments in wireless sensor networks (WSNs) routing protocols address static network scenarios. Schemes developed to manage mobility in other mobile networking implementations do not translate effectively to WSNs as the system design parameters are markedly different. Thus this research focuses on the issues of mobility and scalability in order to enable the full potential of WSNs to self-organise and co-operate and in so doing, meet the requirements of a rich mix of applications. In the goal of designing efficient, reliable routing protocols for large scale mobile WSN applications, this work lays the foundation by firstly presenting a strong case supported by extensive simulations, for the use of implicit connections. Then two novel implicit routing protocols - Virtual Grid Paging (VGP) and Virtual Zone Registration and Paging (VZRP) - that treat packet routing from node mobility and network scalability viewpoints are designed and analysed. Implicit routing exploits the connection availability and diversity in the underlying network to provide benefits such as fault tolerance, overhead control and improvement in QoS (Quality of Service) such as delay. Analysis and simulation results show that the proposed protocols guarantee significant improvement, delivering a more reliable, more efficient and better network performance compared with alternatives.Most developments in wireless sensor networks (WSNs) routing protocols address static network scenarios. Schemes developed to manage mobility in other mobile networking implementations do not translate effectively to WSNs as the system design parameters are markedly different. Thus this research focuses on the issues of mobility and scalability in order to enable the full potential of WSNs to self-organise and co-operate and in so doing, meet the requirements of a rich mix of applications. In the goal of designing efficient, reliable routing protocols for large scale mobile WSN applications, this work lays the foundation by firstly presenting a strong case supported by extensive simulations, for the use of implicit connections. Then two novel implicit routing protocols - Virtual Grid Paging (VGP) and Virtual Zone Registration and Paging (VZRP) - that treat packet routing from node mobility and network scalability viewpoints are designed and analysed. Implicit routing exploits the connection availability and diversity in the underlying network to provide benefits such as fault tolerance, overhead control and improvement in QoS (Quality of Service) such as delay. Analysis and simulation results show that the proposed protocols guarantee significant improvement, delivering a more reliable, more efficient and better network performance compared with alternatives

    Mobile Wireless Sensor Networks: An Overview

    Get PDF
    Mobile wireless sensor networks (MWSNs) have emerged and shifted the focus from the typical static wireless sensor networks to networks with mobile sensor nodes that are capable to sense the various types of events. Also, they can change their position frequently in a specific sensing area. The applications of the MWSNs can be widely divided into time-driven, event-driven, on-demand and tracking based applications. Mobile sensor node architecture, residual energy utilization, mobility, topology, scalability, localization, data collection routing, Quality of Service (QoS), etc., are the key factors to design an energy efficient MWSNs for some specific purpose. This chapter deals with an overview of the MWSNs and a few significant phenomena to design an energy efficient MWSNs to the large-scale environment
    • 

    corecore