10,791 research outputs found

    TANGO: Transparent heterogeneous hardware Architecture deployment for eNergy Gain in Operation

    Get PDF
    The paper is concerned with the issue of how software systems actually use Heterogeneous Parallel Architectures (HPAs), with the goal of optimizing power consumption on these resources. It argues the need for novel methods and tools to support software developers aiming to optimise power consumption resulting from designing, developing, deploying and running software on HPAs, while maintaining other quality aspects of software to adequate and agreed levels. To do so, a reference architecture to support energy efficiency at application construction, deployment, and operation is discussed, as well as its implementation and evaluation plans.Comment: Part of the Program Transformation for Programmability in Heterogeneous Architectures (PROHA) workshop, Barcelona, Spain, 12th March 2016, 7 pages, LaTeX, 3 PNG figure

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    NFV Based Gateways for Virtualized Wireless Sensors Networks: A Case Study

    Full text link
    Virtualization enables the sharing of a same wireless sensor network (WSN) by multiple applications. However, in heterogeneous environments, virtualized wireless sensor networks (VWSN) raises new challenges such as the need for on-the-fly, dynamic, elastic and scalable provisioning of gateways. Network Functions Virtualization (NFV) is an emerging paradigm that can certainly aid in tackling these new challenges. It leverages standard virtualization technology to consolidate special-purpose network elements on top of commodity hardware. This article presents a case study on NFV based gateways for VWSNs. In the study, a VWSN gateway provider, operates and manages an NFV based infrastructure. We use two different brands of wireless sensors. The NFV infrastructure makes possible the dynamic, elastic and scalable deployment of gateway modules in this heterogeneous VWSN environment. The prototype built with Openstack as platform is described

    Network Virtual Machine (NetVM): A New Architecture for Efficient and Portable Packet Processing Applications

    Get PDF
    A challenge facing network device designers, besides increasing the speed of network gear, is improving its programmability in order to simplify the implementation of new applications (see for example, active networks, content networking, etc). This paper presents our work on designing and implementing a virtual network processor, called NetVM, which has an instruction set optimized for packet processing applications, i.e., for handling network traffic. Similarly to a Java Virtual Machine that virtualizes a CPU, a NetVM virtualizes a network processor. The NetVM is expected to provide a compatibility layer for networking tasks (e.g., packet filtering, packet counting, string matching) performed by various packet processing applications (firewalls, network monitors, intrusion detectors) so that they can be executed on any network device, ranging from expensive routers to small appliances (e.g. smart phones). Moreover, the NetVM will provide efficient mapping of the elementary functionalities used to realize the above mentioned networking tasks upon specific hardware functional units (e.g., ASICs, FPGAs, and network processing elements) included in special purpose hardware systems possibly deployed to implement network devices

    Wearable and mobile devices

    Get PDF
    Information and Communication Technologies, known as ICT, have undergone dramatic changes in the last 25 years. The 1980s was the decade of the Personal Computer (PC), which brought computing into the home and, in an educational setting, into the classroom. The 1990s gave us the World Wide Web (the Web), building on the infrastructure of the Internet, which has revolutionized the availability and delivery of information. In the midst of this information revolution, we are now confronted with a third wave of novel technologies (i.e., mobile and wearable computing), where computing devices already are becoming small enough so that we can carry them around at all times, and, in addition, they have the ability to interact with devices embedded in the environment. The development of wearable technology is perhaps a logical product of the convergence between the miniaturization of microchips (nanotechnology) and an increasing interest in pervasive computing, where mobility is the main objective. The miniaturization of computers is largely due to the decreasing size of semiconductors and switches; molecular manufacturing will allow for “not only molecular-scale switches but also nanoscale motors, pumps, pipes, machinery that could mimic skin” (Page, 2003, p. 2). This shift in the size of computers has obvious implications for the human-computer interaction introducing the next generation of interfaces. Neil Gershenfeld, the director of the Media Lab’s Physics and Media Group, argues, “The world is becoming the interface. Computers as distinguishable devices will disappear as the objects themselves become the means we use to interact with both the physical and the virtual worlds” (Page, 2003, p. 3). Ultimately, this will lead to a move away from desktop user interfaces and toward mobile interfaces and pervasive computing

    Inferring Energy Bounds via Static Program Analysis and Evolutionary Modeling of Basic Blocks

    Full text link
    The ever increasing number and complexity of energy-bound devices (such as the ones used in Internet of Things applications, smart phones, and mission critical systems) pose an important challenge on techniques to optimize their energy consumption and to verify that they will perform their function within the available energy budget. In this work we address this challenge from the software point of view and propose a novel parametric approach to estimating tight bounds on the energy consumed by program executions that are practical for their application to energy verification and optimization. Our approach divides a program into basic (branchless) blocks and estimates the maximal and minimal energy consumption for each block using an evolutionary algorithm. Then it combines the obtained values according to the program control flow, using static analysis, to infer functions that give both upper and lower bounds on the energy consumption of the whole program and its procedures as functions on input data sizes. We have tested our approach on (C-like) embedded programs running on the XMOS hardware platform. However, our method is general enough to be applied to other microprocessor architectures and programming languages. The bounds obtained by our prototype implementation can be tight while remaining on the safe side of budgets in practice, as shown by our experimental evaluation.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854). Improved version of the one presented at the HIP3ES 2016 workshop (v1): more experimental results (added benchmark to Table 1, added figure for new benchmark, added Table 3), improved Fig. 1, added Fig.

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018
    • …
    corecore