371 research outputs found

    Tuplix Calculus

    Get PDF
    We introduce a calculus for tuplices, which are expressions that generalize matrices and vectors. Tuplices have an underlying data type for quantities that are taken from a zero-totalized field. We start with the core tuplix calculus CTC for entries and tests, which are combined using conjunctive composition. We define a standard model and prove that CTC is relatively complete with respect to it. The core calculus is extended with operators for choice, information hiding, scalar multiplication, clearing and encapsulation. We provide two examples of applications; one on incremental financial budgeting, and one on modular financial budget design.Comment: 22 page

    Questions related to Bitcoin and other Informational Money

    Get PDF
    A collection of questions about Bitcoin and its hypothetical relatives Bitguilder and Bitpenny is formulated. These questions concern technical issues about protocols, security issues, issues about the formalizations of informational monies in various contexts, and issues about forms of use and misuse. Some questions are formulated in the more general setting of informational monies and near-monies. We also formulate questions about legal, psychological, and ethical aspects of informational money. Finally we formulate a number of questions concerning the economical merits of and outlooks for Bitcoin.Comment: 31 pages. In v2 the section on patterns for use and misuse has been improved and expanded with so-called contaminations. Other small improvements were made and 13 additional references have been include

    A novel robust reversible watermarking scheme for protecting authenticity and integrity of medical images

    Get PDF
    It is of great importance in telemedicine to protect authenticity and integrity of medical images. They are mainly addressed by two technologies, which are region of interest (ROI) lossless watermarking and reversible watermarking. However, the former causes biases on diagnosis by distorting region of none interest (RONI) and introduces security risks by segmenting image spatially for watermark embedding. The latter fails to provide reliable recovery function for the tampered areas when protecting image integrity. To address these issues, a novel robust reversible watermarking scheme is proposed in this paper. In our scheme, a reversible watermarking method is designed based on recursive dither modulation (RDM) to avoid biases on diagnosis. In addition, RDM is combined with Slantlet transform and singular value decomposition to provide a reliable solution for protecting image authenticity. Moreover, ROI and RONI are divided for watermark generation to design an effective recovery function under limited embedding capacity. Finally, watermarks are embedded into whole medical images to avoid the risks caused by segmenting image spatially. Experimental results demonstrate that our proposed lossless scheme not only has remarkable imperceptibility and sufficient robustness, but also provides reliable authentication, tamper detection, localization and recovery functions, which outperforms existing schemes for protecting medical image

    Cybersecurity applications of Blockchain technologies

    Get PDF
    With the increase in connectivity, the popularization of cloud services, and the rise of the Internet of Things (IoT), decentralized approaches for trust management are gaining momentum. Since blockchain technologies provide a distributed ledger, they are receiving massive attention from the research community in different application fields. However, this technology does not provide cybersecurity by itself. Thus, this thesis first aims to provide a comprehensive review of techniques and elements that have been proposed to achieve cybersecurity in blockchain-based systems. The analysis is intended to target area researchers, cybersecurity specialists and blockchain developers. We present a series of lessons learned as well. One of them is the rise of Ethereum as one of the most used technologies. Furthermore, some intrinsic characteristics of the blockchain, like permanent availability and immutability made it interesting for other ends, namely as covert channels and malicious purposes. On the one hand, the use of blockchains by malwares has not been characterized yet. Therefore, this thesis also analyzes the current state of the art in this area. One of the lessons learned is that covert communications have received little attention. On the other hand, although previous works have analyzed the feasibility of covert channels in a particular blockchain technology called Bitcoin, no previous work has explored the use of Ethereum to establish a covert channel considering all transaction fields and smart contracts. To foster further defence-oriented research, two novel mechanisms are presented on this thesis. First, Zephyrus takes advantage of all Ethereum fields and smartcontract bytecode. Second, Smart-Zephyrus is built to complement Zephyrus by leveraging smart contracts written in Solidity. We also assess the mechanisms feasibility and cost. Our experiments show that Zephyrus, in the best case, can embed 40 Kbits in 0.57 s. for US1.64,andretrievethemin2.8s.Smart−Zephyrus,however,isabletohidea4Kbsecretin41s.Whilebeingexpensive(aroundUS 1.64, and retrieve them in 2.8 s. Smart-Zephyrus, however, is able to hide a 4 Kb secret in 41 s. While being expensive (around US 1.82 per bit), the provided stealthiness might be worth the price for attackers. Furthermore, these two mechanisms can be combined to increase capacity and reduce costs.Debido al aumento de la conectividad, la popularización de los servicios en la nube y el auge del Internet de las cosas (IoT), los enfoques descentralizados para la gestión de la confianza están cobrando impulso. Dado que las tecnologías de cadena de bloques (blockchain) proporcionan un archivo distribuido, están recibiendo una atención masiva por parte de la comunidad investigadora en diferentes campos de aplicación. Sin embargo, esta tecnología no proporciona ciberseguridad por sí misma. Por lo tanto, esta tesis tiene como primer objetivo proporcionar una revisión exhaustiva de las técnicas y elementos que se han propuesto para lograr la ciberseguridad en los sistemas basados en blockchain. Este análisis está dirigido a investigadores del área, especialistas en ciberseguridad y desarrolladores de blockchain. A su vez, se presentan una serie de lecciones aprendidas, siendo una de ellas el auge de Ethereum como una de las tecnologías más utilizadas. Asimismo, algunas características intrínsecas de la blockchain, como la disponibilidad permanente y la inmutabilidad, la hacen interesante para otros fines, concretamente como canal encubierto y con fines maliciosos. Por una parte, aún no se ha caracterizado el uso de la blockchain por parte de malwares. Por ello, esta tesis también analiza el actual estado del arte en este ámbito. Una de las lecciones aprendidas al analizar los datos es que las comunicaciones encubiertas han recibido poca atención. Por otro lado, aunque trabajos anteriores han analizado la viabilidad de los canales encubiertos en una tecnología blockchain concreta llamada Bitcoin, ningún trabajo anterior ha explorado el uso de Ethereum para establecer un canal encubierto considerando todos los campos de transacción y contratos inteligentes. Con el objetivo de fomentar una mayor investigación orientada a la defensa, en esta tesis se presentan dos mecanismos novedosos. En primer lugar, Zephyrus aprovecha todos los campos de Ethereum y el bytecode de los contratos inteligentes. En segundo lugar, Smart-Zephyrus complementa Zephyrus aprovechando los contratos inteligentes escritos en Solidity. Se evalúa, también, la viabilidad y el coste de ambos mecanismos. Los resultados muestran que Zephyrus, en el mejor de los casos, puede ocultar 40 Kbits en 0,57 s. por 1,64 US$, y recuperarlos en 2,8 s. Smart-Zephyrus, por su parte, es capaz de ocultar un secreto de 4 Kb en 41 s. Si bien es cierto que es caro (alrededor de 1,82 dólares por bit), el sigilo proporcionado podría valer la pena para los atacantes. Además, estos dos mecanismos pueden combinarse para aumentar la capacidad y reducir los costesPrograma de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José Manuel Estévez Tapiador.- Secretario: Jorge Blasco Alís.- Vocal: Luis Hernández Encina

    Text Hiding in Coded Image Based on Quantization Level Modification and Chaotic Function

    Get PDF
    A text hiding method in codded image is presented in this paper that based on quantization level modification. The used image is transformed into wavelet domain by DWT and coefficient of transform is partitioned into predefined block size. Specific threshold has been used to classify these blocks into two types named smooth and complex. Each type has its own method of text hiding (binary data), for smooth blocks, secret bits which represent the text data are switched by the bitmap. In order to reduce distortion, the quantization levels are modified. To reach extra embedding payload the quantization level could carry extra two bits depending on other threshold. The complex block carry one data bit on each block and quantization levels are swapped to reduce distortion with bitmap flipping. The proposed method result shows a high signal to noise ratio, with studying capacity as important in this work

    Credit Network Payment Systems: Security, Privacy and Decentralization

    Get PDF
    A credit network models transitive trust between users and enables transactions between arbitrary pairs of users. With their flexible design and robustness against intrusions, credit networks form the basis of Sybil-tolerant social networks, spam-resistant communication protocols, and payment settlement systems. For instance, the Ripple credit network is used today by various banks worldwide as their backbone for cross-currency transactions. Open credit networks, however, expose users’ credit links as well as the transaction volumes to the public. This raises a significant privacy concern, which has largely been ignored by the research on credit networks so far. In this state of affairs, this dissertation makes the following contributions. First, we perform a thorough study of the Ripple network that analyzes and characterizes its security and privacy issues. Second, we define a formal model for the security and privacy notions of interest in a credit network. This model lays the foundations for secure and privacy-preserving credit networks. Third, we build PathShuffle, the first protocol for atomic and anonymous transactions in credit networks that is fully compatible with the currently deployed Ripple and Stellar credit networks. Finally, we build SilentWhispers, the first provably secure and privacy-preserving transaction protocol for decentralized credit networks. SilentWhispers can be used to simulate Ripple transactions while preserving the expected security and privacy guarantees

    Using a Novel Variable Block Size Image Compression Algorithm for Hiding Secret Data

    Get PDF
    This paper presents a data hiding scheme that hides the data in the compression domain of a digital image. A quadtree decomposition algorithm decomposes the host image into blocks of variable sizes according to histogram analysis of the block residuals. Variable block sizes are then encoded at different rates based on their visual activity levels. The majority of secrete data are embedded into the smooth area of the image, while a small portion of the secret data are hidden in the compression codes of the high detailed blocks. Experimental results confirm that the proposed scheme can embed a large amount of data in the compressed file while maintaining satisfactory image quality

    A User Oriented Image Retrieval System using Halftoning BBTC

    Get PDF
    The objective of this paper is to develop a system for content based image retrieval (CBIR) by accomplishing the benefits of low complexity Ordered Dither Block Truncation Coding based on half toning technique for the generation of image content descriptor. In the encoding step ODBTC compresses an image block into corresponding quantizes and bitmap image. Two image features are proposed to index an image namely co-occurrence features and bitmap patterns which are generated using ODBTC encoded data streams without performing the decoding process. The CCF and BPF of an image are simply derived from the two quantizes and bitmap respectively by including visual codebooks. The proposed system based on block truncation coding image retrieval method is not only convenient for an image compression but it also satisfy the demands of users by offering effective descriptor to index images in CBIR system
    • …
    corecore