
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

2008

Using a novel variable block size image compression algorithm for hiding Using a novel variable block size image compression algorithm for hiding

secret data secret data

F. Keissarian
University of Wollongong in Dubai, farhadk@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Keissarian, F.: Using a novel variable block size image compression algorithm for hiding secret data 2008.
https://ro.uow.edu.au/infopapers/3225

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3225&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3225&utm_medium=PDF&utm_campaign=PDFCoverPages

Using a novel variable block size image compression algorithm for hiding secret Using a novel variable block size image compression algorithm for hiding secret
data data

Abstract Abstract
This paper presents a data hiding scheme that hides the data in the compression domain of a digital
image. A quadtree decomposition algorithm decomposes the host image into blocks of variable sizes
according to histogram analysis of the block residuals. Variable block sizes are then encoded at different
rates based on their visual activity levels. The majority of secrete data are embedded into the smooth
area of the image, while a small portion of the secret data are hidden in the compression codes of the
high detailed blocks. Experimental results confirm that the proposed scheme can embed a large amount
of data in the compressed file while maintaining satisfactory image quality.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Keissarian, F. (2008). Using a novel variable block size image compression algorithm for hiding secret
data. IEEE International Conference on Signal Image Technology and Internet Based Systems, 2008. SITIS
2008. (pp. 285-292). United States: IEEE.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/3225

https://ro.uow.edu.au/infopapers/3225

Using a Novel Variable Block Size Image Compression Algorithm for Hiding
Secret Data

Farhad Keissarian
University of Wollongong in Dubai
farhadkeissarian@uowdubai.ac.ae

Abstract

This paper presents a data hiding scheme that hides
the data in the compression domain of a digital image.
A quadtree decomposition algorithm decomposes the
host image into blocks of variable sizes according to
histogram analysis of the block residuals. Variable
block sizes are then encoded at different rates based
on their visual activity levels. The majority of secrete
data are embedded into the smooth area of the image,
while a small portion of the secret data are hidden in
the compression codes of the high detailed blocks.
Experimental results confirm that the proposed scheme
can embed a large amount of data in the compressed
file while maintaining satisfactory image quality.

1. Introduction

 Message transmissions over the Internet still have
data security problem, and secure communication
methods are needed for transmitting messages over the
Net without anything leaking out. One of the possible
ways to accomplish this is to embed secret data inside
a cover carrier that appears meaningful but not
important. Through this way, the existence of the
secret data can be concealed and the attention of
attackers will be avoided. Data hiding techniques that
follow this strategy are called ‘methods of
steganography [1].

Data hiding represents a class of processes used to
embed data, such as copyright information, into
various forms of media such as image, audio, or text
with a minimum amount of perceivable degradation to
the "host" signal; i.e., the embedded data should be
invisible and inaudible to a human observer. Once data
embedding is used for secret transmissions, two crucial
requirements must be satisfied. One is minimizing the
degradation in image quality after secret data is

embedded. The other is making the hiding capacity of
cover media as large as possible. Basically, the image
quality of stego-image and hiding capacity are
tradeoffs, so the capacity often causes greater
distortion in the cover medium, and vice versa.

Digital data hiding techniques can be roughly
classified into three kinds: spatial domain methods,
frequency domain methods and compression domain
methods. The difference here is the domain where the
embedding happens. Methods in the spatial domain
work by directly replacing the raw data of the digital
image with secret data. One simple and well-known
example of such schemes is the least-significant-bit
(LSB) hiding [2]. As the name implies, it replaces the
least significant bits of each pixel value in the original
image with secret data bit by bit. Different from spatial
domain methods, frequency domain methods first
transform an image from the spatial domain to the
frequency domain by using discrete cosine transform,
discrete Fourier transform or discrete wavelet
transform. And then, the secret data is hidden inside
the transformed coefficients [3].

In recent years, some researchers have concentrated on
a third possibility: embedding secret data into the
compression domain. Image compression used in some
of these studies includes vector quantization (VQ), and
block truncation coding (BTC). Digital images are
stored or transmitted in a compressed form so as to
minimize memory space consumption or to deal with
the limited-bandwidth problem. For this reason, if
secret data can be directly embedded into the
compressed codes of the image, then we can spare all
those decompression and recompression processes.
Furthermore, the compressed codes transmitted on the
Net attract less attention than the raw data itself .

Side match vector quantization (SMVQ) with the
concept of prediction, proposed in [4] applies an

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE

DOI

285

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE

DOI

285

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE

DOI 10.1109/SITIS.2008.82

285

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE

DOI 10.1109/SITIS.2008.82

285

adaptive data hiding scheme to maintain the visual
quality of the stego-images. Two thresholds are used
to adaptively select enough qualified smooth blocks
from the cover image to hide secret data. However, the
image quality of the stego-image in this scheme
depends to a large extent on the number of smooth
blocks in a cover image. In addition to the VQ
compression domain, data embedding schemes based
on BTC has also been proposed. The proposed method
in [5], applies a 4 × 4 BTC to compress a gray scale
cover image directly. Therefore, the output of BTC-
encoded block contains two quantization values and
one bitmap. A pre-defined threshold is then set to
classify the type of each BTC-encoded block as
smooth or complex. Subsequently, the secret data is
embedded into the bitmap of the selected BTC-
encoded blocks.

In this paper, we develop an image hiding scheme that
can hide the secrete data into compression codes of
the host image, generated by a quad-tree based
compression technique which uses a pattern matching
algorithm for coding of the image blocks. The
proposed method is a combination of the works we
reported earlier in [6] and [7].

In this study, a quadtree segmentation is employed to
encode the image blocks of variable sizes at different
rates according to the level of activity inside the block.
Low activity blocks (uniform blocks) can be encoded
by the block average while high activity blocks (edge
blocks) are coded by a set of pre-defined block
patterns. A new decision, based on the distribution of
the block residuals and the shape of their histogram
determines whether or not the processed block needs
further divisions. The key point of the proposed
scheme is to embed the majority of the data in the
smooth area of the host image. These include the
uniform blocks of size 16x16, 8x8, and also 4x4
pixels. A small portion of the secret bits are also
embedded into the edge blocks.

The rest of the paper is organized into four sections.
The concept of the proposed quadtree based
compression algorithm is introduced in section 2. In
section 3, the proposed hiding scheme is presented.
Experimental results are given in section 4, and finally
some conclusions are made in section 5.

2. Quadtree-based Compression Algorithm

 Quadtree is a well-known data structure, which can
be used to describe the spatial information of an image.

It is also used in image compression techniques and
image database systems. Quadtree segmentation
decomposes an image into variable block size. The
segmented block is then coded at a different rate
according to the level of activity inside the block.

2.1. Quadtree Decomposition
A main point of quadtree segmentation is the
evaluation criterion of image segmentation. This
criterion evaluates the presence of image information
and decides the division into sub quadrants. In
quadtree decomposition, a judgment is first made to
see whether a block can be represented by a single
gray value or whether it must be divided into four
subblocks. If the block is to be divided, then the same
decisions are applied to four subblocks as well, to
determine whether it needs further divisions, and so
on.
In this paper, the decision method that we presented
earlier in [7] is implemented in dividing process of
quadtree. The method operates based on the
distribution of the block residuals and determines
whether the processed block needs further divisions.
This is accomplished by classifying a block either as a
low-detail (uniform) or as a high-detail (edge) block.
The classifier employs the residual values of a block
and classifies the block according to the shape of the
histogram of the residuals. The classification is carried
out through a peak detection method on the block
histogram. A brief description of the classifier is as
follows.

Each block of n x n pixels is converted into a residual
block by subtracting the sample mean from the original
pixels. Here, two of the most important local
characteristics of the image block are considered:
central tendency, represented by the mean value and
the dispersion of the block samples about the mean,
which is represented by the residual values. The
challenge here is to analyze the dispersion of the
residual values about the mean. One way of achieving
this to sort the histogram of the block residual samples.

As the neighboring pixels in the original block are
highly correlated, the residual samples will tend to
concentrate around zero. One can then quantize the
residual samples prior to forming the histogram. Based
on the distribution of the residual samples within the
test images, we choose to apply a coarse quantization,
in particular a 15-level non-uniform quantizer. We
now define jq as the output of the quantizer with
index j, as shown in Fig.1. The histogram of the
quantized values,)(jqh may then be formed to

286286286286

provide the frequency of the jq .The quantized residual
histogram (QRH) is then analyzed by simply detecting
its peaks. In the resulting histogram, if h q h qj j() ()> −1
and h q h qj j() ()> +1 then a peak at index j is detected.
A minimum score,

minScore for h q j() can be defined
below which a peak at index j is not detected. Based
on the formed histograms of test images, we have
chosen to use a Scoremin of 80% of the total number of
samples 2n for the block size of n x n pixels. A peak
on the histogram indicates a high score of residual
values, therefore it is fair to conclude that there is a
considerable number of pixels that have the same
dispersion about the block mean. According to the
number of detected peaks on the histogram, image
blocks can be classified as either low-detailed or high-
detailed blocks. A histogram with a unique peak at its
center (uni-modal histogram) identifies a low detailed
(uniform) block. The existence of two peaks or more
implies that the processed block is a high detailed
block.

In the decomposition approach, an image to be coded
is first divided into blocks of 16x16 and then each
block is repeatedly divided into four equal quadrants,
if its residual histogram is not a uni-modal type. On the
other hand, the decomposition process will stop if the
residual histogram of the block has a dominant peak at
its center. This block is regarded as a uniform block
and all the pixels in the block will be represented by
the block mean. If the smallest block size of 4x4 is
reached and its residual histogram is still not a uni-
modal type, it is regarded as an edge block. Fig. 2
depicts an example of a 4x4 uniform block and its
histogram.

Since variable block sizes are used in quadtree
segmentation, decoding of transmitted images requires
the information about the size and location of each
block. That is, if a block is divided into smaller blocks,
the quadtree code is “1.” Otherwise, the quadtree code
is “0.” When the block size is 4 x 4, if the block is a
high-detail block, then the quadtree code is “1”
Otherwise, the quadtree code is “0.” This amounts to
too much overhead information needed for
transmission. To overcome this problem, we use the
method presented in [8] which introduces 17 possible
combinations within a 16x16 image block. Only a 6-
bit binary sequence (432110 ddddDD) is required to
represent each splitting mode as shown in Fig 3. The
first bit 0D indicates whether or not the 16x16 block is
partitioned into four 8x8 blocks. If 10 =D , then the
other four bits ,1d ,2d ,3d 4d are required to indicate

Fig. 1 : The quantizer output with index j

 (c) (d)

 (e)

Fig. 2 : QRH of 4x4 uniform block : a) original block,
b)Block residuals, c) quantized residuals, d) Quantizer
index , e) uni-modal histogram of the block

whether to split each 8x8 block into four 4x4 blocks or
not. The amount of side information is calculated as

6*
1616x

MxN bits for an M x N image size. Since the

total number of bits in the image is 8*)(WxH , the
overhead will be around 0.003 bits per pixel (bpp)
which is significantly small.

2.2 Coding of Edge Blocks
The uniform blocks of different sizes from 4 x 4 pixels
to 16 x 16 pixels are coded by the block mean. To
preserve edge integrity, a 4x4 edge block is coded by
one of the finite number of pre-defined patterns that

 185 182 182 178

 185 182 182 178

 185 182 182 178

 185 183 182 175

 4 1 1 -3

 4 1 1 - 3

 4 1 1 -3

 4 2 1 -6

(a) (b)

 5 0 0 0

 5 0 0 0

 5 0 0 0

 5 0 0 -5

 1 0 0 0

 1 0 0 0

 1 0 0 0

 1 0 0 -1

287287287287

Fig 3: All possible 16 x 16 block partitioning modes and
their associated binary representation

best matches its features. The two distinct peaks of the
QRH of a 4x4 edge block are represented by two
representative intensities. These are the block low and
high intensities, denoted by lowI and highI . By
forcibly clustering all pixels in an edge block into two
groups, a bi-level approximation of the block may be
obtained. Only two representative intensities and
certain binary bits, forming a bit-map are necessary to
specify the bi-level representation. Once the
representative intensities of an edge block have been
determined, a bit- map may be constructed to specify
the correspondence between the pixels and the
representative intensities. In such a bit-map, each pixel
is represented as a '1' or a '0'. The detailed description
is given simply as:

⎩
⎨
⎧

=
0
1

, jiB
midji

midji

Ix

Ix

>

≤

,

,

Where,
2

highlow
mid

II
I

+
=

Once the bit-map of an edge block has been formed,
the block can be coded by finding the best match for
its bit-map from a set of patterns in a look-up table. A
set of 30 patterns (Fig. 4) which preserve the location
and polarity of edges in four major directions is used
for the pattern matching stage. This process determines
the index of the matched pattern selected from the set.
The matching score scoreP of each pattern is calculated
as:

Fig. 4: Set of pre-defined patterns

⎩
⎨
⎧

= ∑∑
= = 0

13

0

3

0i j
scoreP

if
if

jiji

jiji

BP
BP

,,

,,

≠

=

The pattern p, which has the maximum score, scoreP is
selected as the pattern with the best match. The
transmitted information includes the index bestP of the
selected pattern in the look-up table as well as the
block representative intensities lowI and highI for the

areas indicated in black and white of the selected
pattern, respectively. During the decoding process, the
decoder replaces the pixels of a uniform block by the
block mean. Whereas, in decoding an edge block, the
decoder uses the index of the selected pattern as well
as the transmitted intensities to reconstruct the block.

Reconstruction of an edge block is carried out by
replacing the 1's and 0's of the selected pattern by

highI and lowI , respectively. The number of bits to
code an edge block edge B is computed as:

1log2 2 ++= P
repedge BB

where, repB denotes the number of bits required to code

one of the representative intensity, P is the number of
patterns used, p

2log is the number of bits required to
transmit the index of bestP , and the 1 is the overhead
to inform the decoder the block is an edge block. If

meanB is the number of bits required to code the mean
value of a uniform block, the achievable bit rate in bpp
for an 8-bit grey level image may then be determined
according to:

8*
)*(*)(4444881616

MxN
BNBNNN

bpp edge
x

edgemean
x

uni
xx +++

=

Horizontal

Vertical

135 degree

45 degree

288288288288

Where, 1616xN : number of 16x16 blocks, 88xN : number
of 8x8 blocks, 44x

uniN : number of 4x4 uniform blocks
and 44x

edgeN : number of 4x4 edge blocks. The 0.003 bpp
for the quadtree overhead is added to the above
calculation.

3. The Data Hiding Scheme

This section demonstrates how to embed the secrete
bits into a gray level host image and how to extract the
data. The whole process can be partitioned into two
phased: one is the data embedding phase; the other is
the data extraction phase.

3.1. Data Embedding Phase
In our proposed scheme, the data are embedded into
the compression domain of a cover image. To enhance
the hiding capacity of the compression domain of the
host image, the secrete messages are sequentially
embedded into the bitmap of uniform blocks [5] as
well as into the representative intensities of the edge
blocks.

In the data embedding phase, the host image is
compressed using the quadtree-based compression
algorithm, described in the previous section. An
ownership file is then constructed according to the
splitting modes of 16x16 image blocks. The ownership
file is a bit stream where every set of 6 bits represent
the splitting mode of the processed 16x16 block.

To lower the distortion, we embed the majority of
secrete data into the bitmap of uniform blocks of
different sizes, that is 16x16, 8x8 and 4x4 uniform
blocks. This way, the bitmap of a 16x16 block is
replace by 256 secret bits, whereas the bitmaps of 8x8
blocks and uniform 4x4 blocks are replaced by 64 and
16 secrete bits, respectively. Because the pixel
intensities in a uniform block are close to their
neighboring pixels, even though the bits in the bitmap
are changed, the reconstructed pixel value is still close
to its original one.

In the coding algorithm described in the previous
section, the pixels of a uniform block are represented
by a single value that is the block mean. Therefore the
block pattern will not have 1’s and 0’s. However, in
order to embed secrete binary data into uniform blocks
the block mean is tuned to produce two intensities as
follows : δ±meanI , where δ is a small tuning value
[6]. The bitmap of a uniform block is then given by :

⎩
⎨
⎧

=
1
0

uniformB for
δ

δ

+=

−=

meanji

meanji

Ix

Ix

,

,

The sequence of embedded positions are from left to
right and then up to down, which is in the row-major
order. For the sake of data security, secret data should
be encrypted before hiding. In our scheme, the
population of uniform blocks in an encoded image is
an important parameter to balance between the
embedding capacity and the image quality of the stego-
image. A larger population of the uniform blocks
provides high embedding capacity but lower image
quality of the stego-image, and vice versa.

The edge blocks can also be used for data embedding.
In our approach, the LSB of the two representative
intensities of an edge block are replaced by two secrete
bits. The embedding capacity EC in bits is calculated
by :

)2*()8*)64*()256*(4444881616 x
edg

x
uni

xx NNNNEC +++=

Here, the secret length L should be smaller than or
equal to EC.

Data Embedding Algorithm:

Input : A grey-level host image H of N x M pixels,
 Total number of secrete bits L.

Output : A compressed image file H ′ , carrying the

ownership file O of size 6*
1616x

MxN bits

 Step 1. Apply the quadtree decomposition to the
blocks of on the host image H.

Step 2. Construct the ownership file O by determining

the splitting mode for each block of 16x16
pixels.

Step 3. Calculate the embedding capacity C. If C < L,

then decrease the Scoremin and go back to step
1.

Step 4. Form the bitmaps of uniform blocks of

different sizes by setting a block pixel jiI , to
‘1’ if its value is grater than the block mean

meanI ; otherwise, set it to ‘0’.

Step 5. Embed the secret bits into the bit map of each

uniform block.

289289289289

Step 6. Transmit the block mean and also the tuning
value δ .

Step 7. Embed 2 secret bits in the LSB of the pair
(lowI , highI) of each 4x4 edge block

Step 8 . Transmit the representative intensities and the
index of the matched pattern

Step 9. Repeat the above steps until L secret bits are
totally embedded.

An example of the embedding procedure is shown in
Fig. 5.

3.2. Data Extraction Phase
 The extraction of data is relatively simpler than the
embedding phase. For each 16x16 block, the
corresponding bit sequence in the ownership file is
examined. All the uniform blocks are then
transformed into a bit plane. All the secret bits can then
be retrieved from the bit plane. The data extracting
order is by row-major policy and is and the process is
repeatedly executed for all uniform blocks until L
secret bits are retrieved. The extracted information
need to be decrypted to gain the secret data.

Data Extracting Algorithm:

Input : The compressed image file H ′ and the
ownership file O

Output : L secret bits

Step 1. Use the ownership file to identify the splitting
mode of a processed 16x16 block.

Step 2. Form the bit planes of all the uniform blocks
within the splitting mode and retrieve all the
0s and 1s of the bitplanes.

Step 3. Retrieve the LSB of the representative
intensities of all the edge blocks.

Step 4. If L secrete bits are not retrieved yet , go to
step 1.

4. Simulation Results

 We have evaluated the performance of the proposed
coding scheme through a computer simulation. The
computer simulation has been carried out, using a set
of 256x256, 8-bit intensity, monochromatic standard
images including the images of ‘Lena’ (Fig.6a).

 (a) (b)

 (c)

 (d) (e)

Fig. 5 : (a) original uniform block, mean value :181

(b) block bit map,

(c) the first 16 secret bits

(d) the modified bitmap,

 (e) the reconstructed block after embedding the
secret bits (mean =181 and 2=δ)

In the implementation used here, the Scoremin was set
to two different values: 80% and 70% of the total
samples in each block. That is for an 80% score case at
least 205 samples, for a 16x16 block, 52 samples for
an 8x8 block,, and 13 samples for a 4x4 block should
form the height of central peak on the histogram of
block residuals. Fig. 6.b and Fig. 6d illustrate the
quadtree segmented images of ‘Lena’ for different
Scoreminvalues.

The hiding capacity depends highly on the
identification of the uniform blocks of different sizes
in the host image, which in turn is the important factor
for the compression ratio. Table 1 shows the
population of different blocks in the quadtree
segmented image of Lena for both tested values of.
Scoremin . Table 2 presents the embedding capacity of
different types of blocks and the total embedding
capacity.

For coding the edge blocks, The index bestP was
coded by 5 bits (indicating the use of 30 patterns), and
8 bits were used to transmit each of the intensity
values, meanI , lowI , and highI . Figs. 6c and 5.6

 185 182 182 178

 185 182 182 178

 185 182 182 178

 185 183 182 175

 1 1 1 0

 1 1 1 0

 1 1 1 0

 1 1 1 0

 0 1 0 0

 1 0 1 0

 0 0 1 0

 1 1 0 0

 179 183 183 179

 183 179 183 179

 179 179 183 179

 183 183 179 179

290290290290

Fig. 6(a) : Original Image of Lena (256x256) Fig. 6(b) : Segmented Image of Lena, Scoremin = 80%

Fig. 6(c) : Compressed Stego-Image , Scoremin = 80% Fig. 6(d) : Segmented Image of , Scoremin = 70%

Fig. 6(e) : Compressed Stego-Image , Scoremin = 70%

Fig 6(f) : The magnified versions of Figs 6(c) and 6(e)

291291291291

illustrate the compressed stego-images for both cases.
To evaluate the performance of the proposed scheme
in terms of quality, we use the peak signal-to-noise
ratio (PSNR) in order to measure the distortion
between the host image and the processed image
embedded with secret bits. It is defined as follows :

dB
MSE

xPSNR
2

10
255log10=

Where, MSE is the mean-square error.

Table 3 shows the compression results, the embedding
capacity (EC) and the image quality (PSNR) for the
host images ‘Lena’ The results show that, setting a
higher value for Scoremin will result in less number of
uniform blocks being identified. This in turn leads to
lower compression ratio and smaller embedding
capacity, but a better image quality. The embedded
capacity takes into account the transmission of the
ownership file, as the ownership file is transmitted
through the overheads.

6. Conclusions

 In this paper, we have proposed an information
hiding scheme to hide secrete data into compression
domain of the host image, generated by a quadtree
decomposition and a pattern-based compression
algorithm. The majority of secrete data are embedded
in the bitmaps of the uniform blocks of variable sizes
of the host image. A small portion of the secret data
are also embedded in the high detailed area of the host
image. The hidden data can be extracted directly
without decompressing the stego compressed file. The
ownership file which is constructed during the
compression phase is the key to extract the information
at the receiver end.

6. References

[1] Petitcolas, F.A.P., Anderson, R.J., and Kuhn, M.G.:
‘Information hiding – a survey’, Proc. IEEE, 1999, 87,
(7), pp. 1062–1078

[2] Chan, C.K., and Cheng, L.M.: ‘Hiding data in
images by simple LSB substitution’, Pattern Recognit.,
2004, 37, (3), pp. 469–474.

[3] Bao, P., and Ma, X.: ‘Image adaptive watermarking
using wavelet domain singular value decomposition’,
IEEE Trans. Circuits Syst. Video Technol., 2005, 15,
(1), pp. 96–102.

Table 1
Population of blocks in the segmented image of Lena

minScore Total
1616xP 88xP uni

xP 44 edg
xP 44

80 % 2986 % 1.4 % 5.2 % 33.1 % 60.3
70 % 2761 % 1.9 % 6.5 % 33.7 % 57.9

Table2
Embedding capacity for the segmented image of Lena

Embedding Capacity (Kb)
Uniform Edge

minScore
16x16 8x8 4x4 4x4

Total

80 % 1.4 1.2 1.9 0.4 4.9
70 % 1.7 1.4 1.8 0.4 5.3

Table3

Compression and Embedding Capacity results for Lena
Image size : 64 Kb (256 x 256)

minScore CR C I EC

PSNR

80 % 10.5 : 1 6.1 (Kb) 4.9 (Kb) 30.14
70 % 11.5 : 1 5.6 (Kb) 5.3 (Kb) 29.43

CR : Compression Ratio, CI : Compressed Image,
EC : Embedding Capacity

[4] Shie SC, Lin SD, Fang CM (2006) Adaptive data
hiding based on SMVQ prediction. IEICE Trans
Inform Syst E89-D(1):358–362

[5] J-C Chuang and C-C Chang, “Using a simple and
fast image compression algorithm to hide secret
information”, International Journal of Computers and
Applications, Vol. 28, No. 4, 2006, pp. 329-333

[6] Keissarian, F. :‘An information hiding scheme
using a pattern-based compression algorithm’,
Proceeding of the 3rd IEEE International Conference
on Signal Image Technology & Internet Based
Systems, Dec. 2007, Shanghai, China, pp. 890-898.

[7] Keissarian, F.: “Novel quad-tree predictive image
coding technique using pattern-based classification,
Proc. SPIE, Visual Communications and Image
Processing (VCIP-2003), vol. 5150, pp. 1481-1490,
June 2003, Lugano, Switzerland.

[8] Dai, W.,et al. : ‘Adaptive block-based image
coding with pre-/post-filtering’, Proceeding of the
Data Compression Conf., March 2005, pp. 73-82.

292292292292

	Using a novel variable block size image compression algorithm for hiding secret data
	Recommended Citation

	Using a novel variable block size image compression algorithm for hiding secret data
	Abstract
	Disciplines
	Publication Details

	Using a Novel Variable Block Size Image Compression Algorithm for Hiding Secret Data

