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ABSTRACT 

Moreno Sanchez, Pedro PhD, Purdue University, August 2018. Credit Network 
Payment Systems: Security, Privacy and Decentralization. Major Professor: Aniket 
Kate. 

A credit network models transitive trust between users and enables transactions 

between arbitrary pairs of users. With their flexible design and robustness against 

intrusions, credit networks form the basis of Sybil-tolerant social networks, spam-

resistant communication protocols, and payment settlement systems. For instance, 

the Ripple credit network is used today by various banks worldwide as their backbone 

for cross-currency transactions. Open credit networks, however, expose users’ credit 

links as well as the transaction volumes to the public. This raises a significant privacy 

concern, which has largely been ignored by the research on credit networks so far. 

In this state of affairs, this dissertation makes the following contributions. First, 

we perform a thorough study of the Ripple network that analyzes and characterizes 

its security and privacy issues. Second, we define a formal model for the security 

and privacy notions of interest in a credit network. This model lays the foundations 

for secure and privacy-preserving credit networks. Third, we build PathShuffle, the 

first protocol for atomic and anonymous transactions in credit networks that is fully 

compatible with the currently deployed Ripple and Stellar credit networks. Finally, 

we build SilentWhispers, the first provably secure and privacy-preserving transaction 

protocol for decentralized credit networks. SilentWhispers can be used to simulate 

Ripple transactions while preserving the expected security and privacy guarantees. 
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1 INTRODUCTION 

Credit networks [1–3] model transitive trust among users through pairwise credit 

allocations. A credit network user expresses trust on another user in the form of 

a credit value that she is willing to extend to the other user, and by indicating 

commitments to allow transactions across her different credit links. This enables 

that the credit network users perform transactions over paths consisting of several 

intermediate users. Moreover, by introducing suitable definitions of transaction, credit 

networks have been shown useful in a plethora of scenarios. In fact, sybil-tolerant and 

spam-resistant systems based on the concept of credit network have been proposed in 

the last few years, such as Bazaar [4] and Ostra [5]. Prominently, credit networks are 

also leveraged in two growing payment settlement systems: Ripple [6] and Stellar [7]. 

The Ripple Network The Ripple network has seen a widespread adoption as an 

interesting alternative to avoid large fees charged by intermediate banks today while 

performing world-wide transactions. The Kansas-based CBW Bank and Cross River 

Bank [8], the Royal Bank of Canada [9] or Santander [10] are a few examples of 

banks using the Ripple network after exploring the numerous available blockchain 

options [11–14]. Companies are also using advantages of Ripple (e.g., fast and low-cost 

international transactions) to build better cross-border payment services. For example, 

Earthport [15, 16] has adopted Ripple to perform transactions between banks over 

several countries over the world, while Saldo.mx uses the Ripple network to improve 

cross-border transactions between USA and Mexico [17]. Moreover, Microsoft has 

partnered with Ripple to use part of its Azure BaaS to contribute to the execution of 

the Ripple network [18]. 

https://Saldo.mx
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1.1 Challenges in Credit Networks 

The Privacy Challenge Most of the credit network designs proposed so far (e.g., 

Bazaar and Ostra) are centralized, i.e., the credit network is maintained entirely in 

a server environment. The others, such as Ripple and Stellar, make their entire sets 

of transactions as well as the credit network topology visible in a publicly available 

log (i.e., the blockchain) to establish credibility through transparency. As a result, 

credit networks today cannot provide any meaningful privacy guarantee. This state 

of affairs clearly conflicts with the desire of users, who instead strive for hiding their 

credit links and their transactions: Businesses and customers are interested in hiding 

their credit information and transactions from competitors and even service providers, 

while regular users aim to protect their transactions as they might reveal personal 

information (e.g., medical bills or salary). 

Designing a privacy-preserving solution for credit networks is technically challenging. 

Simple anonymization methods such as the pseudonyms employed in Ripple are 

ineffective, as all transactions remain linkable to each other and they are susceptible to 

deanonymization attacks [19]. Other techniques proposed in academia [20–23] do not 

fully solve the problem either. For instance, providing the server environment only with 

the topological network graph while keeping credit values private opens the system 

up to correlation attacks that ultimately reveal the partners’ real identities [20, 21]. 

Perturbing the links or their credit values by means of differential privacy techniques [22, 

23] would yield stronger privacy guarantees, but this is often unacceptable in payment 

scenarios as it implies unexpected redistributions of credit. 

The Decentralization Challenge A natural direction to overcome the privacy 

challenge consists in envisioning a decentralized credit network, where each user locally 

stores and maintains her own credit links. A decentralized credit network design fits 

better the nature of certain applications such as the current financial ecosystem, where 

each user is responsible for her own credit while each financial institution is responsible 

for the credit with its customers. However, building a decentralized credit network 
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is not straightforward. There are several credit network operations that are trivially 

solved in a centralized setting but become challenging in a decentralized design. 

For instance, while a centralized service provider can easily determine a transaction 

path between two users, it is not trivial to define how the routing information is 

spread along a decentralized credit network. Similarly, a decentralized setting requires 

finding out how much credit is available on the paths between any two users to 

perform transactions. Finally, a decentralized setting requires a solution to ensure the 

correctness of the transactions, while maintaining the credit balances of honest users 

in the presence of malicious and offline users. 

The Security Challenge Designing a secure solution for credit networks becomes 

challenging in a decentralized setting, where every user maintains her own credit links 

and relies on other users to carry out her transactions, some of which may behave 

arbitrarily. For instance, a transaction over a path can be easily disrupted by a 

malicious intermediate user aiming at a credit benefit or by a (possibly honest) user 

that simply goes offline. Such behavior can lead to credit losses by honest users as 

well as severely hamper the availability of the overall credit network. A decentralized 

credit network must thus ensure atomic payments so that every credit link in a path 

is correctly updated to carry out a successful transaction or no credit link is modified 

otherwise. A decentralized credit network should ensure thereby that no honest user 

incurs credit loss. 

1.2 Our Contributions 

This dissertation focusses on demonstrating the following statement: 

Current credit network deployments provide limited guarantees in terms 

of security, privacy or decentralization. It is possible to build a secure, 

privacy-preserving and decentralized credit network system. 



4 

In the following, we briefly describe our contributions to demonstrate the veracity 

of this statement. 

A Security and Privacy Study of the Ripple Network In Chapter 2, we 

present the first thorough study that analyzes the globally visible blockchain in the 

Ripple network and characterizes the security and privacy issues related to it. In 

particular, we have extensively studied the effect of unexpected redistribution of 

credit, the effect of faulty gateways and the effect of stale offers and shown their 

consequences in terms of credit loss by Ripple users. Regarding privacy, we define 

two novel heuristics and perform clustering to group wallets owned by the same user. 

We then propose reidentification mechanisms to deanonymize the operators of those 

clusters and show how to reconstruct the financial activities of deanonymized wallets. 

Security and Privacy Definitions for Credit Networks In Chapter 3, we lay 

the foundations for security and privacy in credit networks, presenting a definitional 

framework. In particular, we formalize the notions of integrity, value privacy and 

sender/receiver privacy. Intuitively, we say that a credit network maintains integrity if 

no honest user loses credit when cooperating as intermediate user in a payment path. 

Moreover, we say that a credit network maintains value privacy if the adversary cannot 

determine the value of a transaction between two non-compromised users. Finally, we 

say that a credit network maintains sender (correspondingly receiver) privacy if the 

adversary cannot determine the actual sender (receiver) of a transaction. 

PathShuffle: Anonymous Transactions in the Ripple Network In Chapter 4, 

we present PathShuffle, the first privacy-enhancing protocol compatible with the Ripple 

network. As its essential building block, we propose a novel technique to perform 

atomic transactions in credit networks and extend it to build a decentralized protocol 

for anonymous transactions. We demonstrate the practicality of PathShuffle by 

executing an instance of the protocol in the current Ripple network. This protocol 

thereby provides a functionality otherwise missing in the current Ripple network. 
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SilentWhispers: A Decentralized Architecture to Enforce Security and 

Privacy in Credit Networks In Chapter 5, we present SilentWhispers, the first 

decentralized and provably secure and privacy-preserving transaction protocol for 

credit networks. Partial solutions like PathShuffle are an interesting approach for 

raising the privacy bar in the currently deployed Ripple network. However, the 

distinguishing feature of SilentWhispers is the assurance of strong security and privacy 

guarantees in credit networks without requiring a global, transparent and publicly 

accessible blockchain. SilentWhispers can be used to simulate the Ripple transactions 

in real time and therefore can be deployed as an online credit network. 

1.3 Outline of the Dissertation 

This dissertation is organized in two parts. Part I includes our study and defi-

nitional work on security and privacy for credit networks and comprises Chapter 2 

and Chapter 3. In particular, in Chapter 2 we describe the background on the Ripple 

network and our security and privacy study of the Ripple network; and in Chapter 3 

we propose the security and privacy notions of interest in a credit network. 

Part II focuses on the description of our novel systems that provide secure and 

privacy-preserving transactions in credit networks and comprises Chapter 4 and 

Chapter 5. In Chapter 4 we describe PathShuffle, the privacy-enhancing protocol fully 

compatible with the current Ripple network. In Chapter 5 we detail SilentWhispers, 

a decentralized architecture that provides strong security and privacy guarantees for 

transactions in credit networks. 

Finally, we summarize this dissertation in Chapter 6. 



Part I 

SECURITY AND PRIVACY IN 

CREDIT NETWORKS: STUDY 

AND DEFINITIONS 

6 
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2 REAL-WORLD CASE STUDY: RIPPLE 

The properties inherent to a credit network have been found of great utility in a 

plethora of applications. In particular, several academic efforts [4,5,24–27] have shown 

that by adapting the notion of credit to the specifics of a certain application, it is 

feasible to come up with a tailored credit network to enforce key functionalities for 

such application. Nevertheless, none of these academic proposals have been deployed 

in practice at the time of writing. Existing deployments for a credit network have 

focussed so far on the settlement of payments between users. In such application, 

credit between two users is defined as the trust in each other in terms of the amount of 

I Owe You (IOU) funds they are willing to extend to each other. Building upon this 

concept of credit, a credit network can be leveraged to settle payments between any 

two users improving upon many of the drawbacks of the alternative systems available 

today (e.g., SWIFT) such as slowness, expensiveness and prone to thefts [28, 29]. 

Currently, Ripple and Stellar are the most prominent examples of credit networks 

in practice. The Stellar network is still in an early but expanding stage and it has got 

the support of a few financial institutions and payment aggregators, mostly focussed 

on developing countries. The Ripple network instead, has gained more traction and it 

has been tested and adopted by several major banks and financial institutions that 

see in the publicly available Ripple network an alternative to improve the processing 

of payments. For instance, the Spanish bank Santander has claimed that adopting 

Ripple could save them $20 billion a year [10]. The Kansas-based CBW Bank and 

Cross River Bank [8] are the first American banks to adopt Ripple. The Royal Bank 

of Canada [9] has chosen Ripple over other settlement solutions after exploring the 

numerous available blockchain options. And these are just a few examples in a still 
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growing list [11–14]. As of August 2017, the Ripple network cates a user base of more 

than 180, 000 accounts, 350, 000 credit links and more than 29M transactions during 

the period January 2013 – August 2017. 

The potential of Ripple is not limited to the traditional banking system. Other 

financial institutions are also using the advantages of Ripple to build better cross-border 

payment services. For example, Earthport [30] has chosen Ripple to perform cross-

border transactions between more than 60 countries worldwide. Moreover, companies 

such as Microsoft and universities such as MIT are using part of its computational 

resources to contribute to the execution of the Ripple network [31, 32]. Given the 

wider development in practice, we use the Ripple network as case study of credit 

network in this dissertation. We note, however, that most of the descriptions apply 

also to the Stellar network as both build upon (mostly) the same principles. In the 

rest of this chapter, we overview the different components of the Ripple network. We 

then study the security and privacy of the Ripple network. 

2.1 Description of the Ripple Network 

The Ripple network heavily relies in three components as shown in Figure 2.1: a 

credit graph, a set of operations and a consensus protocol. The credit graph reflects 

the IOU relations among payment providers, financial institutions and customers 

among others. This financial network is updated by means of operations that allow 

to create new IOU relations, update existing ones, settle credit among any two users 

or provide currency exchange services, utterly necessary for liquidity and remittance. 

These transactions would be, however, useless without a way to globally agree on 

their validity. The Ripple consensus protocol provides a mean to create a blockchain 

that unequivocally stores the set of valid transactions, as agreed by a set of protocol 

players from all around the world in a decentralized fashion. In the rest of this section, 

we describe in detail each of the components separately. 
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Fig. 2.1. Illustrative example of the Ripple ecosystem. Dashed arrows 
represent communication between parties. Filled arrows represent credit 
links. The Ripple credit graph represents wallets and credit links among 
them. The graph is updated by means of operations. The operations are 
submitted by the corresponding users to the participants in the consensus 
protocol. Only validated operations are added to the blockchain (or ledger 
in Ripple terms). 

2.1.1 Credit Graph 

At the core of the Ripple network lies a weighted, directed graph G “ pV , Eq. The 

set V of vertices represents the accounts (or wallets in Ripple terms) in the network, 

and the set E of directed and weighted edges represents the IOU credit links between 

wallets. A Ripple wallet is initialized with a pair of private (signing) and public 

(verification) keys. The wallet is then labeled with an encoding of the hashed public 

key. The knowledgeable reader might have noticed that a Ripple wallet is created and 

labeled similar to a cryptocurrency account such as Bitcoin. 
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Fig. 2.2. An illustrative example of the Ripple credit graph. For readability, 
every wallet is represented by a name instead of the hashed public key 
used in practice. Edges represent credit links between pairs of connected 
nodes. The edges are labeled with tuples (x / y XYZ ), where x denotes 
the balance, y denotes the upper bound (- represents a not upper-bounded 
credit link), and XYZ denotes the currency. 

A directed edge (u1, u2) P E is labeled with a tuple (balance, currency, upper-limit), 

where balance is a dynamic scalar value αu1u2 indicating the amount of unconsumed 

credit that wallet u1 has extended to wallet u2 (i.e., u1 owes αu1u2 to u2); currency 

denotes the denomination for such credit. The credit available on an edge is lower-

bounded by 0 and is upper-bounded by 8 by default, while a more strict upper bound 

can optionally be adopted by the creditor’s wallet (i.e., u2 in the previous example) 

by setting the upper-limit field. Additionally, every wallet has associated with it a 

positive amount of XRP. 

Therefore, Ripple supports its own native cryptocurrency, called XRP. Contrary 

to other cryptocurrencies such as Bitcoin or Ethereum, where coins are continuously 

being created until a predefined limit number of coins is reached, a fixed amount 

of XRP were initially created and no more XRP will be ever created according to 

the current protocol description. The XRP currency was initially envisioned as a 
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mean to protect the network from abuse and Denial-of-Service (DoS) attacks. In this 

sense, the purpose of XRP is twofold. First, a wallet is considered active only if it 

has a certain amount of XRP, deterring thereby the creation of a massive number of 

wallets by a single user for spamming purposes. Second, each transaction requires a 

certain transaction fee in XRP, hindering thereby massive spamming transactions. 

Nevertheless, the financial usefulness of XRP is yet to be thoroughly studied. 

An illustrative example of the Ripple network is shown in Figure 2.2. Here, consider 

that Alice and Bob are two users in the Ripple network. Further consider that Alice 

owes Bob 150 USD. This illustrative example is reflected in the Ripple network as one 

edge Alice Ñ Bob with a balance of 150 USD. Note that the balance on an edge is 

tagged with the corresponding currency, as well as the upper bound. In this case, Bob 

allows Alice to owe him up to 200 USD. This value effectively limits the trust that 

Bob has on Alice. The rest of credit links can be interpreted in a similar manner. 

In summary, the Ripple credit graph is a directed graph where credit links expressed 

in many different currencies coexist. It provides enough expressiveness to emulate the 

complex relations among the different players in a plethora of financial applications. 

2.1.2 Key Roles 

The Ripple network heavily relies on two roles played by some of the wallets: 

gateway and market maker. A gateway is a well-known reputed wallet established to 

create and maintain a credit link in a correct manner with new users. Gateways are 

therefore the counterparts of user-facing banks and loan agencies in the physical world. 

As an illustrative example, consider a new user that wants to join for the first time the 

Ripple network. For that, she would need to create a fresh wallet, create a new credit 

link and get some balance on it from another wallet in the system. This is known as 

bootstrapping problem and it is a common problem in many networks such as social 

networks or communication networks. The Ripple network solves this bootstrapping 

problem by introducing gateways. Therefore, the user can trust the gateway to create 
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a credit link and issue her first IOUs on such link. As wallets for gateways are highly 

connected wallets in the Ripple network, the thereby created credit link will allow the 

new wallet to interact with the rest of the Ripple network. 

A market maker is a wallet that has credit links with balance denominated in 

more than one currency and performs a currency exchange service, that is, it receives 

a certain currency on one of its credit links and exchanges it for another currency 

on another of its credit links. Market makers are therefore the counterparts of 

physical currency exchange services. For instance, in the illustrative example depicted 

in Figure 2.2, Bob can act as a market maker by accepting the exchange among USD, 

BTC and GWD currencies. The role of market makers is crucial to provide liquidity 

and enable cross-currency transactions in the Ripple network. 

2.1.3 Operations 

The Ripple network graph is updated by means of operations. For the ease of 

exposition, we classify these operations in two groups: single-wallet and multi-wallet 

operations. In a nutshell, single-wallet operations update a single wallet and the 

credit links associated to it in the Ripple network. Single-wallet operations represent 

the counterpart of bank account management operations in the real world. Instead, 

multi-wallet operations may update several wallets and credit links among them to 

effectively represent the settlement of funds among wallets in the Ripple network. 

The Ripple network supports several single-wallet operations. First, the AccountSet 

operation allows a user to update a wallet she possesses. Second, OfferCreate enables 

the creation of an exchange offer. An additional OfferCancel operation can be used 

to cancel a previously created offer. Finally, TrustSet operation allows the creation of 

a credit link between two wallets if such credit link does not exist yet, or the update 

of a credit link in case it already exists. For the sake of brevity, we omit a detailed 

description of these operations and refer the reader to [33] for further details. 
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Table 2.1. 
Ripple transaction examples for both direct XRP payments and path-based 
settlement transactions. In the direct XRP payment, 20 XRP are sent 
from Alice to Bob. In the settlement transaction, 10 EUR are transferred 
from Dave to Edison via Gateway. The notation Alice denotes the Ripple 
wallet owned by Alice. Irrelevant transaction fields have been omitted. 

XRP Payment Path-based Settlement Transactions 

Sender Alice Dave 

Receiver Bob Edison 

Amount 20 XRP 10 EUR 

Path – Dave Ð Gateway Ñ Edison 

SigningPubKey Alice’s public key Dave’s public key 

Tx Signature 752EF7 . . .3402D1 42EF56 . . .34DDFF 

The core activity in the Ripple network centers around multi-wallet operations. 

As described earlier in this chapter, a wallet ui can hold two types of funds: XRP 

coins and IOU credit issued by other wallets in the Ripple network connected to ui 

through a direct link. As they are conceptually different, the Ripple network handles 

them by two types of operations: direct XRP payments and path-based settlement 

transactions. Intuitively, a direct payment involves a transfer of XRP between two 

wallets which may not have a credit path between them. Path-based settlement 

transactions transfer IOUs defined in any currency (fiat currencies, cryptocurrencies 

and user-defined currencies) between two wallets having a suitable set of credit paths 

between them. 

We now describe both types of payments by an illustrative example. We start 

with direct XRP payments. Assume that a wallet u1 wants to pay β XRP to another 

wallet u2 and that u1 has at least β XRP in its XRP balance. Then, β XRP are 

removed from u1’s XRP balance and added to u2’s XRP balance. For example, in the 

transaction showed in Table 2.1, 20 XRP are about to be transferred from Alice to Bob. 

Given that Alice’s XRP balance is high enough, 20 XRP are taken from Alice’s XRP 
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balance and added to Bob’s XRP balance. Notice that this type of transaction does 

not require the existence of any (direct or indirect) credit line between the sender and 

the receiver. Therefore, the Path field of the transaction is not used. 

Path-based settlement transactions totally depart from direct payments as they use 

the credit links available in the Ripple network. Assume that u1 wants to pay β IOUs 

to un and that u1 and un are connected by a path of the form u1 ´ u2, . . . , un´1 ´ un. 

Edges are considered undirected to find a path from the sender u1 to the receiver un 

through intermediaries tuiuiPt2,...,n´1u. In order to perform the transaction, the weight 

(i.e., credit value) on every edge in the path from u1 to un is updated depending on the 

direction of the edge as follows: edges in the direction from u1 to un are increased by β, 

while reverse edges are decreased by β. For the settlement transaction to be successful, 

weights must always remain non-negative and must not exceed the pre-defined upper 

bound of the edge (if the upper bound is other than 8). 

In the settlement transaction shown in Table 2.1, assume that Dave wants to pay 

10 EUR to Edison. This transaction can be routed using the path Dave Ð Gateway Ñ 

Edison (see Figure 2.2). Since credit link Dave Ð Gateway holds 20 EUR (i.e., ą 10 

EUR) and credit link Gateway Ñ Edison has no upper bound, the transaction can be 

performed and credit links are updated as follows: link Dave Ð Gateway is decreased 

to 10 EUR while link Gateway Ñ Edison is increased from 85 to 95 EUR. 

It is not necessary to find a single path with available credit along each credit link. 

Instead, the settlement transaction can be split across multiple paths such that the 

sum of credit available on all paths is larger than or equal to β. For example, in the 

network from Figure 2.2, assume now that Dave wants to pay 25 EUR to Edison. The 

settlement transaction now can be split into two settlement transactions with amounts 

of 20 EUR and 5 EUR. The 20 EUR settlement transaction can be performed as 

explained earlier, while the 5 EUR settlement transaction is carried out over the path 

Dave Ð Fanny Ñ Edison. In Ripple, it is possible to include the information about 

the several paths used in a single settlement transaction: the list of paths are included 
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in the Path field annotated with the amount of credit used per path. The Amount 

field still indicates the total amount of transacted IOUs. 

Moreover, in our running example we have assumed that all the links have a 

common currency. In the Ripple community, rippling denotes the redistribution of 

credit for each intermediate wallet as a consequence of a transaction [34]. Rippling can 

only occur between two credit links that belong to the same wallet and have credit in 

the same denomination. Nevertheless, several rippling operations can be concatenated 

to carry out a transaction with several intermediate wallets, as described above. We 

expect that rippling is allowed by gateways; however, less active users may opt for 

disabling this rippling functionality, effectively avoiding undesired balance shifts. 

Nevertheless, settlement transactions are not restricted to same-currency transac-

tions. It is possible that the sender uses some of her IOU in any given currency and 

the receiver receives the corresponding amount of IOU in any other currency, carrying 

out thereby a cross-currency settlement transaction. Such transaction is possible only 

if at least one of the intermediate wallets acts as market maker. 

In summary, for completeness in this section we have described both payments 

and settlement transactions. However, in the rest of this dissertation we focus on 

settlement transactions as they are the only ones that transfer IOU credit among 

wallets in the network. Moreover, we observe that the XRP currency might not be 

required for implementing transaction fees. Instead, fees can be embedded in the IOU 

settlement of the transaction itself: When a user in the path from the sender to the 

receiver gets β IOU, she can forward only β ´ α IOU, effectively charging α IOU as 

fee. This way of handling fees comes with the advantage that every intermediate user 

can charge a custom fee according to her own criteria (e.g., the transacted amount, 

transacted currency or transacting users). 
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2.1.4 Consensus Protocol 

Inspired from the success of cryptocurrencies like Bitcoin, all Ripple operations 

are also logged in a public available blockchain called Ripple ledger. The Ripple ledger 

is thereby an immutable log that keeps track of all wallets, credit links and exchange 

offers in the Ripple network as well as their evolution over the Ripple timespan. The 

Ripple consensus protocol is carried out by a set of (somewhat fixed) participants 

called validators and it is used to decide the set of operations that are added to the 

Ripple ledger. In the following, we overview the Ripple consensus protocol. 

An operation is authorized by the sending wallet’s owner by signing it with the 

corresponding signing key. Such operation is then forwarded to a validator. Validators 

are thus in charge of receiving authorized operations from users and validate their 

correctness according to the current state of the ledger and the consensus rules. 

Note that since different wallet’s owners might forward their operations to different 

validators, they might end up with different sets of operations. The consensus protocol 

must then ensure that all validators agree on an unique ledger. 

The consensus protocol proceeds in rounds. In the first round, each validator 

broadcasts its own candidate set of operations, that is the set of validated operations 

that it has received so far and are not added to the ledger yet. Successive rounds 

are used to vote a candidate ledger that contains the subset of operations from all 

candidate sets that have been voted by “enough” validators. When a candidate 

ledger is voted by 50%, . . . , 80% of the validators (increased by 10% per round), it 

is considered final and it is added to the Ripple ledger. The operations that do not 

make it into the ledger are either discarded or added to the next protocol iteration. 

Although several permissioned consensus algorithms, such as Byzantine Fault 

Tolerance (BFT) consensus [35], have been throughly studied in the distributed systems 

literature over the last 35 years, the Ripple consensus protocol is a novel approach 

informally presented in a whitepaper [36] along with an open source implementation. 

Moreover, only some preliminary analysis have been performed so far [37–40]. In 
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general, the lack of formal definitions and security studies of the Ripple consensus 

protocol, makes its safety and liveness analysis an interesting open problem. 

2.2 Security Study 

In this section, we overview the possible vulnerabilities of the Ripple network to 

attacks that affect the IOU credit of users’ wallets and we refer the reader to [41] for 

a more detailed discussion. In particular, we find that about 13M USD are at risk in 

the current Ripple network due to inappropriate configuration of the rippling flag on 

credit links, facilitating undesired redistribution of credit across those links. Although 

the Ripple network has grown around a few highly connected hub (gateway) wallets 

that constitute the core of the network and provide high liquidity to users, such a 

credit link distribution results in a user base of around 112, 000 wallets that can be 

financially isolated by as few as 10 highly connected gateway wallets. Indeed, today 

about 4.9M USD cannot be withdrawn by their owners from the Ripple network due to 

PayRoutes, a gateway tagged as faulty by the Ripple community. Finally, we observe 

that stale exchange offers pose a real problem, and exchanges (market makers) have 

not always been vigilant about periodically updating their exchange offers according 

to current real-world exchange rates. For example, stale offers were used by 84 wallets 

to gain more than 4.5M USD from mid-July to mid-August 2017. Our findings should 

prompt the Ripple community to improve the health of the network by educating its 

users on increasing their connectivity, and by appropriately maintaining the credit 

limits, rippling flags, and exchange offers on their IOU credit links. 

2.2.1 Effect of Unexpected Balance Shifts 

Although a settlement transaction maintains the net balance of intermediate 

wallets, its use is not innocuous for intermediate wallets. The main issue is that the 

market value and stability of the IOU depends on the issuer of such IOU. In our 

illustrative example of the Ripple network in Figure 2.2, Edison may trust the credit 
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from the gateway more than the credit from Fanny. Therefore, a transaction involving 

rippling among the two corresponding credit links can induce a redistribution of IOU 

from a more valuable to a less valuable issuer without the specific consent of the 

involved wallet’s owner. We expect gateways to allow rippling; however, less active 

users may wish to avoid balance shifts not initiated by them. 

As a countermeasure, each credit link is associated with a flag no ripple. When 

no ripple is set, the corresponding credit link cannot be part of a rippling operation. 

This flag was first added in December 2013, and was updated in March 2015 to have 

a default state of “set” (i.e., no rippling allowed by default), so users could selectively 

opt-out and allow rippling. Additionally, a wallet has a new flag called defaultRipple 

that, if set, enables rippling among all the wallet’s credit links. Gateway wallets, for 

instance, follow this pattern [42]. 

In this state of affairs, we aim to identify wallets other than gateways that allow 

rippling, and to extract how much credit they put at risk doing so. For that, we 

proceed as follows. First, the credit links not including no ripple flag are tagged 

as no ripple “ false. Second, for each wallet that has the defaultRipple flag set, we 

set no ripple “ false (i.e., rippling is allowed) on all its credit links. Third, we use 

the no ripple flag for the remainder of the links as specified in the Ripple network. 

Now, we say that a wallet is prone to rippling if it has at least two credit links with 

no ripple “ false (i.e., they allow rippling) and they hold credit in the same currency. 

Following this methodology, we find that more than 11, 000 wallets are prone to 

rippling and are not associated with well-known gateways. Moreover, more than 13M 

USD are prone to rippling, counting only the credit links that wallets prone to rippling 

have directly with gateways, as they are associated with real-world deposits. This 

gives a lower bound on the amount of credit at risk, and the actual value could be 

higher, if we count credit at risk with wallets other than the gateways. This result 

demonstrates that unexpected balance shifts in the Ripple network can still affect a 

significant number of wallets, and more importantly, their credit. 
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We also observe that many wallets prone to rippling maintain credit links with a 

low balance (even zero), but with upper limit set to a value larger than zero. The 

gap between balance and upper limit on these credit links can be used to shift the 

balances of wallets, thus increasing the risk. 

As a possible countermeasure, the users have the possibility of disabling the rippling 

functionality on their credit links completely. Therefore, less active users may opt 

for disabling rippling among their credit links to avoid balance shifts not initiated by 

them. Moreover, more active users can also opt for dynamically adjust the amount of 

credit prone to rippling and add a rippling fee to it. Finally, users with credit links 

holding zero balance should reduce their upper limit to effectively void them. 

2.2.2 Effect of Faulty Gateways 

The gateway wallets are highly connected wallets included in the core of the Ripple 

network and significantly contribute to the liquidity of the network. A faulty gateway 

can disable rippling on most credit links of its wallet, ensuring that transactions routed 

through it are no longer possible and effectively freezing the balance held at credit 

links of its wallet [43, 44]. This would not only severely affect the liquidity of the 

network, but also lead to monetary losses to the neighboring wallets, as they no longer 

can use the credit issued by the compromised wallet. 

Given that, we aim to study the effect of faulty gateway wallets (e.g., as a result 

of adversarial wallet compromise) and the resilience of the Ripple network to them. 

Towards this goal, we first select 100 candidate faulty wallets from the Ripple network 

according to two different criteria: (i) Wallets with highest degree (100-deg) and (ii) 

Wallets involved in most of the transactions (100-ftx). Although other strategies to 

select wallets are definitely possible, these strategies lead us to select the key players in 

the current Ripple network: Gateways and market makers. Second, we assess the most 

disruptive set of wallets by removing them from the Ripple network and observing 

how the network connectivity is affected. Figure 2.3 depicts the size of the largest 
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connected component after removing the wallets in 100-deg and 100-ftx. Intuitively, 

the smaller the component, the fewer the possible transactions, since only wallets in 

the same component can transact with each other. From this experiment, we conclude 

that wallets included in 100-deg have a more profound impact on the connectivity 

of the Ripple network (and therefore on the transactions) than wallets included in 

100-ftx. Therefore, we use 100-deg in the rest of this section. 

Afterwards, we define the resilience factor (rsl-factor) as the ratio between the 

component size in the most disruptive splitting of the network after removing a wallet 

(i.e., splitting the network in two components of equal size) and the size of the actual 

largest component after removing a wallet. Therefore, the rsl-factor can take values 

in the range r0.5, 1s. Values close to 1 indicate that the network has a low resilience, 

as the removal of a wallet resulted in a component with (close to) half of the wallets 

of the network. Conversely, values close to 0.5 indicate that the network has a high 

resilience, as the largest component after removing a wallet is (close to) the entire 

graph. 

We observe that the rsl-factor of the Ripple network is maintained in the range 

p0.5, 0.6q after the removal of each wallet in 100-deg, demonstrating that the core of 
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the Ripple network has high resilience. We conclude that we can divide the Ripple 

network into: (1) A small network core of around 65, 000 wallets (36% of the total) 

that includes the key wallets with high connectivity. This core is highly resilient to 

the removal of highly connected wallets, and (2) A large set of around 112, 000 wallets 

that can be easily disconnected from the network after removal of key wallets. Yet, 

these highly vulnerable wallets have more than 42M USD of credit with the gateways, 

which is at risk. 

This result shows that the Ripple network still has a few wallets that are “too 

big to fail.” The more centralized a credit network is, the higher the impact of a 

failing well-connected wallet. This could effectively be comparable to a very large 

bank failing in the traditional banking world (e.g., the case of Lehman Brothers). As 

a countermeasure, it is necessary for many users to increase their connectivity and 

split their credit among different credit links to avoid losses due to the failure of a 

handful of wallets. 

2.2.3 Effect of the PayRoutes Gateway 

While studying the Ripple network, we observed that the Ripple community had 

reported the unresponsiveness of the company running the gateway PayRoutes when 

contacted regarding the credit issued by it [45]. We also emailed them, but got no 

answer at the time of this writing. In this state of affairs, we study PayRoutes as an 

example of a faulty gateway. 

In a bit more detail, we consider two questions. First, we aim to find the amount 

of credit in the Ripple network that can only be withdrawn with the cooperation of 

PayRoutes and, given the unresponsiveness of the gateway, this credit is “stuck” in 

the Ripple network. Second, we study why wallets with stuck credit obtained it in the 

first place, even though PayRoutes was already reported as faulty. We describe our 

methodology and results for each goal separately in the following two sections. 
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Credit with PayRoutes Here, we are interested in credit links of the form Pay-

Routes Ñ ui where PayRoutes has disabled rippling. This implies that the credit on 

these links can only be used in a withdrawal operation jointly with PayRoutes: ui sets 

the credit on the link to 0 to obtain the corresponding amount in the real world from 

PayRoutes. However, as PayRoutes is a faulty gateway, this operation is no longer 

available and the credit is stuck. Given that, we first address the question: how much 

credit is stuck on credit links with PayRoutes? 

In order to answer this question, we first pick the credit links with PayRoutes 

as counterparty and positive balance, and derive the status of their rippling flag (as 

described in Section 2.2.1). Then, we classify the neighbor wallets of PayRoutes into 

two groups as follows. First, we identify those wallets that have a credit link with 

PayRoutes for which rippling is not allowed, i.e., no ripple is set to true. We denote 

this set of wallets by wallets-no-rippling. Second, we consider the set of wallets that 

are not in wallets-no-rippling but yet cannot perform a transaction for an amount 

equal to the balance on their credit link with PayRoutes. We denote this second set as 

wallets-rippling-no-tx. As the wallets in either wallets-no-rippling or wallets-rippling-

no-tx cannot transfer the (entire) credit they have on a credit link with PayRoutes 

to another wallet in the Ripple network, the only way for them to get their credit 

back is to contact PayRoutes in the real world and withdraw the corresponding funds. 

However, as PayRoutes is unresponsive, such credit is “stuck.” 

As result of this procedure, we observe that, out of the 2, 958 wallets that have 

at least one credit link with PayRoutes, there exist 621 wallets in either wallets-no-

rippling or wallets-rippling-no-tx, and therefore with stuck credit. We observe that 

the stuck credit on these credit links is around 4.9M USD. 

It is important to note that the PayRoutes case is not typical in the Ripple network. 

There have been other gateways that have ceased their activities during the Ripple 

network lifetime, but have not caused such an effect. We consider DividendRippler as 

an example of such a gateway. The difference from PayRoutes is that before shutting 
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down, DividendRippler publicly announced it and mandated its clients to proceed to 

withdraw the credit available in their credit links with DividendRippler. 

We conduct the same above experiment for DividendRippler, and observe that, 

although 665 wallets have credit stuck with DividendRippler, such credit accounts for 

around 1, 000 USD only. This is how much DividendRippler currently owes to the rest 

of wallets. This demonstrates that wallets followed the announcement of the gateway 

and successfully managed to withdraw most of their credit before the gateway closed. 

Obtaining Credit from PayRoutes In this part we focus on answering the 

question: How did wallets with stuck credit obtain such credit in the first place? 

For that, we first investigate how new credit links were created with PayRoutes 

over the lifetime of the Ripple network. We observe a spike of 2, 527 credit links 

created in October 2016 from a total of 1, 805 wallets. Out of these, 186 credit links 

were created by 133 wallets and have balance stuck in PayRoutes. This implies that 

21% of the wallets with stuck balance created credit links with PayRoutes during that 

month. We denote these by stuck-wallets-Oct-16. 

Given this unusual behavior, we study how those 133 wallets obtained credit. We 

identify two possibilities: (i) A path-based transaction from another wallet in the 

Ripple network; (ii) A circular transaction (i.e., sender and receiver of the transaction 

are the same wallet), where a wallet pays a certain amount of XRP (or any currency 

issued by a gateway other than PayRoutes) in exchange for credit issued by PayRoutes 

on a credit link with it. 

As a result from this study, we observe that wallets in stuck-wallets-Oct-16 do not 

receive significant credit from other wallets in the Ripple network during October 

2016. In particular, we find only three transactions with credit values of 10 USD, 100 

ILS and 5 ILS. Instead, wallets in stuck-wallets-Oct-16 get their credit through circular 

transactions. We find that 51 wallets perform a total of 286 circular transactions, 

where these wallets received around 12, 000 USD in exchange for approximately 300 

CNY and 12, 000 XRP. 
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Table 2.2. 
Summary of the exchange offers between XRP and USD created in the 
Ripple network during October 2016. Each row represents the combination 
of all offers exchanging the corresponding pair of currencies. 

Pay Val Pay Cur Get Val Get Curr Ratio 

1062738.51 

59678.62 

XRP 

USD 

17009.50 

33194.62 

USD 

XRP 

62.48 to 1 

1.78 to 1 

In essence, wallets in stuck-wallets-Oct-16 invested mostly XRP to obtain USD 

from PayRoutes. We find that the exchange rate XRP/USD in the Ripple network 

was considerably “better” than in the real world at that time: In the Ripple network 

at that time, a wallet could get 0.73 USD for 1 XRP on average, with a minimum of 

0.14 and a maximum of 2.87 USD using stale offers available in the network. However, 

in the real world, one could get less than 0.01 USD for 1 XRP at the average exchange 

rate at that time and up to 0.28 USD for 1 XRP, even considering the best exchange 

rate over the entire Ripple network lifetime. 

The results presented above describe the origin of a small fraction of the credit 

stuck on credit links with PayRoutes. We repeated the same experiment over the 

complete Ripple network lifetime and observed similar patterns. First, the credit links 

with stuck credit are involved in a total of 278 transactions where other wallets in the 

Ripple network are sending credit to victim wallets at a favorable rate: The receiver 

gets more credit than actually sent by the sender. Those transactions account for 

around 158, 000 USD. Second, the highest amount of credit is received as a result of 

circular transactions that use advantageous offers. In particular, we find that credit 

links with stuck credit are involved in a total of 16, 469 transactions where they gained 

more than 63M USD over the complete Ripple network lifetime. 

Although wallets with stuck credit at PayRoutes obtained considerable revenue, a 

broader perspective reveals that it was a risky operation. For instance, as a possible 

countermeasure to this issue it is possible to check the exchange rates available in the 
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Ripple network at October 2016 to determine how likely it is to get the USD credit 

back. In particular, we observe that although wallets in stuck-wallets-Oct-16 managed 

to get “cheap” USD, the market values were not favorable to get them back: New 

exchange offers created in the Ripple network in October 2016 (as shown in Table 2.2) 

demonstrate this. 

2.2.4 Effect of Stale Offers 

Exchange offers and rippling are the key operations that enable path-based trans-

actions. The previous two sections investigated the security of rippling, so we now 

investigate the safety of exchange offers, which are set by the owners of wallets at their 

own discretion. Naturally, proposed offers should match those of the corresponding 

currencies in the real world or even be in favor of market makers so that they get 

credit for their exchange services. Otherwise, cunning users can leverage stale offers 

to gain credit, while market makers may go bankrupt. This would adversely impact 

the liquidity and availability of the Ripple network. 

In this state of affairs, we aim to determine whether there are stale offers in the 

Ripple network and, if so, study to what extent devilry users have taken advantage 

of them. Here, we consider the coin market capitalization (https://coinmarketcap. 

com/) as representative source to know the prices for cryptocurrencies outside the 

Ripple network. In order to achieve our goal, we first search for sudden changes in the 

currency’s market capitalization. We observed several such changes. We first examine 

a spike in the price of XRP in late 2013: During a period of ten days (Nov 20th–30th, 

2013), the price of 1 XRP with respect to BTC increased by 380%, i.e., 1 XRP was 

exchanged at 0.00001 BTC at the beginning of the period but within a week, 1 XRP 

was exchanged at 0.000038 BTC. Given that, we extract all the transactions that 

occurred during this ten-day period, obtaining a total of 1, 932 transactions. We prune 

this dataset by considering only cross-currency transactions that exchange XRP for 

BTC or vice versa. We obtain a total of 112 transactions. 

https://coinmarketcap
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Fig. 2.4. Illustrative example of exchange offers in the Ripple network. 
Market maker accepts XRP and pays BTC (top); market maker accepts 
BTC and pays XRP (bottom). If the purple point (offer in Ripple) is 
below the green point (offer in real world), the transacting user gained 
credit. Otherwise, the market maker gained credit. These transactions 
took place between November 20th and 30th, 2013. 

We compare the exchange rate between XRP and BTC used in each transaction 

to the exchange rate in the real world at the same time, as shown in Figure 2.4. In 

both figures, a purple point represents the exchange rate in a Ripple transaction while 

the corresponding green point denotes the exchange rate in the real world at the same 

time. For both graphs, if the purple point is higher than the green point (Ripple’s 

offer is more expensive than the real world offer), the market maker made money. In 

contrast, if the purple point is below the green point, the user who conducted the 

transaction gained credit. 
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We analyzed the transactions in which a sender gained credit by exploiting stale 

offers. We make two observations. First, users could have gained up to around 250, 000 

USD by fully exploiting XRP/BTC stale offers during the specified period. In other 

words, market makers put at risk around 250, 000 USD due to stale offers. Second, 

24 different wallets made a monetary benefit of at least 7, 500 USD by exploiting 

XRP/BTC stale offers (and other offers available in the network at that time). Here, 

we calculate the USD value by converting the BTC and XRP to their real world 

exchange rates at the corresponding times. In summary, even in the nascent stages 

of the Ripple network, when the transaction volume was considerably low, market 

makers risked significant loss of credit by letting exchange offers become stale. 

To confirm these results, we explored another, more recent, substantial change in a 

currency exchange rate. We found a sudden increase in the price of BTC compared to 

XRP in 2017, concretely during the period July 16th – August 16th: The value of 1 

BTC went from 11, 713 XRP to 25, 735 XRP, that is, an increase of 120%. As before, 

we extracted the transactions during that period of time and compared the exchange 

rates of XRP from/to BTC in the Ripple network and in the real world. We observe 

that market makers put at risk around 500, 000 USD due to stale offers exchanging 

XRP to BTC and vice versa. Moreover, we observe that 84 wallets exploited these 

stale offers (and possibly other offers) to gain more than 4.5M USD. These results 

confirm that stale offers continue to be a risk for market makers. In fact, the effect of 

stale offers is now amplified given the growth of the Ripple network and transactions. 

As a possible countermeasure to this problem, a market maker can update a 

previously offered exchange rate at any time. Therefore, a market maker should 

continuously monitor the price for the currencies involved in its offers and promptly 

update its exchange offers in the Ripple network when a sudden change occurs in the 

real world. The gaps between exchange rates in the Ripple network and real world 

are thereby reduced, and with them, the windows for cunning users to gain credit. 
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2.3 Privacy Study 

The Ripple ledger serves as a unique and append-only log that keeps track of all 

wallets in the Ripple network, credit links between them and all valid operations that 

ever happened in the Ripple network. Remember that a wallet in Ripple is represented 

by the hash of the corresponding public key that effectively serves as a pseudonym 

for the wallet. Therefore, although pseudonyms are not directly tied to real world 

identities, it is possible to reconstruct the complete financial activity performed by a 

single pseudonym. Although several research works have shown privacy breaches in 

Bitcoin due to the use of pseudonyms in the blockchain [46–52], the important issue of 

privacy in credit networks has not been thoroughly studied yet. This state of affairs 

leaves open important questions such as Is privacy a real problem in Ripple? Can we 

measure it? 

In this section, we overview our study of the Ripple network that sheds light to 

these questions [19]. In particular, we propose two heuristics based on observations of 

the interactions between Ripple wallets themselves and interactions of these wallets 

with online exchange services to deposit and withdraw cryptocurrencies in and from the 

Ripple network. By doing so, we show that it is possible to cluster wallets that belong 

to the same user across different systems (not only Ripple but also cryptocurrencies). 

Additionally, we propose deanonymization mechanisms to reveal the identity behind 

the clustered wallets. These results show the privacy breaches inherent to a publicly 

available ledger, a practice followed by other credit networks as well such as Stellar. 

2.3.1 Heuristic 1: Interledger Linkability 

Our first heuristic can be illustrated with the tale of two logs, as shown in Figure 2.5. 

Assume that Alice has certain bitcoins in her Bitcoin wallet. Using the Bitcoin system, 

she can only pay for services that accept payments in BTC. However, she cannot pay 

to Bob as he only accepts payments in USD. In this state of affairs, Alice can instead 

transfer these bitcoins into the Ripple network, getting thereby the corresponding 



29 

Alice Bob

Only USD
1

Alice 

2

Alice 

Gateway1 

Gateway1 Gateway2 

Alice
Bob

Carol

3

2 
/ 2

 B
TC

6 / 8 BTC 15
0 /

 - 
US

D

20 / 5000 USD

Gateway1 Gateway2 

Alice
Bob

Carol

4

1.
5 

/ 2
 B

TC

6.5 / 8 BTC 21
50

 / -
 U

SD 2020 / 5000 USD
6

6

4

2

Fig. 2.5. The tale of two logs. Alice cannot pay bitcoins to Bob as he 
only accepts USD (top-left). Out of her 6 bitcoins, Alice pays 2 bitcoins 
to a gateway in the Bitcoin network and keeps the other 4 bitcoins for 
her (top-right). Alice gets the corresponding 2 BTC from the gateway in 
the Ripple network (bottom-left). Finally, Alice performs a cross-currency 
transaction to settle her debt with Bob (bottom-right). 

amount of BTC IOU. For that, she needs to interact with a gateway that provides 

the service of exchange funds among the two networks. In particular, Alice can pay to 

the gateway in bitcoins within the Bitcoin network. The gateway in turn pays back to 

Alice the corresponding BTC IOU in the Ripple network. Now, she is able to pay to 

Bob as the Ripple network allows the exchange from BTC IOU into USD using the 

currency exchanges offered by market makers (Carol in this example). 

There are several gateways (e.g., Bitstamp and GateHub) which offers users the 

possibility to transfer bitcoins (or any of the altcoins) into the Ripple network and vice 

versa. As mentioned before, Alice can pay the gateway a certain amount of bitcoins. 

The gateway, upon reception of the bitcoins, issues the corresponding BTC IOU to the 

credit link that Alice has previously formed with the gateway. We call this transaction 



30 

deposit transaction. On the other hand, Alice could send (part of) her BTC IOU to 

the gateway which in turn, transfers back the corresponding amount of bitcoins to the 

Alice’s Bitcoin wallet. We call this transaction withdrawal transaction. 

The key observation here with respect to privacy is that the a priory independent 

payments carried out during deposit and withdrawal transactions are logged in the 

corresponding ledgers and can be linked together following the aforementioned me-

chanics. For instance, in the example depicted in Figure 2.5, the payment from Alice 

to the gateway (top-right) is logged in the Bitcoin blockchain while the issue of credit 

from the gateway to Alice (bottom-left) is logged in the Ripple ledger. Although 

Alice must use different wallets in Bitcoin and Ripple, the fact that both logs are 

publicly available allows an observer to link both operations together and in turn 

determine Alice’s wallets in both systems. As the reader can imagine, this process 

can be extended to link wallets that belong to the gateway as well as to extract other 

blockchain-based cryptocurrencies (i.e., altcoins) wallets that can further be linked. 

Heuristic 1 [Deposit and withdrawal at the gateway] The heuristic for deposit 

operations to link Bitcoin and Ripple wallets belonging to the same user involves the 

following steps: 

1. Assume wg is a Ripple wallet owned by the gateway. Extract the set of all 

transactions in the Ripple network where wg is the sender. We denote this set 

by Tspwgq. Moreover, for every transaction t P Tspwgq, obtain the corresponding 

Bitcoin transaction.We denote the corresponding Bitcoin transaction by tb. 

2. For every transaction t P Tspwgq create a pair (wg, rcvptbq), where rcvptbq is the 

receiver of the Bitcoin transaction tb corresponding to t. All these pairs thereby 

created correspond to Ripple, Bitcoin wallets belonging to the gateway. On the 

other hand, for every transaction t P Tspwgq, create a pair (rcvptq, sdrptbq), 

where rcvptq denotes the receiver wallet of the Ripple transaction t and sdrptbq 

denotes the sender wallet of the corresponding Bitcoin transaction. The two 

wallets of such a pair are owned by the same user. 

https://transaction.We
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The heuristic for withdrawals to link together Bitcoin and Ripple wallets belonging 

to the same user involves the following steps: 

1. Assume that wg 
1 is a Ripple wallet owned by the gateway. Extract the set of all 

transactions in the Ripple network where wg 
1 is the receiver. We denote this set 

by Trpw
1 q. Moreover, for every transaction t1 P Trpw

1 q, obtain the corresponding g g 

Bitcoin transaction, which we denote by t1 b. 

2. For every transaction t1 P Trpw
1 q create a pair (w1 , sdrpt1 bq), where sdrptb 

1 q is theg g 

sender of the Bitcoin transaction t1 b corresponding to t1 . All these pairs thereby 

created correspond to Ripple, Bitcoin wallets belonging to the gateway. On the 

other hand, for every transaction t1 P Trpwg 
1 q, create a pair (sdrpt1q, rcvpt1 bq), 

where sdrpt1q denotes the sender wallet of the Ripple transaction t1 and rcvpt1 bq 

denotes the receiver wallet of the corresponding Bitcoin transaction. The two 

wallets contained in such a pair are owned by the same user. 

Figure 2.6 (top) shows an illustrative example for a deposit transaction. Assume 

Alice wants to get 2 BTC IOU into her Ripple wallet Alice  
1 . To achieve that, she first 

creates a Bitcoin transaction where she transfers 2 BTC from her Bitcoin wallet AliceB 
1 

to the gateway’s Bitcoin wallet GwB 
1 . Once the gateway has checked the validity of the 

Bitcoin transaction, it creates a Ripple settlement transaction where it issues 2 BTC 

IOU from its Ripple wallet Gw  
1 to Alice’s Ripple wallet Alice

  
1 . This implies that 

AliceB 
1 and Alice  

1 are owned by Alice while GwB 
1 and Gw  

1 are owned by the gateway. 

Moreover, following the heuristics regarding Bitcoin change addresses proposed by 

Meiklejohn et al [47], we can infer that AliceB 
2 also belongs to Alice. 

Figure 2.6 (bottom) shows a withdrawal transaction. Assume Alice wants to 

withdraw 1 BTC IOU from the Ripple network into her Bitcoin wallet. For that, 
  
2 to the gateway’s Ripple she first sends 1 BTC IOU from her Ripple wallet Alice 

wallet Gw  
2 . Once the gateway has received the BTC IOU, it transfers 1 BTC from 

its Bitcoin wallet GwB 
2 to Alice’s Bitcoin wallet AliceB 

3 . The withdrawal implies that 
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Fig. 2.6. An illustrative example of deposit and withdrawal processes in 
a gateway. For a deposit, first Alice sends 2 BTC to the gateway and 
then, the gateway sends 2 BTC IOU in the Ripple network to Alice. For a 
withdrawal, first Alice sends 1 BTC IOU to the gateway within the Ripple 
network and then the gateway sends 1 BTC back to Alice in Bitcoin. 

22and Alice  and Gw  

Moreover, as mentioned before, we can infer that Gw 

B BAlice are owned by Alice while Gw are owned by the gateway. 3 2 

B 
3 belongs to the gateway. 

We tested the Heuristic 1 in the gateway DividendRippler. Although this gateway 

is not currently active, at the time of our experiment it was one of the most active 

gateways in terms of deposit and withdrawals of cryptocurrencies from and to the 

Ripple network. We limit our description to how we have extracted the necessary 

information for the steps defined in Heuristic 1 for the deposit process (i.e., steps 1-2). 

The heuristic for the withdrawal process has been implemented in a similar manner. 

1. The DividendRippler wallet (i.e., wg) is publicly available at its website. The 

set Tspwgq has been obtained from our crawled Ripple transactions. 
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2. Every deposit has its own page in the DividendRippler’s website. This page 

details both the Bitcoin (correspondingly the Altcoin) and the Ripple transaction 

involved. Therefore, the tb corresponding to every transaction t P Tspwgq can be 

obtained from it. Later in this section, we discuss how to generalize this step 

to get the Bitcoin transaction corresponding to a Ripple settlement transaction 

even if the gateway does not publicly show it. 

3. For every transaction t P Tspwgq, sdrptq and rcvptq have been obtained from our 

Ripple database. The transaction t’s webpage also contains a link to the Bitcoin 

(correspondingly the altcoin) block where the corresponding tb is stored. From 

this block, we have obtained the fields sdrptbq and rcvptbq. 

Our heuristic finds out a total of 435 Ripple wallets involved in trading with the 

gateway DividendRippler. Moreover, we have been able to extract 3,145 Bitcoin 

wallets and 1,173 altcoin wallets divided into 841 Litecoin wallets, 178 Terracoin 

wallets and 154 Namecoin wallets. 

This heuristic impacts the privacy provided by Ripple. In particular, this heuristic 

enlarges the set of wallets among different cryptocurrencies that can be linked to 

a given user. This fact has several privacy implications. First, it paves the way to 

reconstruct the business of a company in a more accurate manner. It is interesting to 

note that since a business must publicly announce at least one wallet to its customers, 

the complete (and possible large) set of wallets linked to it are deanonymized. Second, 

larger sets of linked wallets among different systems affect also the privacy of users. 

For instance, even if a given user has private wallets in Bitcoin (e.g., she always uses 

mixing techniques for her transactions), deanonymizing one of her Ripple wallets 

directly deanonymizes her Bitcoin wallets as well. 

Although in this experiment we use a gateway that publishes the Ripple and 

Bitcoin transactions involved in deposits and withdrawals, our heuristics are also 

applicable to gateways not publishing this information. In such case, it is possible 

to collect the Ripple transactions performed by the gateway and link them with 

high probability to Bitcoin transactions issued in a similar time and transacting the 
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corresponding amount of bitcoins. This approach leads, however, to a probabilistic 

guarantee on accuracy and might include false positives in the results. Moreover, as 

mentioned earlier, our heuristic enables to link not only Ripple and Bitcoin wallets, 

but also wallets corresponding to other transaction networks (e.g., Stellar) and other 

cryptocurrencies (e.g., Litecoin, Namecoin or Terracoin). 

2.3.2 Heuristic 2: Hot-cold Wallets Linkability 

The concept of hot-cold wallet is associated to a behavior that many of us have in 

our daily life. Instead of carrying all of her funds in her pocket wallet, Alice carries 

only part of it and spends it on her daily purchases. If she runs out of cash in her 

pocket wallet, she goes to her bank and withdraws more funds to top-off her wallet. 

This behavior is also present in the interactions between wallets in the Ripple network, 

a fact that we leverage in our novel heuristic to link Ripple wallets controlled by the 

same user. 

In a nutshell, users willing to use the Ripple network to attract new business must 

publicly announce (at least) one of their wallets (i.e., issuing wallet) so that future 

clients can create credit link with those. For example, gateways publicly advertise 

their issuing Ripple wallet in their websites. Then, the issuing wallet’s owner can issue 

credit to the clients through the newly created links. However, this practice has two 

main drawbacks. 

First, the issuing wallet becomes an attractive target for an attacker: if the secret 

key of such wallet gets compromised, the attacker can freely issue an amount of 

unauthorized IOUs bounded only by the upper bound on these wallet’s links. This 

problem is even more prominent given that upper bounds in the links are set to 8 by 

default unless the user changes them. Such an attack has already been observed in the 

Ripple network and the stolen wallet’s owner has gone bankrupt. Second, as the Ripple 

ledger is publicly available, announcing ownership of a wallet and using it to carry 

out all the settlement transactions clearly leads to privacy leaks: everybody can track 
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the settlement transactions of the issuing wallet and reconstruct the complete activity 

of the given user. Nevertheless, current businesses (such as banks and gateways) seek 

to maintain privacy of their activities while using the Ripple network. 

In order to overcome these issues, Ripple defines the hot-cold wallet security 

mechanism to issue IOUs of any currency [53,54]. The cold wallet is publicly linked 

to a certain user. However, actual issuing of the IOUs in a credit link extended to the 

cold wallet is performed by the hot wallet as follows. First, the hot wallet creates a 

credit link with the cold wallet. Then, when the owner of the cold wallet must extend 

credit to a user, she uses the hot wallet to extend that credit, using for this settlement 

transaction the existing path (hot wallet) Ð (cold wallet) Ñ (user wallet). 

The hot wallet is therefore considered to be online as it is used for daily settlement 

transactions. For example, the secret key of the hot wallet might be used by a web 

application to automatically perform settlement transactions to other users when 

requested. When the credit link between the hot and cold wallet runs out of IOUs, 

the cold wallet extends extra IOUs. This operation happens, however, less often and 

can be performed offline (e.g., signing locally the necessary transaction). Thus, the 

cold wallet is considered offline. 

Following this mechanism, if the thief steals the private key of the hot wallet, he 

can issue a number of unauthorized IOUs bounded by the IOUs extended from the 

cold wallet to the hot wallet. Two observations are important here. First, this bound 

is normally notably smaller than the bound on the number of IOUs a cold wallet can 

issue. Second, the maximum number of IOUs in the link between hot and cold wallet 

is totally controlled by the owner of the cold wallet. She, however, does not have any 

control over the upper bound with the credit links created with the rest of the users. 

With respect to privacy, we note that a settlement transaction from the hot wallet 

to any other user’s wallet has the same path structure as a settlement transaction 

between any two users (i.e., (sender wallet) Ð (cold wallet) Ñ . . . Ñ (receiver wallet)). 

Thus, in principle, settlement transactions from the hot wallet to any user cannot 

be directly linked to cold wallet’s owner. However, we observe that implementing 



36 

the hot-cold wallet mechanism forces the user to use her Ripple wallets following 

a pattern that makes it possible to link her wallets together. Intuitively, first our 

heuristic detects the possible cold wallets. Then, it checks settlement transactions 

where the cold wallet is the sender. The receivers of these transactions are the possible 

hot wallets. Finally, our heuristic links together hot and cold wallets that belong to 

the same user. 

Heuristic 2 [Hot and cold wallets ] The heuristic to link hot and cold wallets belonging 

to the same user involves the following steps: 

1. Extract the wallets that only have outgoing credit links in the Ripple network. 

They form the initial set of potential cold wallets and we denote it by CW . 

Among the wallets connected to a cold wallet in CW , those that have being paid 

at least once by such cold wallet are potential hot wallets, which we denote by 

HW . The rest of the connected wallets (say, a set HW ) are discarded as they 

are wallets from users other than cold wallet’s owner. 

2. Reduce the set of potential hot wallets HW to those that are paying to other 

wallets connected to the cold wallet (i.e., the set HW Y HW ). Let HW 1 be the 

thereby reduced set of potential hot wallets. Discarded wallets in this step (i.e., 

HW - HW 1) are added to HW , obtaining the set HW 1 . 

This step intuitively ensures that potential hot wallets are being used to issue 

IOU to other wallets. 

3. Reduce the set of potential cold wallets CW to those that have less potential hot 

wallets than discarded hot wallets. In other words, for each cold wallet cwi P CW , 

accept cwi only if |HW 1pcwiq| ă |HW 1pcwiq|. Let CW 1 be the thereby reduced 

set of cold wallets. This step ensures there are indeed many wallets demanding 

IOUs, which are then supplied using a few hot wallets. 
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4. For each cold wallet cwi P CW 1 , create pairs (cwi, hwj ) for each hot wallet 

hwj P HW 1pcwiq. Here, each pair of wallets thereby created belongs to the same 

user. 

Figure 2.7 depicts an illustrative example of Heuristic 2. The wallet Carol   
1 is the 

cold wallet of Carol as it does not have any incoming link in the Ripple network. In 

other words, the cold wallet can issue IOUs to other wallets in the network, but no 

other wallet can issue IOUs to it. 

Carol uses her cold wallet (Carol   
1 ) to fund her hot wallet (Carol   

2 ) with 80 and 70 

credits in two settlement transactions, while no other wallet is paid by the cold wallet. 

Then, Carol   
2 is used to issue credit to wallets that have extended a credit line with 

  
1 , in this example Alice, Bob and Dave. Interestingly, althoughthe cold wallet Carol 

Bob transfers credit to Alice, it is not linked to Carol given that Bob does not receive 
  
1any settlement transaction from Carol’s cold wallet Carol . 
  
1 

  
2Our heuristic can thereby derive the fact that Carol and Carol belong to the 
  
2same user (i.e., Carol), even though settlement transactions from Carol to other users 

follow the same path structure as transactions among other users (e.g., settlement 

transaction from Bob to Alice). 

We aim to devise the effect of our heuristic in terms of privacy breaches when 

applied to the Ripple network. For that, we run the Heuristic 2 to link wallets that 

belong to the same user. Our algorithm results in 261 cold wallets, 268 hot wallets, 

having a total of 529 Ripple wallets that have been clustered. Although the results of 

this heuristic in practice has resulted in a low percentage of clustered wallets, they 

cover a large number of settlement transactions as we show in Section 2.3.3. 

The hot-cold wallet mechanism is a rather recent addition to the Ripple network, 

and it is not yet extensively applied by the Ripple users. Therefore, it is important to 

avoid false positives while applying this heuristic. In the following, we describe our 

mechanism to handle false positives. 

During our process to handle false positives we apply the principle of being as 

strict as possible in order to reduce the number of them. Moreover, from our results 
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Fig. 2.7. An illustrative example of Heuristic 2. The arrows show the credit 
links. The dashed line represents the wallets linked by the heuristic. Cold 
wallets (Carol  

1 ) do not have incoming credit links. Hot wallets (Carol
  
2 ) 

receive credit from the cold wallets. XRP balances are omitted as they 
are not used in this heuristic. 

we observe that false positives fall into two categories: wallets that do not follow the 

hot-cold wallet mechanism yet and wallets that follow such mechanism but have used 

the cold wallet to make sporadic payments to wallets other than the hot wallets. We 

perform the following steps to detect false positives. 

First, we calculate the distribution of settlement transactions from cold wallets to 

potential hot wallets. In the absence of significant ground truth data, we use three 

gateways (Bitstamp, RippleFox and SnapSwap) well known in the Ripple community 

for using the hot-cold wallet mechanism, to bootstrap a minimal ground truth for 

the settlement transaction distributions. Their settlement transaction distributions 

resemble the Poisson distribution with parameter λ “ 1. We then compute the 



39 

divergence of each distribution and the Poisson distribution to detect falsely tagged 

cold wallets. 

In detail, we calculate the statistical distance between two distributions using the 

Kullback–Leibler (KL) divergence [55] as a measure. Then, we flag a cold wallet as 

false positive if its settlement transaction distribution diverges from Poisson more than 

a threshold T . We set up T as the maximum divergence value between our ground 

truth distributions and Poisson with λ “ 1. 

This mechanism has flagged as false positives those cold wallets that do not follow 

the hot-cold wallet mechanism. In such case, the cold wallet is used to transfer IOUs 

to many other wallets with a somewhat equal probability, thus having a diversion from 

Poisson greater than T . We believe that these gateways’ behavior is transient and 

that eventually they will correctly apply the hot-cold security mechanism. Otherwise, 

as it has happened already, they risk huge losses and the possibility of even going out 

of business in case their wallet’s key is stolen. 

In addition, we observe some wallets following the hot-cold mechanism sporadically 

paying other wallets other than the hot wallets. We conjecture that these cases repre-

sent anomalous settlement transactions. A reason for having anomalous transactions 

is that, in early stages, users employ the hot-cold wallet mechanism in a non-consistent 

manner. However, we expect that over the period they will start using this hot-cold 

wallet mechanism correctly and in a consistent manner; otherwise, they may risk 

huge credit losses and even bankruptcy as it has been already observed in the Ripple 

network. Moreover, for known gateways using the hot-cold wallet mechanism, we have 

observed that percentage of anomalous transactions is fairly small. In order to flag 

these anomalous cases as false positives, we rely on the fact that cold wallet must 

refund the hot wallet repeatedly over time. 

In detail, we consider 3 months (i.e., an economic quarter) as a time frame. Then, 

only potential hot wallets that are refunded by the cold wallet at least once per quarter 

for a period of at least two quarters are flagged as real hot wallets. The rest are flagged 

as false positives. There is a tradeoff choosing these thresholds. First, enforcing a 
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less frequent refund or a shorter time frame would tag less wallets as false positives, 

decreasing thus the accuracy of the approach. Enforcing that hot wallets are refunded 

periodically from when they are created until today would tag real hot wallets as false 

positives, reducing also the accuracy: Ripple developers suggest to have several hot 

wallets [53], so that some cold wallets use one hot wallet for a period of time and then 

change to another hot wallet. Moreover, thresholds for this criteria have been selected 

following our design principle of being as strict as possible considering the fact that 

there are path-based settlement transactions in Ripple only for less than 2 years. 

Finally, we study the impact of this heuristic in the privacy guarantees of the 

Ripple network. The hot-cold wallet mechanism has been proposed by Ripple aiming 

at disassociating settlement transactions from hot wallet and cold wallet so that 

privacy for cold wallet’s owner is increased. However, our heuristic shows a novel 

technique to link back hot and cold wallets belonging to the same user, thus allowing 

to reconstruct the complete business (see Section 2.3.3). Thus, our heuristic shows 

that hot-cold wallet mechanism does not increase privacy in practice. 

Moreover, linking hot and cold wallets using our heuristic leads to hinder the 

security supposedly provided by the hot-cold wallet mechanism. Using our heuristic, 

an attacker can lucratively target the hot wallets belonging to the target business in 

order to compromise their private keys and use them to issue unauthorized IOUs. This 

forces the attacked business to create new hot wallets. This simple countermeasure 

however does not help as the attacker can repeat the linkability process described in 

this section and focus his efforts to target the newly created wallet belonging to the 

target business. 

Additionally, our heuristic works for any IOU network following the hot-cold wallet 

mechanism as described earlier. We focus on the Ripple network as it is currently 

the most widely deployed credit network in practice. However, we observe that the 

hot-cold wallet mechanism is also present in the Stellar network so that our heuristic 

will directly apply to it when they grow to the level of Ripple network. 
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2.3.3 Deanonymization of Ripple Businesses 

We have presented two heuristics that enable the finding of a set of Ripple wallets 

as well as cryptocurrencies wallets which are owned by a certain user. Table 2.3 shows 

a summary of our findings as of December 2015, when these experiments where carried 

out. This process has allowed us to cluster a total of 959 Ripple wallets, 3, 113 Bitcoin 

wallets and 1, 130 altcoin wallets. Moreover, Ripple wallets clustered by our heuristics 

are involved in 161, 624 XRP payments and 772, 860 settlement transactions. Our 

clustered wallets were jointly involved in a bit more than 7% of the transactions in 

the Ripple network. 

In the rest of this section, we describe how we leveraged this clustering to 

deanonymize the business of most of the main gateways. This implies that any-

body accessing the publicly available Ripple data can reconstruct the total number of 

transactions carried out by a gateway, and not only transactions associated to the 

gateway’s public wallets, thereby having a significant privacy breach. Remember that 

the gateways and their associated transactions represent the main activity for the core 

of the current Ripple network. They are used to transfer value from the real world 

into Ripple and vice versa, a crucial task to create liquidity in any starting transaction 

network such as Ripple or Stellar. 

Table 2.3. 
Number of wallets clustered in the different heuristics. In Altcoins we 
consider Litecoin, Namecoin and Terracoin. Finally, for each heuristic and 
for their grouping, we show the number of Ripple transactions where either 
the sender or the receiver is a clustered wallet. 

Heuristic Ripple Bitcoin Altcoins 
Wallets Transactions Wallets Wallets 

1 435 96, 009 3, 145 1, 173 
2 529 863, 614 – – 

Grouped 959 934, 484 3, 113 1, 130 
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Single Gateway Business We first consider the deanonymization of business 

of a single gateway at a time for both DividendRippler and Bitstamp. Although 

DividendRipple is currently out of business, it was one of the most active gateways for 

deposits and withdrawals of cryptocurrencies at the time of the experiment. Bitstamp 

continues being today one of the most active gateways over the complete Ripple 

network. 

In the deanonymization process of the businesses associated to DividendRippler, we 

observed that DividendRippler publicly announced only one Bitcoin wallet. Extracting 

the transaction history of such wallet from the Bitcoin blockchain, we observe that 

more than 1, 000 bitcoins have been transacted. However, this is only a partial view 

of the gateway’s business. As shown in Table 2.4, the transaction history of Bitcoin 

wallets linked to the gateway by our heuristics shows that more than 5, 000 bitcoins 

have been ever transacted at this gateway. These results have been possible given the 

wallets linked by Heuristic 1. 

At the time of these experiments, Bitstamp had only published its cold wallet and 

one of its hot wallets, for which we observed that there have been 72, 042 transactions. 

However, our Heuristic 2 flagged another Ripple wallet as belonging to Bitstamp. 

Using this extra information, it is possible to derive that Bitstamp has instead been 

involved in 132, 543 transactions. Therefore, our heuristics enable the finding of 

60, 501 extra transactions involving Bitstamp. During our deanonymization process, 

we considered transactions where either the sender or the receiver is the linked wallet 

by our heuristic. 

Table 2.4. 
Deanonymization of Dividendrippler Bitcoin business. 

Total Sent Total received Total Balance 

Public wallets 1062.29 1064.08 1.79 

Clustered wallets 5724.38 5724.41 0.03 
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Fig. 2.8. Comparison of the number of transactions associated to pub-
licly known gateways’ wallets (i.e., Known payments) and transactions 
performed with wallets clustered by our heuristics to those gateways (i.e., 
Heuristic payments). Dashed line groups gateways sharing an owner. 

We observed that it is possible to monitor the gateway’s business even further. 

Once the clustering is performed, it is possible to monitor the network to notice every 

time a transaction is received by a given Ripple wallet. Using this approach it is 

possible to monitor the complete set of wallets in the cluster of a given gateway, and 

thereby its full activity in real time. 

Several Gateways Business We have carried out the reconstruction of the business 

associated to the most widely deployed gateways in the same manner we did with 

Bitstamp’s business. We show the most interesting results in Figure 2.8. 

We make the following observations. First, there are gateways for which the 

numbers of publicly available transactions are different. However, adding up the 

transactions performed with the wallets resulting from our heuristics (Figure 2.8, red 

bar), they have performed the same total amount of transactions. DividendRippler, 

DYM and Chriswen constitute an example of this observation. We have verified that 

indeed DividendRippler and DYM are operated by the same owner. Chriswen has 

been linked due to the combined results of both heuristics presented in this work: the 
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Fig. 2.9. A visualization of the deanonymization process over our clustered 
graph. The sizes of the nodes correspond with the number of transactions 
involving the nodes. Nodes with the same color belong to the same cluster. 
Gray nodes depict wallets not deanonymized by our heuristics. Links are 
colored with the color of the sending wallet. 

hot wallet for Chriswen extracted from Heuristic 2 has been used in DividendRippler 

and it appears in the cluster for DividendRippler and DYM resulting from Heuristic 1. 

Second, there are gateways with a few transactions made by their public wallets. 

However, when adding the payments associated to wallets clustered to them by our 

heuristics, the number of transactions increases. This is the case, for example, for 

RippleChina. Finally, we observe that no gateway (except for DividendRippler) 

publishes its Bitcoin wallets. As our heuristics link Bitcoin and other cryptocurrencies 

wallets to them, we can further deanonymize their financial activities. 

In summary, we have deanonymized 85, 962 XRP payments and 649, 640 settlement 

transactions, which jointly represent the 78.7% of the total transactions we have 

considered in our de-anonymization process (see Table 2.3). We have also studied 

the interactions between the clusters we have obtained from our deanonymization 

process, as shown in Figure 2.9. We observe that Bitstamp is the gateway with the 

largest amount of transactions within our cluster. Moreover, we have deanonymized 

98 Ripple wallets belonging to the gateway DividendRippler (Figure 2.9, blue nodes). 

We have observed that most of these wallets were clustered to DividendRippler by 

the Heuristic 1. In general, these results follow the fact that the probability that 
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a Ripple wallet gets deanonymized is bigger when the wallet is clustered with our 

heuristics. This is an important privacy breach: we have shown how to use it to 

reproduce the business of gateways. Moreover, we contacted several gateways with 

the list of Ripple wallets linked to them by our heuristic aiming at validating our 

deanonymization results. We have received responses from two of them (i.e., Bitstamp 

and RippleFox) and both have confirmed the ownership of such wallets. Moreover, 

these response do not include any wallet missed by our heuristics. 

2.3.4 Deanonymization Using a Ripple Server 

In the literature, there are several attacks based on maliciously including certain 

nodes in a network to deanonymize other nodes in the same network. For example, in 

the case of the Bitcoin network, a series of works [51,52,56] have shown that by including 

a few machines in the Bitcoin network it is possible to link Bitcoin transactions to their 

corresponding source IP addresses. Our results increase the privacy breach resulting 

from these techniques since if a Bitcoin wallet is deanonymized, the complete cluster 

(including Ripple and other cryptocurrency wallets) is deanonymized. 

Ripple transactions are collected by Ripple validator servers. Similar to Bitcoin, 

it is possible to further deanonymize Ripple transactions and wallets by deploying a 

Ripple validator server. As of today, validator servers are run by the core Ripple team 

(e.g., s-west.ripple.com) and by a few big gateway owners (e.g, SnapSwap). These 

parties can leverage our heuristics to further deanonymize Ripple wallets, and users 

are particularly vulnerable to deanonymization by them. 

Assume we deploy one Ripple server. Then, a Ripple client can create an IP 

connection to our deployed server to send us the Ripple transactions. As Ripple 

transactions are sent in the clear, we can inspect them, and by looking at the Sender 

field (see Table 2.1) it is possible to associate the IP address of the incoming connection 

to the Ripple wallet specified in the Sender field. 

https://s-west.ripple.com
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This privacy breach can be further exploited to link more than one Ripple wallet 

to a certain IP address. In detail, assume that different connections from the same IP 

address submits n transactions tt1, . . . , tnu, where ti has a Ripple wallet wi specified 

in the Sender field. This assumption is realistic: the currently Ripple web clients 

(e.g., RippleTrade) issue all the transactions by default to the same Ripple server. 

Given this scenario, it is likely that all the wi are owned by the same person and we 

can further associate this cluster of wallets to the IP address used to establish the 

connection with our Ripple server. 

Although the possibility to employ an anonymous communication network (e.g., 

Tor [57]) to forward the transactions to the transaction collecting server has been 

explored, such techniques are found to be vulnerable to denial of service and blacklisting 

attacks [58]. 

2.4 Related Work 

Since its inception, questions regarding the security and privacy of the Bitcoin 

system have attracted interest from the research community. Barber et al. [46] observed 

that Bitcoin exposes its users to the possible linking of their Bitcoin wallets. Thus, 

recent works [47–50] have proposed simple heuristics to thwart anonymity in Bitcoin. 

In a somewhat different direction, other recent works [51, 52] show the possibility of 

identifying ownership relationships between Bitcoin wallets and IP addresses. Although 

it is possible to extract lessons from those works, the conceptual differences between 

cryptocurrencies such as Bitcoin and the Ripple network mandate a dedicated look. 

Our novel heuristics are focused and have special interest for transaction networks 

such as Ripple, including the integration of several available cryptocurrencies. 

There is limited work studying the evolution, security and privacy of the Ripple 

network. Di Luzio et al. [38] consider two aspects of the Ripple network. They study 

the evolution of the amount and behavior of participants in the consensus protocol 

used to add transactions to the ledger during the first three years of the Ripple network. 
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They also propose a novel technique to deanonymize the transactions of a given user, 

leveraging side-channel information (e.g., the amount of a recent transaction performed 

by the victim). 

Armknecht et al. [37] present an overview of the Ripple network and give statistics 

about the number of transactions, and types of transactions and exchanges. The work 

is limited to the first two years of operation of the Ripple network. The work also 

demonstrates the conditions under which the Ripple consensus protocol fails, leading 

to a situation where the Ripple ledger might be forked. We consider this orthogonal 

to the content of this dissertation. 
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3 CREDIT NETWORKS: SECURITY AND PRIVACY 

After we have overviewed the Ripple network, an example of credit network deployed 

in practice, and the possible security and privacy issues with the current deployment, 

we are in position of building the foundations for credit networks as well as their 

security and privacy notions of interest. 

For starters, we envision a credit network as a combination of two main blocks: 

routing and graph management. In a nutshell, routing enables to construct credit paths 

between two users in the credit network; graph management allows to update the 

credit network upon operations queried by the users. In particular, payment transfers 

credit between a sender and a receiver through a credit path, change link updates 

the credit held at a credit link, test credit calculates the available credit that can be 

transferred in a payment between any two users in the credit network, and test link 

provides the credit available in a credit link. 

In the rest of this chapter, we first formally define the concept of credit network 

along with the aforementioned operations. We then introduce security and privacy 

notions of interest in a credit network in the form of ideal functionalities. An ideal 

functionality represents the expected behavior of each operation in an idealized world, 

simplifying thereby its description. In subsequent chapters, we detail how to construct 

a credit network that realizes this ideal functionality and thus achieves the expected 

security and privacy guarantees. More details can be found in [59]. 
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3.1 Credit Network Definition 

We denote the security parameter of our system by λ. Let polyp¨q and νp¨q be a 

polynomial function and a negligible function, respectively. Let tAλuλPN and tBλuλPN 

be two distribution ensembles indexed by λ. Then, we say that Aλ « Bλ if for all 

probabilistic polynomial time algorithms A, there exists a negligible function ν such 

that 

|PrrApxq “ 1 | x ¨̈“ Aλs ´ PrrApxq “ 1 | x ¨̈“ Bλs| ď νpλq. 

A credit network is defined as follows. 

Definition 1 (Credit network) A credit network nw :“ GpV , Eq, where V is the 

set of users and E is the set of credit links, is a graph equipped with the six operations 

psetup, route, pay, chgLink, test, testLinkq described below: 

setupp1λq Ñ params: On input of a security parameter, output a set of public 

parameters params. 

routepparamsq: On input a set of public parameters, initializes the routing information 

required by each node in the credit network. 

paypu1, u2, vq Ñ t0, 1u: On input of two user identifiers u1, u2 P V and the credit 

value v, if the payment is approved by u1 and if there exists enough credit flow 

between u1 and u2, perform a payment from u1 to u2 of value v and return 1. 

Otherwise, return 0. 

chgLinkpu1, u2, vq Ñ t0, 1u: On input of two user identifiers u1, u2 and a credit value 

v, if u1 approves the operation, modify the link u1 Ñ u2 P E by v and return 1. 

Otherwise, return 0. 

testpu1, u2q Ñ v: On input of two user identifiers u1, u2, if u1 approves the operation, 

return the available credit flow between u1 and u2. 

testLinkpu1, u2q Ñ v: On input of two user identifiers u1, u2, if one of the users 

approves the operation, return the credit available in the link u1 Ñ u2. 
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Correctness For a given credit network nw , let v Ð testpui, uj q. A credit network 

is considered correct if the following equalities hold for all chgLink and pay operations 

performed on it for any two users ui and uj . 

- Let nw 1 be the network obtained after performing paypui, uj , v1q on nw . Then, for 

the v2 Ð testpui, uj q computed on nw 1 , v2 “ v if the pay operation is unsuccessful, 

2 1else v “ v ´ v . 

- Let nw 1 be the resultant network after performing chgLinkpui, uj , v1q on nw . Then, for 

the v2 Ð testpui, uj q computed on nw 1 , v2 “ v if the chgLink operation is unsuccessful 

(due to disapproval by ui), else v2 “ pv ` v1q. 

3.2 Security and Privacy in Credit Networks 

In this section, we introduce the security and privacy notions of interest in a 

credit network. As a warm up, we first introduce them informally and later we 

formally describe them as ideal world functionalities. In particular, here we identify 

serializability as an important system property and integrity as a fundamental security 

property for a credit network. Additionally, we characterize two privacy requirements 

for transactions: Value privacy and sender/receiver anonymity. In the following we 

provide an intuitive description of these properties. 

3.2.1 Attacker Model 

We consider a decentralized network where the adversary can potentially corrupt, 

spawn, or impersonate an arbitrary set of users. The adversary is allowed to adaptively 

choose the set of corrupted parties. This models the fact that the adversary can include 

her own users in the credit network and that the adversary might also compromise 

some of the honest users’ machines. We consider only passive, but still adaptive, 

corruption of a minority (less than half of the total set) of the landmark users, 

which are thus assumed to be honest-but-curious. We assume that the non-corrupted 
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landmarks execute the algorithms according to our specifications and do not share 

private information among each other (i.e., they do not collude). In our vision, 

landmarks represent the root of trust in our network and they can be seen as the 

network operators (e.g., banks are the natural candidate to serve as landmarks in 

a transaction system). We advocate that it is in the interest of the landmarks to 

follow the protocol in order to maintain the availability of their network. That being 

said, it is easy to extend our definitions to fit a full corruption of the landmark users. 

Furthermore, we remark that integrity guarantees, i.e., the fact that credit cannot be 

stolen, must hold unconditionally in our model. 

3.2.2 Goals Overview 

Integrity A credit network achieves integrity if for all pairs of sender and receiver 

users pu1, u2q P V2 , for all values v P N, for all successful payments paypu1, u2, vq 

and for all intermediate honest users u3 P V , such that u3 ‰ u1 and u3 ‰ u2, the 

following holds: Let u4, u5 P V2 be the predecessor and successor of u3 in the 

payment path. Then, if there exists some credit value x P N such that u4 Ñ u3 

is decreased by x, then u3 Ñ u5 is decreased by x. 

Serializability Transactions in a credit network are serializable if, for all sets of pay 

and chgLink operations successfully performed in a concurrent manner, there 

exists a serial ordering of the same operations with the same outcome (i.e., 

changes in the credit available in the corresponding paths). 

Value Privacy We say that a credit network maintains value privacy if for all pairs 

of honest users pu1, u2q P V2 and for all pairs of values pv, v1q P N2 it holds that 

1 paypu1, u2, vq « paypu1, u2, v q 

to the eyes of any malicious user not involved in the transaction, as long as both 

operations are either successful or fail. 
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Sender/Receiver Anonymity We say that a credit network has sender anonymity 

if for all pairs of honest users pu0, u1, u2q P V3 and for all values v P N we have 

that, for any two simultaneous and successful payments, 

paypu0, u2, vq « paypu1, u2, vq 

to the eyes of any malicious intermediate user involved either in both or none of 

the two transactions, such that the honest neighbors of such a corrupted node 

are the same for both transactions. Receiver anonymity is defined along the 

same lines. 

3.2.3 Formal Definitions 

We formally define the security and privacy goals of decentralized credit networks 

according to the Universal Composability (UC) paradigm [60]. The main idea of this 

security notion is to compare a real protocol τ with some ideal world Φ, the so-called 

ideal functionality. The ideal functionality can be seen as a trustworthy entity that 

implements the intended behavior of the protocol. Given a real protocol τ and an 

ideal protocol Φ, we say that τ UC-realises Φ if for any adversary A attacking the 

protocol τ there is a simulator S performing an attack on the ideal protocol Φ such 

that no environment E can distinguish between τ running with A and Φ running 

with S. Here E may choose the protocol inputs and read the protocol outputs and 

may communicate with the adversary or simulator (but E is, of course, not informed 

whether it communicates with the adversary or the simulator). This is different from 

the traditional settings in that the environment may communicate with the adversary 

during the protocol execution and that the environment does not need to choose its 

inputs at the beginning of the protocol execution. Instead, it may adaptively send 

inputs to the protocol parties at any time, and it may choose these inputs depending 

on the outputs and the communication with the adversary. This formalization has 

the advantage of modelling attacks that exploit parallel instances of the protocol and 
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therefore it allows one to reason about security also in presence of parallel execution. 

Due to the distributed nature of credit networks, we believe that it is of paramount 

importance to capture the presence of interleaving executions also in the definition of 

security. We informally define UC-Security in the following and we refer the reader to 

the work of Canetti [60] for a comprehensive discussion on the matter. 

Definition 2 (UC-Security) Let EXECτ,A,E be the ensemble of the outputs of the 

environment E when interacting with the adversary A and parties running the protocol 

τ (over the randomness of all the involved machines). A protocol τ UC-realizes an 

ideal functionality Φ if for any adversary A there exists a simulator S such that 

for any environment E the ensembles EXECτ,A,E and EXECΦ,S,E are computationally 

indistinguishable. 

We describe in the following the ideal functionality FCN, which models the intended 

behavior of all the components of a credit network, in terms of functionality, security, 

and privacy. We consider a connected network of n nodes where each node is labeled 

either as a standard end-user (u) or as a landmark (LM). We denote by landmark a 

well-connected node in the credit network. For instance, a gateway could carry out the 

role of a landmark in the Ripple network whereas a bank could be the landmark in the 

current network of financial institutes. We model the synchronous network as an ideal 

functionality FNET as well as the secure and authenticated channels that connect each 

pair of neighboring nodes, FSMT, as proposed in [60]. In our abstraction, messages 

between honest nodes are directly delivered through FSMT, i.e., the adversary cannot 

identify whether there is a communication between two honest users. The attacker 

can corrupt any instance by a message corrupt sent to the respective party ID. The 

functionality FNET hands over to the attacker all the static information related to ID. 

In case ID is a standard node, all its subsequent communication is routed through A, 

which can reply arbitrarily (active corruption). If ID is a landmark, all its subsequent 

communication is recorded and the transcripts are given to A (i.e., thereby modeling 

passive corruption). 
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Functionality FROUT 

1) LM sends to FROUT two tuples of the form pu1, . . . , umq, indicating the sets of 
neighbors of LM in the BFS trees. 

2) FROUT runs a BFS algorithm over the links among registered users to construct 
an arborescence and an anti-arborescence rooted at the landmark IDLM. 

3) Specifically, the algorithm operates on a set of users to be visited, initially set to 
the one specified by the landmark. For each user u in this set, FROUT sends her a 
message psid, IDLM, h, upq via FSMT, where h is the number of hops that separates 
u from IDLM and up is the parent node on that path. u can either send pK, sidq, 
causing FROUT to roll back to the previous user, or pu1 , sidq to indicate the next 
user u1 to visit, which is thus added to the set. The algorithm terminates when 
the set is empty. 

Fig. 3.1. Description of the ideal functionality for routing FROUT 

Ideal Functionality Our ideal functionality for a credit network, FCN, maintains 

locally the static information about nodes, credit links, and their credit using a matrix. 

Additionally, FCN logs all of the changes to the credits between nodes that result from 

successful transactions. FCN is composed by a set of functionalities (FROUT, FPAY, 

FTEST, FCHGLINK, FTESTLINK) that interact as follows: FCN periodically executes a 

functionality to update the routing information of the nodes in the network (FROUT) 

using FNET as a mean of synchronization. Nodes can contact the ideal functionality 

to perform transactions (FPAY), test the available credit (FTEST), update the credit 

on a link (FCHGLINK) or to test the credit available in a link (FTESTLINK). Under these 

assumptions, we describe the routines executed by FCN in the following. 

FROUT The routing algorithm as described in Figure 3.1 allows the ideal functionality 

to construct multiple spanning trees (i.e., Breadth-First Search trees) in the credit 

network, each spanning tree encoding transaction paths between pairs of nodes. The 

landmark fixes the set of children nodes for the computation of the Breadth-First 
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Search (BFS) (step 1) and the ideal functionality executes the BFS (steps 2-3) by 

exchanging messages with each node in the network, starting from the set specified by 

the landmark. Each node can decide whether to interrupt the algorithm or to indicate 

the next node to visit. This models possible disruptive users in a distributed credit 

network. At the end of the execution each node learns its parent from and to the 

input landmark. Two types of BFS trees are created: Arborescence tree considers 

the credit links in the direction from a landmark to the users; anti-arborescence tree 

considers the credit links in the direction from the users to a landmark. 

FPAY The algorithm shown in Figure 3.2 constitutes the ideal functionality of the 

pay operation in a distributed credit network. The protocol is initiated by the Sdr that 

communicates the two ends of the transaction to the ideal functionality FPAY (step 1). 

For each landmark, FPAY derives two paths connecting the sender to the landmark 

(resp. the receiver to the landmark) in a distributed fashion (step 2): the functionality 

interacts with each intermediate node that can choose the next node where to route 

FPAY, until the landmark is reached (or the maximum length of the path is exceeded). 

Again, each node along the path can arbitrarily delay the operation and potentially 

choose any next node to visit, to model possibly malicious nodes. FPAY computes then 

the total amount of credit associated with each of the derived paths and sends the 

information to the sender (step 3) who can either interrupt the execution or inform 

FPAY of the values to transfer through each path (step 4). FPAY informs the nodes of 

the value transacted through them and the receiver of the total amount of transacted 

credit (steps 5-6). Each node involved in this phase can either confirm or abort the 

operation if the transacted amount exceeds the capacity of some link. If all of the 

nodes accept, FPAY updates the credit information of each node involved consistently 

with the transacted amount. Then FPAY informs the set of nodes that participated 

to the protocol (starting from the receiver) of the operation’s success (step 7). This 

is done again iteratively such that any node can interrupt the communication, if 

traversed. 
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Functionality FPAY 

1) For each LM, a sender Sdr sends the tuple pSdr, Rcv, Txid, IDLMq to FPAY, where Rcv, 
Txid, and IDLM denote the receiver, the transaction identifier, and the landmark 
identifier of the transaction. 

2) For each LM, FPAY derives the path from Sdr to Rcv, by concatenating the 
respective paths to LM, as follows: starting from Sdr and Rcv, FPAY sends (Txid, 
IDLM, u) via FSMT, where u is the previous user in the chain, if any. Each node 
can either send pK, Txid, IDLMq, to have FPAY ignoring the path, or pJ, Txid, IDLMq

to let the functionality follow the path constructed by FROUT, or pu1 , Txid, IDLMq

to indicate the next user on the path to LM. FPAY proceeds until it reaches LM 
from both ends (or the maximum length of the path is exceeded) and it computes 
the minimum value vLM among credits of the links on the path to LM. 

3) For each LM, FPAY calculates the set of tuples P “ tIDLM, vLMu, where vLM is the 
credit associated to the path from the Sdr to the Rcv through LM (pathLM). FPAY 

sends then (P , Txid) to the Sdr via FSMT. 

4) The Sdr can either abort by sending pK, Txidq to FPAY or send a set of tuples 
pIDLM, xLM, Txidq to FPAY via FSMT. 

5) For each LM, FPAY informs all the nodes in pathLM of the value xLM by sending 
pxLM, IDLM, Txidq via FSMT. Each node can either send pK, IDLM, Txidq to abort 
the transaction, or paccept, IDLM, Txidq to carry out the transaction. In the latter 
case FPAY checks whether for the corresponding edge e : ve ě xLM, and if yes 
FPAY subtracts xLM from ve. If one of the conditions is not met or there is at least 
one pK, IDLM, Txidq message, then FPAY aborts the transaction and restores the 
credits on the corresponding links of pathLM. 

6) FPAY sends to Rcv the tuple pSdr, Rcv, v, Txidq via FSMT, where v is the total 
amount transacted to Rcv. Rcv can either abort the transaction by sending 
pK, Txidq or allow it by sending psuccess, Txidq. 

7) For each LM, FPAY sends either psuccess, Txidq (or pK, Txidq depending on the out-
come of the transaction) to each user in the path from the Rcv to the Sdr, starting 
from the Rcv. Such a user can either reply with pK, Txidq to conclude the func-
tionality or with paccept, Txidq to have FPAY passing the message psuccess, Txidq
(or pK, Txidq) to the next user until Sdr is reached. 

Fig. 3.2. Description of the ideal functionality for payments FPAY 
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FTEST The test algorithm computes the credit available on the paths connecting 

any two nodes in the network, and it works analogously to the steps 1-3 in FPAY. 

FTESTLINK At any point of the execution, each node can query the FTESTLINK 

functionality to obtain informations about her adjacent links. 

FCHGLINK Each pair of neighboring nodes can jointly query FCHGLINK to update 

their link or generate a new one. 

3.2.4 Discussion 

In the following we motivate our choices in the design of the ideal functionality 

for a distributed credit network. First of all, we point out that in the transaction 

functionality FPAY we let each node decide ‘on the fly’ the next node where to route the 

transaction in the path from the sender to the receiver: this captures the distributed 

nature of the network where each node can route transactions arbitrarily. Nevertheless, 

note that any malicious attempt to redirect the transaction would fail unless the 

receiver is eventually reached, in which case the functionality of the network is not 

harmed. We do not see any reason why a node should not have the capability to 

switch between paths if it wishes to. It must be also pointed out that malicious 

nodes cannot cause the ideal functionality to run indefinitely on a path: FPAY will 

ignore the path after a certain maximum length is reached and the landmark is not 

an intermediate node. Another controversial point is the possibility for each node to 

cause an abort of the transaction that traverses it at several points of the executions. 

In this case a similar reasoning as above holds: we first note that such an attack is 

confined to links that the adversary is connected to, so it would require to establish 

many trust relationships with honest nodes to carry out a denial of service on a large 

scale. Additionally, we believe that each node must be able to decide whether it wants 

to take part to a transaction: although its total balance remains intact, some credit 

is shifted from one node to another and this may be undesirable. Such a behavior 
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can also easily be detected by other nodes in the network who can eventually route 

subsequent transactions to other paths not traversing the faulty node. 

What is left to be shown is that our ideal functionality captures the security and 

privacy properties that one would expect for a credit network. 

Integrity In the ideal world, integrity is guaranteed by the ideal functionality, who 

maintains a database of the link values and updates them consistently with the 

successful transactions. 

Serializability We observe that any set of chgLink operations on the same link is 

executed serially by the ideal functionality. Assume for the moment that only chgLink 

operations are performed: as any two concurrent operations are necessarily executed 

on two different links, it is easy to find a scheduler that returns the same outcome by 

performing those operation in some serial order (i.e., any order). Since a pay operation 

can be represented as a set of chgLink operations performed atomically (due to the 

integrity notion), the property follows. 

Value Privacy We observe that the only information revealed to the nodes about a 

transaction is the value of the transaction that traverses them (while the total amount 

of transferred credit is kept local by the ideal functionality). It is unavoidable to leak 

this information to each node since it affects its direct links and thus the leakage for 

the transaction value in our protocol is optimal. 

Sender/Receiver Anonymity For sender/receiver anonymity it is enough to ob-

serve that the ideal functionality addresses each transaction with a uniformly sampled 

id that does not contain any information about the identity of the sender nor of the 

receiver. Thus in the ideal world each user does not learn any information beyond the 

fact that some transaction has traversed some of her direct links, which is inevitable 

to disclose. 
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4 PATHSHUFFLE: ANONYMITY FOR RIPPLE TRANSACTIONS 

While the Ripple network offers several benefits to the current financial industry, the 

public nature of its transaction ledger exposes its individual users, groups, organiza-

tions, and companies to the same severe privacy attacks as already observed in Bitcoin. 

The privacy study of the Ripple network described in Section 2.3 makes this privacy 

concern justifiable by showing that a significant portion of Ripple transactions today 

can be easily deanonymized such that everybody can determine who paid what to 

whom. In this state of affairs, we require a privacy solution for the currently deployed 

Ripple network. 

In order to fill this gap, in this chapter we overview PathShuffle, the first mixing 

protocol for path-based transactions in credit networks that is fully compatible with 

the current Ripple network. A full description can be found in [61]. 

4.1 Cryptographic Background and Notation 

In this section, we introduce the notation that we follow in the rest of this chapter. 

4.1.1 Ripple Network Operations 

We use the operations available in the current Ripple network as described in Ta-

ble 4.1. A transaction tx becomes valid when it is signed by the appropriate wallet’s 

signing key. A transaction tx from CreateTx and ChangeLink must be signed by sk1 

(i.e., the signing key of wallet vk1), whereas a transaction tx from CreateLink must 

be signed by sk2. Finally, a transaction tx from testLink does not require a signature. 

A transaction tx is applied to the Ripple network after invoking Applyptx, σq with 
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Table 4.1. 
Description of the Ripple network operations. 

Operation Description 

pvk, skq ¨ ¨“ AccountGenp q Generate wallet keys 

tx ¨ ¨“ CreateTxpvk1, vk2, vq Create path-based transaction 

tx ¨ ¨“ CreateLinkpvk1, vk2, vq Create link vk1 Ñ vk2 (limit v) 

tx ¨ ¨“ ChangeLinkpvk1, vk2, vq Modify link vk1 Ñ vk2 by v 

tv, Ku ¨ ¨“ testLinkpvk1, vk2q Query IOU on link vk1 Ñ vk2 

t0, 1u ¨ ¨“ Applyptx, σq Apply signed transaction to network 

the correct signature. For simplicity, with Applyptx, σq we abstract away the process 

of being written to the blockchain after agreed upon consensus nodes. Moreover, 

for clarity of exposition, we assume that Applyptx, σq returns immediately after tx is 

applied to the Ripple network. In practice, tx is applied in a matter of seconds [36]. 

4.1.2 Digital Signature Scheme 

A digital signature scheme allows a signer who has established a public key vk to 

sign a message m using the associated secret key sk and creating thereby a signature 

σ. A digital signature further allows then anyone with access to the message m, 

the signature σ and the public key vk to verify that the signer correctly signed the 

message m. A bit formally, a digital signature scheme Π consists of three algorithms 

(KeyGen, Sign, Verify) defined as follows: 

KeyGenpλq Ñ sk, vk: The key generation algorithm takes as input the security param-

eter λ and returns a pair of public key vk and secret key sk. 

Signpsk, mq Ñ σ: The signing algorithm takes as input a secret key sk and a message 

m and returns a signature σ. 
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Verifypvk, m, σq Ñ t0, 1u: The verification algorithm takes as input a public key vk, a 

message m and a signature σ and returns 1 if σ is a valid signature on message 

m. Otherwise, it returns 0. 

Security of a Digital Signature Scheme Given a fixed public key vk generated 

by a signer, a forgery consists of a message m˚ along with a valid signature σ˚ , where 

m˚ has not been previously signed by the signer. Now, security intuitively means that 

it should be infeasible for anybody not possessing the corresponding secret key sk, to 

produce a forgery. We refer the reader to [62] for a formal security definition in the 

Universal Composability framework. 

4.1.3 Distributed Digital Signature Scheme 

In a distributed signature scheme, every user creates a fresh pair of verification 

and signing keys, publishes the verification key, and combines the fresh verification 

keys from all users to derive the shared verification key. Every user then uses her 

fresh signing key to generate her signature (share) on a message m (e.g., a transaction 

agreed among all users). The combination of all these signature shares results in a 

new signature on the message m verifiable under the shared verification key. 

A bit more formally, a distributed digital signature scheme consists of three 

protocols (SAccountCombine, SSign, Verify) defined as follows: 

SAccountCombinepvk1, . . . , vknq Ñ vks: The distributed key generation protocol takes 

as input a set of verification keys vk1, . . . , vkn and returns the combined public 

key vks. 

SSignpsk1, . . . , skn,mq Ñ σ: The distributed signing protocol takes as input a set of 

signing keys sk1, . . . , skn and returns a signature σ. 

Verifypvks, m, σq Ñ t0, 1u: The verification algorithm is defined as for the digital sig-

nature scheme. 
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We refer the reader to [61] for a detailed description of SAccountCombine and SSign 

as well as its security discussion. 

4.1.4 Shared Wallet 

A wallet vks can be shared among a set of n users so that only when all users agree, 

a transaction involving the shared wallet vks is performed. We use the distributed 

signature scheme described in the previous section to achieve this functionality. In a bit 

more detail, a shared wallet is created as follows. First, each user locally creates a fresh 

Ripple wallet (vki , sk
˚ ˚ 

i ), using AccountGen, that constitutes her share for the shared 
˚ 

˚ 

¨“ SAccountCombineptvki uq, 

i u denotes the set containing one verification key share vk for each user. 

¨ wallet vks. The shared wallet can be then calculated as vks 

where tvk˚ 
i 

Note that it is possible to construct only the verification key of a shared wallet but 

not the corresponding signing key. Instead, users can jointly create a signature σ on a 

message m verifiable by the shared wallet’s verification key vks. For that, the users 
˚jointly execute σ ¨̈“ SSignptsk 

share sk˚ 
i 

˚ 
i u,mq, where tski u is the set containing one signing key 

for each user, and m is the message to be signed. This protocol returns a 

signature σ. This signature can be then verified locally by every user by invoking 

Verifypvks, m, σq. 

4.2 Preliminaries 

In this section, we first present path mixing (Section 4.2.1), our approach to 

improve anonymity in credit networks. We then describe the communication model 

(Section 4.2.2), the security and privacy goals (Section 4.2.3), and the threat model 

(Section 4.2.4)). 
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4.2.1 Path Mixing 

Assume that each user has a pair of wallets, that we denote by input and output 

wallets. Furthermore, assume that users participating in the path mixing protocol 

have agreed beforehand on mixing β IOU. 

In this setting, a path mixing protocol aims to transfer β IOU from every input 

wallet to every output wallet so that an adversary controlling the network and some 

of the participating users cannot determine the pair of input and output wallets 

belonging to an honest user. We denote this as a successful path mixing. Otherwise, 

no IOU must be transferred from any input wallet and the path mixing is unsuccessful. 

Towards achieving that, the path mixing protocol must only require functionality 

already available in credit networks. 

4.2.2 Setup and Communication Model 

We assume that users communicate to each other through a bulletin board, e.g., a 

server that receives a message from a user and broadcasts it to the rest of users. We 

require that the protocol achieves anonymity even if the bulletin board is malicious 

and colludes with the attacker. We thus consider the bulletin board only as an 

efficient mean of communication. Additionally, we assume the bounded synchronous 

communication setting, where time is divided in fixed epochs: Messages broadcast by 

a user are available to all other users within the epoch and absence of a message from 

a user in an epoch indicates that the user is offline. 

This bulletin board can seamlessly be deployed in practice using already deployed 

Internet Relay Chat (IRC) servers with appropriate extensions (see [63] for details). 

The bulletin board can be alternatively implemented by a reliable broadcast proto-

col [64, 65] at an increased communication cost. 

We assume that users participating in the protocol have a verification/signing key 

pair (e.g., key pair for the input wallet). Moreover, we assume that each user knows 
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other users’ public verification keys and that all users have agreed on mixing a fixed 

amount β IOU prior to start executing the protocol. 

Finally, we assume that there is a bootstrapping mechanism in place for users 

to know other users willing to carry out the protocol. A malicious bootstrapping 

mechanism could hinder the anonymity of an honest user by peering him with other 

users under the attacker’s control. Although this is an important threat in practice, 

we consider it orthogonal to our work. Note that the fees needed to carry out the 

path mixing limit the number of mixings that the attacker can join. 

In practice, we envision that the bulletin board enabling the communication 

between users also offers a service for users to register. The users could be then 

grouped together to carry out the protocol following a transparent mechanism (e.g., 

based on public randomness). Nevertheless, since it is an orthogonal problem, any 

bootstrapping mechanism with the desired properties could be used in our work. 

4.2.3 Security and Privacy Goals 

In this chapter, we consider a subset of the security and privacy goals that we 

have established in Chapter 3. They are clearly a restricted version but still capture 

fundamental security and privacy properties of credit networks. Moreover, they open 

the possibility to have a protocol fully compatible with the current Ripple network. 

Unlinkability If the path mixing protocol is successful, it should not be possible 

for the attacker to determine which output wallet belongs to which honest user. 

Integrity No matter whether the path mixing protocol is successful, the total credit 

available to a user should not change (except for possible transaction fees). 

These security and privacy goals are in tune with those presented in Chapter 3 but 

with the limitations inherent to a path mixing approach. In particular, unlinkability is 

a weaker privacy notion than sender/receiver privacy: The set of possible sender and 

receivers for a given transaction is limited to the set of participants in one instance 
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of the path mixing protocol. The integrity property remains the same as presented 

in Chapter 3: As integrity deals with the total balance of honest users, a weaker notion 

directly leads to unacceptable credit loss by honest users. Finally, we do not consider 

serializability here as it is directly provided by the consensus protocol available in the 

underlying credit network. We do not consider value privacy either as it is at odds 

with an underlying public ledger that logs all the transactions and their values. 

4.2.4 Threat Model 

We assume that the attacker controls an arbitrary number f of users participating 

in the path mixing protocol. We further assume that the attacker also controls the 

bulletin board (and thus the network). The anonymity set of an honest user is the set 

of all honest users. Thus, in order to achieve any meaningful anonymity guarantee, 

we need that f ă n ´ 1. In other words, we do not consider the n ´ 1 attack [66] in 

this work. 

4.3 Solution Overview 

In this section, we first show a straw man approach for path mixing (Section 4.3.1) 

to illustrate the challenges we have to overcome. Then, we overview the two building 

blocks of our approach: atomic transactions in Ripple (Section 4.3.2) and the creation 

of a set of wallets anonymously (Section 4.3.3). 

4.3.1 A Straw Man Path Mixing Approach 

Path mixing can be achieved following a straw man approach as shown in Figure 4.1. 

Assume that all users participating in the path mixing trust a third-party server to 

carry out the required operations on their behalf. Further assume that the server is a 

gateway in the Ripple network and that there exists a path from every input wallet to 

the gateway’s wallet with a capacity of at least β IOU. 
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(a) Credit network before the transactions are (b) Credit network after carrying out the straw 
carried out in the straw man approach man path mixing 

Fig. 4.1. An illustrative example of the straw man approach for path 
mixing to mix 10 IOU among five users. Solid arrows depict credit links 
between two wallets. Single values on edges denote the current balance 
and no upper limit. Values a{b on the links denote: a current balance and 
b upper limit. After finishing the straw man protocol, user A can perform 
a settlement transaction for up to 10 IOU using vkout A and vkgw as the first 
hops in the transaction path. 

In this setting, first every user can send her output wallet to the gateway using 

an authenticated, private channel (e.g., TLS). An example of the protocol at this 

step is shown in Figure 4.1(a). Second, every user can transfer β IOU in the Ripple 

network from her input wallet to the gateway’s wallet. Finally, the gateway, working 

as a mixing proxy, creates a credit link from each output wallet to the gateway’s 

wallet with a credit upper limit of β IOU. In this manner, now every user can perform 

a transaction for up to β IOU using the gateway’s wallet as the first hop in the 

transaction path (see Figure 4.1(b)). 

For every user i, the gateway must create a credit link from the output wallet vkout i 

Ð vkoutto its own wallet of the form vkgw i i owes credit to vkgw) to ensure(i.e., vkout 

unlinkability against an attacker observing the communication and the Ripple ledger. 

To see that, assume for a moment that the gateway creates the credit link of the 

Ñ vkoutform vkgw i . Such operation must be confirmed with a signature by the user 
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i (see Section 4.1.1). Now, user i must submit the signed operation to the Ripple 

network. If a network attacker associates the signed message to the IP address of user 

i, he directly learns that vkout i belongs to user i. As the attacker also knows the input 

wallet belonging to user i, he trivially breaks the unlinkability property. 

In this straw man approach, the server is trusted for unlinkability and integrity 

properties. First, the server must be trusted not to reveal the pair of input and output 

wallets belonging to a user. Second, after receiving the credit from the users’ input 

wallets, the server is trusted not to steal it and instead create the credit link with the 

output wallets and set up the correct credit upper limit in each credit link. 

We overcome the aforementioned drawbacks by designing a decentralized path 

mixing protocol, where the users jointly transfer credit from their input wallets to 

their output wallets without requiring any third-party mixing proxy. For that, the 

decentralized path mixing protocol must provide the two main functionalities provided 

by the trusted server in the straw man approach: Atomic transactions and creating a 

set of output wallets in an anonymous manner. 

4.3.2 Atomic Transactions in Ripple 

Assume a generic setting with a set of n input wallets tvkin 
i u and a set of m output 

wallets tvkout u. Moreover, assume that instead of a fixed amount of credit β, each j 

input wallet must transfer βi 
in IOU and each output wallet must receive βj 

out IOU. 

Although the sets of input and output wallets might not be of the same size (i.e., n 

might not be equal to m), naturally the IOU to be transferred must be equal to the 
ř ř 

βin βoutIOU to be received (i.e., “ ). In such setting, PathShuffle, our novel i i j j 

protocol to enforce atomic transactions fully compatible with Ripple, must ensure that 
ř 

βineither all the i i IOU are transferred from input to output wallets or no IOU is 

transferred. 

Using a Shared Wallet It is possible to create a wallet shared among the users 

such that only when all users agree, a transaction involving the shared wallet is 



69 

vkin 
s 

vkin 
A 

vkin 
B 

vkin 
C 

vkin 
D 

vkin 
E 

vkgw 

vkout s 

vkout Z 

vkout Y 

20 

10 

30 

15 

5 

40 

25 

35 

20 

50 
0 

0{25 

0{55 

(a) Credit network after the set up of the shared wallets and the output wallets has been 
carried out 

vkin 
s 

vkin 
A 

vkin 
B 

vkin 
C 

vkin 
D 

vkin 
E 

vkgw 

vkout s 

vkout Z 

vkout Y 

0 

0 

0 

0 

0 

20 

15 

5 

5 

45 

80 

0{25 

0{55 

(b) Credit network after PathShuffle has been carried out without any disruptive user 

Fig. 4.2. An illustrative example of an atomic transaction. The input 
wallets vkin 

A , vk
in 
B , vk

in 
C , vkD 

in and vkin 
E transfer 20, 10, 30, 15 and 5 IOU 

and vkoutcorrespondingly. The output wallets vkout Y Z receive 55 and 25 IOU, 
respectively. Solid arrows depict credit links between two wallets. Single 
values on edges denote the current balance and no upper limit. Values a{b 
on the links denote: a current balance and b upper limit. After a successful 
execution of PathShuffle, it is possible to perform a settlement transaction 
from the output wallets (e.g., from vkout Y for up to 55 IOU using vkout s , and 
vkgw as the first hops in the transaction path). 
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performed. This effectively allows to add one synchronization round: Each user i first 
ř 

βintransfers βin IOU to a shared wallet and only when IOU are collected, they i i i 

are sent to the output wallets. This, however, does not solve the fairness problem 

either. Once all the IOU are collected in the shared wallet, a (malicious) user could 

collaborate with the rest to create and sign a transaction to one of the output wallets 

and then disconnect. In this manner, the IOU to be transferred to the rest of output 

wallets are locked in the shared wallet. 

Solution: Two Shared Wallets The idea underlying our approach for an atomic 

transaction is to use two synchronization rounds via two shared wallets (say vkin 
s and 

vkout ).s 

An example is depicted in Figure 4.2: Five users with input wallets tvkin 
A , vk

in 
B , vkC 

in , 

vkin 
D , vk

in 
E u would like to transfer t20, 10, 30, 15, 5u IOU into two output wallets tvkout Y , 

vkout Z u. These two output wallets must receive t55, 25u IOU. To achieve that, in the 

first round users jointly create a credit link from each input wallet (vkin 
i ) to vk

in 
s with 

βin ris IOU on them. Moreover, users jointly create a credit link from each of the output 

) to vkoutwallets (vkout j s with no IOU on them but an upper limit of βj 
out . At this point, 

credit at each vkout j cannot be issued as part of a settlement transaction because vkout s 

does not have incoming credit yet (see Figure 4.2(a)). The second synchronization 

round can be then used to overcome that. All users jointly create a transaction from 
ř 

vkin to vkout βin 
s s for a value of i i IOU. Then, vks 

out gets enough credit that can be 

used by each of the output wallets vkout j (see Figure 4.2(b)). 

4.3.3 Creating the Set of Output Wallets Anonymously 

The possibility of performing atomic transactions on its own does not provide a 

complete path-mixing solution. Assume an atomic transaction from n input wallets to 

n output wallets, where each wallet transfers a fixed amount of IOU β. Even then, a 

naive path mixing where each user publishes her output wallet in a manner that can 

be linked to her identity, clearly violates unlinkability in the presence of a network 
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attacker. In order to overcome this challenge, users need to jointly come up with a set 

of their output wallets such that the owner of a given output wallet is not leaked to 

the rest of users. 

4.4 Protocol Details 

In this section, we describe the details of PathShuffle, our novel protocol for atomic, 

anonymous transactions in credit networks (Section 4.4.1). Additionally, we describe 

possible extensions and applications (Section 4.4.2). We analyze the security and 

privacy guarantees of PathShuffle (Section 4.4.3). Finally, we evaluate the performance 

of PathShuffle (Section 4.4.4). 

4.4.1 Protocol Description 

The PathShuffle protocol works as described below. We first describe our assump-

tions and then we detail each phase of the protocol. We depict a sample execution for 

PathShuffle in Figure 4.3. Finally, a detailed pseudocode for the protocol is presented 

in Algorithm 1. 

Assumptions We assume that the users have agreed on β, the amount of IOU (in 

some currency) to be mixed in the path mixing (i.e., @iβ
in “ β). We further assumei 

that the users have agreed on a common wallet (i.e., vkgw) and that each user has 

a credit link vkin 
i Ð vkgw with at least β IOU. Moreover, we assume that there is 

only one IOU currency (e.g., USD) over the credit links in the Ripple network, as 

otherwise unlinkability can be trivially broken: Input and output wallets using a 

distinct currency belong to the same user. 

In multiple steps of the protocol, each user will submit to the Ripple network a 

copy of the same correctly signed transaction. This does not have negative security 

implications: The transaction is only applied once to the Ripple network since every 

transaction contains a sequence number to avoid replay attacks. 
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Fig. 4.3. An illustrative example of PathShuffle to mix 10 IOU among five 
users. Solid arrows depict credit links between two wallets. Single values 
on edges denote the current balance and no upper limit. Values a{b on 
the links denote: a current balance and b upper limit. After a successful 
path mixing, user A can perform a settlement transaction for up to 10 
IOU using vkout s and vkgw as first hops in the transaction path. 
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Algorithm 1 PathShuffle protocol. 

pskin , vkin q: User i input wallet’s keys i i 

pskout , vkout q: User i output wallet’s keys 
Input : i i 

β, sid: Agreed amount of IOU to mix and session identifier 

vkgw: Agreed gateway wallet 

1: {Exchange output wallets anonymously}
tvkout2: Πpiqu ¨̈“ Shuffleptvkout i uq

3: {Create shares for shared wallets and broadcast them}
4: for i P t1, . . . , nu do 

5: pvk˚in , sk˚in q ¨̈“ AccountGenpqi i 
6: pvk˚out , sk˚out q ¨̈“ AccountGenpqi i 
7: broadcast pvk˚in , vk˚out , Signpskin , pvk˚in , vk˚out , sidqqqi i i i i 
8: end for 
9: {Create shared wallets }
10: vkin ¨̈“ SAccountCombineptvk˚in uqs i 

vkout11: s ¨̈“ SAccountCombineptvk˚out uqi 
Ñ vkin12: {Create credit links vkin and fund them}i s 

13: for i P t1, . . . , nu do 

14: LINKin ¨̈“ CreateLinkpvkin , vkin , 8qi i s 
σin in15: ¨̈“ SSignptsk˚in u, LINK qi i i 

in16: ApplypLINK , σin qi i 
17: LINKi 

1in 
¨̈“ ChangeLinkpvkin , vks 

in , βqi
1in 1in18: σ ¨̈“ Signpskin , LINK qi i i

1in 1in19: ApplypLINK , σ qi i 
20: end for 
21: {Verify credit link vkin Ñ for every user }i 
22: for i P t1, . . . , nu do 

23: v ¨̈“ testLinkpvkin , vkin qi s 
24: if v “ K_ v ă β then abort end if 
25: end for 
26: {Create credit links vkout Ñ vkout }i s 
27: for i P t1, . . . , nu do 

28: LINKout ¨̈“ CreateLinkpvkout , vkout , βqi i s 
σout out29: ¨̈“ SSignptsk˚out u, LINK qi i i 

out30: ApplypLINK , σout qi i 
31: end for 

Ñ vkout32: {Create credit link vkgw }s 
33: LINKgw ¨̈“ CreateLinkpvkgw, vkout , 8qs 
34: σgw ¨̈“ SSignptski 

˚out u, LINKgwq

35: ApplypLINKgw, σgwq
36: {Final settlement transaction}
37: tx ¨̈“ CreateTxpvks 

in , vkout , β ¨ nqs 
38: σtx ¨̈“ SSignptsk˚in u, txqi 
39: Applyptx, σtxq 
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Phase 0: Exchange Output Wallets Anonymously Several P2P mixing pro-

tocols proposed in the literature implement a permutation that ensures that output 

messages (i.e., wallets in this case) cannot be linked to their owners, as required in 

our decentralized path mixing protocol. Among them, we decide to use DiceMix [63] 

due to its efficiency, but in principle we could have used any P2P mixing protocol. 

Given that PathShuffle is parametric to the P2P mixing protocol, we omit its details 

here and refer the reader to [63] for a detailed description. In the rest, we denote a 

P2P mixing protocol by Shuffle. 

Phase 1: Create and Connect Input Shared Wallet The users jointly create 

a shared input wallet, that we denote by vkin 
s . We require that only transactions 

starting at vkin 
s can be performed. For that, the rippling option (see Section 2.2) must 

be disabled at each credit link with vkin 
s wallet. 

Then, users jointly create a credit link from each input wallet vkin 
i to vk

in 
s . Such 

credit links are then signed by all users using their signing key shares for the input 

shared wallet. If a user generates a wrong partial signature, the honest users consider 

her to be malicious. Otherwise, these credit links along with their signatures are 

submitted to the Ripple network. 

Additionally, each user i locally creates and signs a transaction that issues βi 
in 

credit to the recently created link vkin 
i Ñ vkin 

s . Such signature is then broadcast to 

every other user in the protocol, what allows them to apply the funding transactions 

in the Ripple network. If some user refuses to fund such a credit link, the honest users 

consider her to be malicious. 

Phase 2: Create and Connect Output Shared Wallet The shared output 

wallet vkout s is created in the same manner as the shared input wallet vks 
in . However, 

transactions that use vkout s as intermediate hop must be allowed in this case and for 

that, the rippling option must be enabled for the credit links of vkout s . Then, for each 

to vkoutoutput wallet j, users jointly create a credit link from each vkout j s with an 
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Ñ vkout upper limit of βj 
out . Moreover, the users jointly create a link vkgw with no IOUs 

on it. These links will later allow to transfer up to βj 
out IOU from the wallet vkout j . 

The details of creating the links and verifying the corresponding signatures are 

similar to the previous case involving the input shared wallet. As before, users ensure 

that only links from known output wallets are created. If during this phase some user 

generates an invalid signature, the honest users consider her to be malicious. 

Phase 3: Final Transaction sAt this point, the vkout wallet does not have any 

incoming credit and thus no transaction from an output wallet through vkout s can be 

performed yet. To solve this situation, the users jointly create a settlement transaction 
ř 

βout to vkouttransferring j j IOU from vkin 
s s . This settlement transaction is possible 

using the n available paths through each of the users’ input wallets. If some user does 

not sign such transaction, the honest users consider her to be malicious. 

to vkoutInterestingly, this settlement transaction makes credit to flow from vkin 
s s so 

ř 
and vkout βoutthat the credit link between vkgw has now IOU. This fact enabless j j 

now settlement transactions from each output wallet to the rest of the credit network. 

4.4.2 Extensions and Applications 

Other Credit Networks We have focused the description of PathShuffle to the 

Ripple network since it is currently the most widely deployed credit network. Never-

theless, the same protocol can be used to achieve atomic transactions in other credit 

networks provided that they offer all the functionality required by PathShuffle. For 

instance, PathShuffle can be also deployed in the Stellar network. The Stellar network 

provides functionality to create links, set their upper limit and perform path-based 

transactions [67]. Moreover, Stellar implements a mechanism to enable and disable the 

rippling option as in Ripple [68]. Finally, Stellar supports the same digital signature 

schemes as Ripple and thus shared wallets can also be implemented in Stellar. 
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Crowdfunding Application We use atomic transactions as a building block to 

achieve anonymous transactions. Nevertheless, we note that atomic transactions 

become of interest on its own for other scenarios. For example, they can enable a 

crowdfunding transaction in a credit network. Interestingly, the example depicted 

in Figure 4.2 is indeed a crowdfunding transaction where the five input wallets are used 

to fund the two output wallets. PathShuffle ensures that either every user participating 

in the crowdfunding transfers the expected amount of IOU into the crowdfunding 

wallets (e.g., vkout Y and vkout Z ) or none of the users transfers any IOU. 

4.4.3 Security and Privacy Analysis 

In this section, we argue why PathShuffle achieves the security and privacy goals of 

interest. We refer the reader to [61] for a more detailed security and privacy analysis. 

Correctness The final transaction ensures that exactly β are transferred through 

the input wallet of the user i (i.e., vkin 
i ). Moreover, the upper limit on the links from 

each output wallet to vkout ensures that wallet vkout has only access to vkout IOU. This s j j 

demonstrates the correctness of PathShuffle. 

Atomicity A path mixing protocol is atomic if either β IOU are transferred from 

input wallets to output wallets or no IOU is transferred. 

In the following, we argue that PathShuffle achieves atomicity. In order to see 

that, we make the following observations. First, the creation and set up of the shared 

wallets do not involve the credit to be transferred. Second, the deactivation of rippling 

option on vkin 
s credit links ensures that only settlement transactions starting at vkin 

s are 

accepted by the Ripple network. This prevents a malicious user from stealing honest 

user’s credit using vkin 
s as intermediate wallet, e.g., by means of a settlement transaction 

vkinwith path: vkmalicious – s – vkhonest – vkgw – vkmalicious. (Circular transactions are 

accepted and used in the Ripple network. For example, a transaction of the form vki – 
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vkgw1 
– . . . – vkgw2 

– vki, where . . . denotes an arbitrary set of wallets, can be used by 

user i to exchange IOU from gateway 1 to gateway 2.) 

to vkoutThird, the settlement transaction from vkin 
s s sends all the credit at once. 

Thus, either all users contribute the expected credit for the transaction or none of 

them do. Moreover, this transaction is created and submitted to the Ripple network 

only if there is a link from each output wallet to vkout s with the expected credit upper 

limit. In this manner, it is ensured that credit in the output wallets can be used later 

to perform a transaction to any other wallet in the credit network. 

to vkoutNote that the settlement transaction from vkin 
s s is the last step of the 

protocol. Thus, whenever the current run of the protocol is disrupted by a malicious 

user, the credit on the links between the tvkin 
i u and vkgw is not used and can be reused 

in another invocation of PathShuffle. Finally, the links between tvkin 
i u and vkin 

s might 

stay funded after disruption is detected. However, this credit is created only for the 

purpose of running the protocol and it does not have value outside of it. 

Unlinkability PathShuffle relies on a secure P2P mixing protocol to construct the 

list of output wallets and this building block ensures that the output wallets are 

published without leaking the relation between a single output wallet and its owner. 

Moreover, a look at the pseudocode for the rest of the PathShuffle protocol shows 

that operations on PathShuffle are totally independent on who is the owner of each 

output wallet: Each input wallet transfers β IOU and each output wallet receives β 

IOU. Therefore, PathShuffle does not leak the owner of any output wallet. This shows 

that PathShuffle achieves unlinkability. 

Integrity The underlying P2P mixing protocol does not perform any operation 

involving the credit of the users. Moreover, the underlying P2P mixing protocol 

ensures for each user that the rest of the P2P mixing protocol is only called if the list 

of output wallets contains her own output wallet. Thus if the PathShuffle succeeds, 

the same amount β of IOU that is taken from her input wallet is transferred to her 
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output wallet. If PathShuffle fails, no IOU is transferred at all. This shows that 

PathShuffle achieves integrity. 

4.4.4 Performance Analysis 

In PathShuffle, we use the DiceMix protocol as defined in the original paper [63] 

as the underlying P2P mixing protocol. Thus, in this section we restrict our analysis 

to the additional operations required by PathShuffle and the performance analysis for 

the core of DiceMix described in [63] carries over in our work. 

Implementation We have implemented PathShuffle in JavaScript by modifying 

the current Ripple code [69]. In particular, we have implemented the shared wallet 

management by modifying the elliptic library, an implementation of the EdDSA digital 

signature scheme supported in Ripple. Moreover, we have used the API provided by 

the ripple-lib library [70] to implement the submission of transactions to the Ripple 

network. Our source code is publicly available [71] under the MIT license. 

Implementation-level Optimizations For readability, we have specified Algo-

rithm 1 in sequential steps. However, several of these steps can be carried out in 

parallel, improving thereby the overall performance of the PathShuffle protocol. First, 

and vkoutboth shared wallets vkin 
s s can be created in parallel. Second, the creation 

of links between vkin 
s and input wallets and the creation of links between vkout s and 

output wallets are independent operations and can be fully parallelized. Thus, it 

is possible to perform a single SSignp. . . q invocation to jointly sign the create link 

transactions for all of these links. 

Additional optimizations are possible to reduce the number of communication 

rounds. In particular, the SSignp. . . q procedure requires two broadcast rounds (see Sec-

tion 4.1.3): One round to broadcast the randomness chosen by each user, and a second 

round to broadcast the signature share from each user. As the randomness is chosen 

independently of the message to be signed, this broadcast can be integrated with a 
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previous communication round in the protocol. In this manner, a call to SSignp. . . q 

costs only one extra communication round. 

Communication Overhead A protocol based on DiceMix needs pc ̀  3q` pc ̀  1qf 

communications rounds, where c is number of communication rounds required by 

Confirmp. . . q and f is the number of disrupting users. 

In our case c “ 2, so PathShuffle needs 5`3f communication rounds. As mentioned 

above, broadcast of random elements (e.g., shares for vkin 
s and vkout s and randomness for 

each of the invocations of SSignp. . . q) can be carried out before PathShuffle is invoked. 

Then, one communication round is required for each of the two times SSignp. . . q is 

Ñ vkoutinvoked: First to jointly sign the creation of the links vkin 
i Ñ vkin 

s , vkgw s , and 

vkout Ñ vkout ; and second to jointly sign the final transaction that transfers IOU fromj s 

to vkoutvkin 
s s . Note that, as the credit links created in PathShuffle are deterministically 

defined from the input of the protocol, the signatures on the funding transactions for 

the links VKin ris Ñ vkin can be broadcast the first time SSignp. . . q is invoked. s 

Computation Overhead In this evaluation, we measure the computation time 

required by each user on a computer with an Intel i7, 3.1 GHz processor and 16 

GB RAM. Given the aforementioned implementation-level optimizations, we have 

studied the running time for a single run of SAccountCombinep. . .q and SSignp. . .q 

algorithms. This thus simulates the creation of a single shared wallet and the signature 

of a transaction involving a shared wallet. We have observed that even with 50 

participants, SAccountCombinep. . .q takes 537 ̆  66.8 milliseconds and SSignp. . .q takes 

45 ˘ 3.57 milliseconds using our unoptimized implementation. It is important to note 

that it takes approximately 5 seconds for a transaction to be applied into the current 

Ripple network [36]. Thus, the overall running time of PathShuffle even considering 

the computation time required for DiceMix is mandated by the time necessary for the 

Apply operations at each communication round of PathShuffle. 
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Running Time We observe that each communication round in the confirmation 

algorithm requires to submit (possibly several parallel) transactions to the Ripple 

network. It takes approximately 5 seconds for a transaction to be applied to the 

current Ripple network. Therefore, we expect that this mandates the time per 

communication round. Altogether, we expect the protocol to run in under 20 s with 

a reasonable number of 50 non-disruptive users: Confirmation takes 2 ¨ 5 s and the 

required functionality from DiceMix needs about 8 s to complete [63]. 

Scalability The time to execute DiceMix is dominated by its communication cost, 

as it requires each user to send n ¨ |m| bits, where n is the number of users and 

|m| is the number of bits of the mixed message (e.g., a Ripple wallet in our case). 

Nevertheless, it has been shown that DiceMix can scale up to a moderate number of 

users (e.g., 50 users) [63]. 

In PathShuffle, the execution time is dominated by the Applyp. . .q operations. 

Although PathShuffle requires a number of credit links linear in the number of users, 

their corresponding operations can be parallelized so that only 5 seconds are needed per 

synchronization round. Overall, given the synchronization required for the broadcasts 

in DiceMix and the interaction with the Ripple network in PathShuffle, we expect 

that PathShuffle provides anonymity guarantees to moderate size groups of users. 

Compatibility We have simulated a run of PathShuffle without disruption in the 

currently deployed Ripple network. In particular, we have successfully recreated the 

scenario depicted in Figure 4.3. As a proof-of-concept, users are simulated by our 

JavaScript implementation in a single machine. The mixed IOU are denominated in 

PSH, a user-defined currency created for the purpose of this experiment. We describe 

the details in the original paper [61]. 
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4.5 Anonymity Protocols for Bitcoin 

In the realm of Bitcoin and other cryptocurrencies, several solutions have been 

proposed to achieve anonymous payments [46,63,72–84]. These solutions are tailored to 

the specifics of blockchain-based cryptocurrencies. Given the fundamental differences 

between credit networks and cryptocurrencies, it remains an interesting future work to 

study whether it is feasible to adapt the underlying ideas of these solutions to credit 

networks. 

For example, it is conceivable that simple centralized mixing protocols such as 

Mixcoin [75] and Blindcoin [77], which do not rely on smart contracts, can be adapted 

to Ripple with non-trivial modifications. In these solutions, the mixing server can 

steal coins from the users, although such theft is accountable. In this work, instead, 

we instead strive for a solution where no theft is possible in the first place. All existing 

theft-resistant mixing protocols for cryptocurrencies either rely on multi-input-multi-

output transactions or on script-based smart contracts, none of which are supported in 

credit networks such as Ripple. Therefore, none of the privacy-enhancing technologies 

proposed for cryptocurrencies are directly applicable to path-based transactions in 

the Ripple network. 
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5 DECENTRALIZED CREDIT NETWORKS 

As we described in Section 2.3, the Ripple ledger maintains a log of every credit link 

between the wallets in the credit network and all the transactions settled between the 

wallets, what becomes the key source of several privacy issues. In this state of affairs, 

the following question naturally arises: Is it possible to build a credit network without 

a ledger? 

We observe that the net credit balance of a user in a credit network (i.e., difference 

between the credit that the user is owed and the credit the user owes to others) is 

fully determined by her own credit links. Therefore, a user can ensure that she does 

not incur in credit loss solely checking that her net balance does not change without 

her being a sender or receiver of a transaction. 

The illustrative example depicted in Figure 5.1 shows the net balances for each 

user before and after the transaction from Fabi to Bob for a credit value of 8 IOU 

(with no fees for clarity of explanation). Although inflow and outflow values change 

for all transaction participants, intermediate users Carol and Edward maintain their 

net balance intact. The net balance only changes for the sender Fabi (it is reduced by 

8 IOU) and the receiver Bob (it is increased by 8 IOU). 

We build upon the aforementioned observation to create a decentralized credit 

network where users locally store their own credit links. In the example depicted 

in Figure 5.1, Alice locally stores the credit value on her link with Carol. Similarly, 

Carol locally stores the credit on her links with Alice, Bob and Edward. The rest of 

users locally store their credit links in a similar manner. 

In such setting, where a complete ledger is no longer available, several challenges 

arise. How to calculate the path between sender and receiver of a transaction? How 
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Fig. 5.1. Illustrative example of net balance conservation. Fanny performs 
a settlement transaction with Bob for a credit value of 8 IOU. Although 
inflow and outflow change, net balance is maintained for intermediate users 
(e.g., Carol and Edison). Values crossed in red denoted stale values due to 
the settlement transaction. 

to calculate the credit available between two users to perform a transaction? How to 

perform a transaction involving several users? And finally, how to carry out all the 

previous operations while preserving privacy? 

We answer these questions in SilentWhispers [59], an architecture to enforce 

security and privacy in decentralized credit networks. In such settings, a transaction 

is jointly executed by all the users involved in such transaction, who contribute their 

locally stored credit links in a privacy-preserving manner. In this manner, assuming 

that participating users are online, SilentWhispers ensures that privacy properties of 

interest, such as transaction value privacy, sender and receiver privacy as well as link 

privacy, are preserved. 
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5.1 Cryptographic Background and Notation 

We start with an intuitive description of the cryptographic primitives that we have 

deployed in SilentWhispers. We describe here only the additional primitives that were 

not shown in Section 4.1. 

5.1.1 Secret Sharing 

A secret sharing scheme [85] allows a dealer to distribute shares of a secret among 

different parties such that any arbitrary subset of shares above the threshold allows a 

receiver to fully reconstruct the secret. We refer to such a sharing mechanism as a 

pt, Nq-threshold secret sharing scheme. A bit more formally, a secret sharing scheme 

T consists of two algorithms (Share, Reconstruct) defined as follows: 

Sharepsq Ñ rs1, . . . , sN s: The share creation algorithm takes as input the secret s and 

returns a set of N shares rrs1, . . . , sN s. 

Reconstructprrs1, . . . , stssq Ñ s: The secret reconstruction algorithm takes as input t 

shares of a secret s and returns the secret s itself. 

Security of a Secret Sharing Scheme Given a fixed number of parties N , it 

should be infeasible for anybody in possession of any subset of less than t shares of a 

secret s, to reconstruct the secret s itself. 

5.1.2 Distributed Minimum Computation 

A secret sharing scheme as presented above can be leveraged to perform multiparty 

computations. In a multiparty computation protocol, each user i has an input xi and 

a function to be computed fpq. The goal of a multiparty computation protocol is to 

let a set of N users to compute y :“ fpx1, . . . , xN q without them learning anything 

about the input from any other user other than what is trivially revealed by y. 
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In SilentWhispers, we require a multiparty computation where the function f 

is defined as the minimum among all the input values. On input secret shares of 

values x1, . . . , xn shared using scheme T among a set of computing parties, we use a 

multi-party computation protocol minpq that results in each party having a share of the 

minimum of those values. We employ a distributed integer comparison protocol [86] 

for this distributed computation. 

5.1.3 Notation for Protocol Description 

We use the following termonology to describe our protocols. 

ppu, iq Parent of node u in the pathi 

cpu, iq Child of node u in the pathi 

vu1,u2 Credit value on link u1 Ñ u2 

stu1,u2 Last value on u1 Ñ u2 agreed by u1, u2 

mris Element at position i in array m 

vki u Fresh verification key of user u in pathi 

max Maximum path length (system parameter) 

ts Current timestamp 

5.2 Preliminaries 

In this section, we describe how to adapt the Ripple Network to fit our description 

of credit network. Moreover, we review the setup and communication model. Here, we 

consider the threat model as described in Chapter 3 and aim to achieve the security 

and privacy goals described in Chapter 3. 
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5.2.1 Adapting the Ripple Network 

In this chapter, we consider a credit network as described in Chapter 3. In 

particular, for ease of exposition, we consider a transformation of the credit network 

to denote how much IOU can be transferred between wallets instead of how much IOU 

one wallet owes to its counterparty, as described by Dandekar et al. [87]. For example, 

a credit link of the form u1 Ñ u2 with balance α and limit β, is now represented as 

two credit links: one credit link u1 Ñ u2 with weight β ´ α, and a second link u1 Ð u2 

with weight α. 

In this alternative way of representing the credit network, a payment operation 

works slightly different. A payment for a value v requires to reduce v in each credit 

link from the sender to the receiver and to increase v in each link from the receiver to 

the sender. One advantage of this representation is to calculate the credit available in 

a path: It simply consists on calculating the minimum weight in the credit links from 

the sender to the receiver. 

5.2.2 Setup and Communication Model 

Throughout this chapter, we assume that the set of landmarks is fixed at the 

beginning of each epoch and that it is known to all users. Any changes to the set 

become effective in the next epoch. This is crucial as this allows users to know the 

root of all Breadth-First Search trees in advance (and therefore the number of possible 

paths) during the routing operation, and to securely communicate with them. In 

practice, one can maintain the set of landmarks in a public and authenticated log 

(e.g., as Tor directory authorities listing). 

We assume that the communication between two honest users is not observable by 

the attacker. This is a stronger requirement than the presence of a secure channel, 

since, in addition to hiding the messages exchanged by the two clients, we want 

to hide the fact that communication happened in the first place. If the adversary 

observes whether two honest users communicate, it is not possible to enforce any 
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meaningful notion of sender/receiver privacy. We note that, in practice, this condition 

can be enforced by having the two users deploying some anonymous communication 

channel (e.g., Tor [57]). Moreover, we require all of the involved users to be online 

during a given transaction for the execution of the algorithms. We discuss later in the 

extensions of SilentWhispers how to relax this condition. 

5.3 Solution Overview 

As a warm up, we propose a näıve solution to build a secure, privacy-preserving 

decentralized credit network and discuss its flows. We then overview our approach 

towards our constructions in SilentWhispers. We divide our exposition in the two main 

functionality blocks that compose a credit network: Routing and graph management. 

5.3.1 Routing 

A common, prominent challenge in a credit network is to determine credit routes 

between the senderand the receiver. Ghosh et al. [1] have shown that the problem of 

maximizing the possible transactions (which they term as social welfare) in a credit 

network is NP-hard. Existing credit networks instead consider one transaction at a 

time and employ the maximum flow approach [88] to check the available credit among 

all possible paths between sender and receiver. However, the most efficient known 

max-flow algorithms run in OpV 3q [89] or OpV 2logpEqq [90] time. For this reason, 

recent work explored the possibility to efficiently calculate only a subset of all possible 

paths between senderand receiver, thereby underestimating the available credit. The 

idea of this algorithm, called landmark routing [91], is to calculate a path between 

senderand receiverthrough an intermediary node called a landmark. As demonstrated 

by Viswanath et al. in the Canal credit network [92], landmark routing performs much 

better in large networks than the max-flow approach, with an accuracy loss of only 

5%. Canal is split into two processes: 
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1. Universe creator: This process has access to the plain network graph along 

with all links’ weights. It randomly selects a small subset of nodes denoted 

as landmarks. For every landmark, it calculates the shortest path from the 

landmark to every other node in the graph using a breadth-first search (BFS) 

algorithm, resulting in a BFS tree. The resulting set of BFS trees is stored in 

the so-called landmark universe. 

2. Path stitcher: For a request to pay β credits from a sendernode to a re-

ceivernode, the path stitcher reads the landmark universe looking for paths with 

available credit between senderand receiver. When the process finds a set of 

paths with a total of at least β available credits, it carries out the transaction 

by decreasing the credit of the corresponding links and returning a successful 

result. If the process instead reaches the end of the landmark universe without 

success, the graph is kept unchanged and it returns an unsuccessful result. 

Routing information must be repeatedly recalculated to account for the dynamic 

nature of credit networks: credit links among users are continuously updated, created, 

and deleted as a result of carrying out the transactions. Under the assumption 

that users are loosely synchronized, we divide the time in well-known epochs: BFS 

arborescences and anti-arborescences are created at the beginning of each epoch and 

users utilize that routing information throughout the duration of the epoch. 

We assume that the set of landmarks is fixed and known to all users and that 

the credit network is a connected graph. Then, the correctness of BFS ascertains 

that each user receives routing information from all her neighbors for each landmark. 

This ensures that no honest user is alienated by a malicious neighbor; the absence of 

BFS related communication from a neighbor for any landmark serves as a detection 

mechanism of misbehavior so that further actions (e.g., removing the link with the 

misbehaving neighbor) can be adopted. 
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5.3.2 Graph Management 

The central technical challenge in the design of a credit network is the computation 

of the credit available in a certain path, which is necessary for performing a transaction. 

A first, trivial solution would be to let every user in the path privately communicate 

her own link’s value to the corresponding landmark so that the landmark can thereby 

compute the minimum value over the path and notify the intended recipients. It 

is easy to see, however, that this approach fails to guarantee privacy against an 

honest-but-curious landmark as the landmark would learn the credit associated with 

each link. 

A local approach, where the credit on the path gets computed step-by-step by each 

user in the path, does not solve the privacy problem either. For instance, suppose 

that each user sends to the next user in the path the lower value between the one of 

its own link and the one received from the previous user: It is easy to see that such a 

protocol leaks all the intermediate values. 

The idea underlying our approach is to design a secure Multi-Party Computation 

(SMPC) protocol to compute the credit available on a path. In order to boost the 

efficiency of our construction, we let landmarks play the role of computation parties, 

each receiving a share of the credit on each link from the sender to the receiver. 

Landmarks can jointly compute the credit on the whole path, intuitively by computing 

a series of minimum functions, but without learning anything about the result of the 

computation, nor of course the credit on the links. 

An illustrative example is shown in Figure 5.2. First, every user in the payment 

path from the sender (Alice) to the receiver (Dave), creates a share of the link’s value 

for each of the landmarks. After receiving all shares, landmarks locally compute the 

“minimum” function over the shares, thereby obtaining a share of the result that is 

then sent to the sender. Finally, the sender reconstructs the result and carries out the 

payment. 
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Dave

Fig. 5.2. An illustrative example of the use of SMPC in SilentWhispers: 
Dashed lines show communication between parties and solid arrows repre-
sent credit links, while notation ras indicates a (secret sharing) share of 
value a. We consider a payment from Alice to Dave. First, every user in 
the path sends a share of her link value to each landmark. Then, landmarks 
locally compute the share of the minimum credit on the path and send it 
to the sender. Transfer of the share from the landmark in the middle to 
the sender has been omitted for readability. 

This approach, however, leaves two important concerns unanswered. First, how to 

assure that the shares come from users forming a path from the sender to the receiver 

without compromising their privacy (e.g., revealing the links); and second, how to 

enforce the correctness of the updates of links caused by the transaction without using 

a public ledger. 

We ensure that all shares come from users in a path from the sender to the receiver 

by resorting to a chain of signatures. Näıvely, we could assume that every user uses a 

long-term key pair to sign the verification key from her predecessor and her successor 

in a given path. This would result in a unique signature chain serving as a valid proof 

of the existence of a path from sender to receiver. 
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Fig. 5.3. Illustrative example of path construction in SilentWhispers. Every 
user i has a pair (sk˚ 

i , vk
˚ 
i ) of signing and verification keys. Every user in 

the path privately exchanges the fresh verification key to both neighbors. 
Then, each user publishes a signed tuple containing the fresh verification 
keys of the neighbors and his/her own. A path is correct if contiguous 
verification keys in the path are equal. 

However, the exposure of the same long term keys across different transactions 

would allow for correlation attacks and ultimately compromise user privacy. Using 

fresh keys per transaction to overcome this issue does not entirely solve the problem 

either: since fresh keys are not bound to a user, an adversary can always impersonate 

an honest user with her own keys. 

Our idea, instead, is to combine long term and fresh keys. First, a user signs a 

fresh verification key with her long term signing key so that they are bound together. 

The (sensitive) long term verification key is revealed only to the counterparty in a 

credit link so that the relation between a fresh verification key and a user is verifiable 

to the counterparty but remains hidden for the rest of users in the credit network. 

Second, a user can use her fresh signing key to sign the fresh verification key of the 

predecessor and successor in any given path, thereby creating a signature chain. A 

pictorial description of the approach is reported in Figure 5.3. 
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5.4 Protocol Specifications 

In this section, we first describe the SilentWhispers protocol and then discuss on 

possible extensions to cope with offline users or malicious landmarks among others 

aspects. Finally, we analyze the security, privacy and performance of our proposed 

protocol. 

5.4.1 Protocol Description 

In the following we describe the routines of SilentWhispers. 

Routing Users have access to a synchronous network through FNET. Every pair of 

users sharing a credit link communicate through a secure and authenticated channel, 

described by FSMT. Secure realizations of FNET and FSMT have been proposed in [60]. 

Finally, users have access to the routing protocol described in FROUT: this functionality 

is executed periodically at epochs (e.g., according to some system parameter) so that 

frequent changes in the inherently dynamic topology of credit networks are taken into 

account for subsequent transactions. 

Setup Link The credit link updates are handled as defined in the link setup proto-

col (Algorithm 2). This protocol allows two users sharing a credit link to agree on the 

link’s value at the beginning of each routing epoch. This is later used as a reference for 

subsequent updates within the epoch. For that, each user signs the other’s long-term 

verification key and the current credit with her own long-term signing key. 
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Algorithm 2 Link setup protocol. 

u1, u2: Nodes creating a shared link 

v: Value of the link u1 Ñ u2 
Input : 

psk˚ 
ui 
, vk˚ 

ui 
q: User i long term keys 

epoch: Current epoch 

¨ ¨“ Signpsk 
¨ ¨“ Signpsk 

2 , psettled||vk 
:“ psettled||vk 

˚ 

˚

˚ 

˚ 
2 

˚

˚ 

˚ 
1 

˚ 
21 , psettled||vk 

2 , psettled||vk 
||vk1 2 

˚ 

˚ 

˚ 

||vk ||v||epochqq to u2 

||v||epochqq to u1 

1: u1 sends σ1 

2: u2 sends σ2 
˚ ˚||vk1 2 

if then3: u1 stores 
||vk1 2 
˚ 

||v||epochq, σ2q
||v||epochqq˚ 

Verifypvk 
pσ1, σ2, stvk 

if 
˚ 
1 ,vk 

||vk1 2 
˚ 

then4: u2 stores1 , psettled||vk 
:“ psettled||vk˚ 

2
||vk
||v||epochq, σ1q

||v||epochqq˚ 
Verifypvk 

pσ1, σ2, stvk˚ 
1 1 2,vk 

Payment For easing the presentation, we have made two simplifications. First, 

we assume the set of paths tpath1, . . . , pathLMu as input of the transaction protocol, 

although in reality every user notifies her parent on the path that she is part of a 

transaction path and she needs to carry out the corresponding operations. Second, 

at certain steps of the protocol we write that users submit messages directly to the 

corresponding landmark (e.g., line 10) to mean that such messages are sent to the 

landmark by forwarding it among neighbors in the path. The creator of such message 

encrypts it under the public key of the landmark and signs it with her fresh signing 

key to avoid tampering from other users. 

Phase 1: path construction and shares submission (lines 1-15): In this phase, users 

on each path create a signature chain and submit the shares of their link values to the 

landmarks. In detail, starting from the sender, each user signs her fresh verification 

key with her long term signing key and sends the signature to both the successor and 

the predecessor in the path (lines 3-4). This signature binds a fresh verification key to 

a user and thus avoids illegitimate impersonations. Neighbors can then exchange the 

shares of their shared link’s value and check that they reconstruct to the same value 
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(i.e., the two end-points agree on the credit between them) (lines 5-6). Finally, each 

user on the path signs all this information along with a timestamp (to avoid replay 

attacks) and sends it to the landmarks (lines 8-10). The signature is created with the 

user’s fresh signing key so that the user’s identity is concealed from the landmarks. 

Finally, the sender must create additional messages for each path in order to pad it 

into a length predefined by the system (i.e., max) in order to avoid inference attacks 

based on the path length (line 14). The same procedure is symmetrically carried out 

on the paths from the receiver to each landmark. 

Concerning the integrity of paths, we observe that a malicious user could divert the 

signature chain using fresh keys of her choice. However, she cannot get an honest user 

into the fake chain continuation, since that user would refuse to sign the attacker’s 

fresh key, making the attack ineffective. 

Phase 2: computation of credit on a path (lines 16-24): In this phase, landmarks 

verify the correctness of the signature chain and calculate the credit available in each 

path. In particular, after the landmarks receive messages from up to max users for 

each path, they verify that neighboring keys in a path are consistent and calculate 

the minimum value of each path using a secure multi-party computation (lines 17-24). 

This results into each landmark having a share of the minimum value for each path 

which is then sent to the sender. 

In a nutshell, the use of fresh keys hides users identities and the multiparty 

computation over shared values does not reveal the actual link values to the landmarks. 

Additionally, due to the use of fresh keys for each path, landmarks cannot detect 

whether a given link is shared in more than one path. This could result in landmarks 

calculating a path value greater than the available one. Nevertheless, this over-

approximation is detected in the next phase when a link cannot be updated due to 

insufficient credit and this path is then ignored for the transaction without incurring 

any credit loss for the users involved in the transaction. 
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Algorithm 3 Transaction protocol. 

Sdr, Rcv: Transaction sender and receiver 

Input: tpath1, . . . , pathLMu Set of paths Sdr to Rcv 

psk˚ , vk˚ q: user ui long term keysui ui 

1: {Phase 1: signature chain }
2: for i P |LM| do 
3: for u P pathi do 
4: u creates fresh keys psku, vkuq, σu :“ Signpsk˚ , vkuq and sends pσu, vkuq tou 

ppu, iq and to cpu, iq
5: u receives pσcpu,iq, vkcpu,iqq from cpu, iq and pσppu,iq, vkppu,iqq from ppu, iq

1 16: u receives from cpu, iq shares rrs1, . . . , s|LM|
ss , u reconstructs v’ from 

1 1 1rrs1, . . . , s|LM| s and checks whether v “ vcpu,iq,u 

7: u creates rrs1, . . . , s|LM| s for the value vu,ppu,iq and sends them to ppu, iq
8: if Verifypvk˚ 

cpu,iq, vkcpu,iq, σcpu,iqq ^ Verifypvk˚ 
ppu,iq, vkppu,iq, σppu,iqq then 

9: for j P |LM| do 
110: u creates m :“ pvkcpu,iq||rrs ss||vku||vkppu,iq||rrsj ss||Txid||tsq, u createsj 

σLMj 
¨̈“ Signpsku, mq and finally sends pσLMj , mq to LMj 

11: end for 
12: end if 
13: end for 
14: Sdr creates k :“ pmax ´ |pathi|q more tuples pm, σLMi q , where all shares 

reconstruct to the maximum possible credit in a link, and sends them to LMi 

15: end for 
16: {Phase 2: Minimum computation}
17: for i P |LM| do 
18: Each LM checks whether |pathi| “ max ^ 
19: for all j P t1, . . . , |pathi|u do 
20: Verifypmj r3s, mj , σj q ^ mj r1s “ mj´1r3s ^ mj r4s “ mj`1r3s ^ mj´1r6s “ 

mj r6s “ mj`1r6s 
21: end for 
22: Each LM computes the share smini as result for function minp¨q over the 

shares rs1, . . . , smaxss belonging to pathi. 
23: Each LM sends the resulting tuples pi, smini , vk

i 
1, vk

i q to Sdrmax 
24: end for 



96 

Algorithm 4 Transaction protocol (continued) 

1: {Phase 3: Carrying out transaction}
2: Sdr reconstructs the tuples pi, miniq and verifies that vki 1 and vki are the firstmax 

and last keys of pathi as she expects 
3: for i P |LM| do 
4: Sdr chooses the transaction value xi, generates txi :“ 

pts||xi||Txid||vkSdr||vkRcvq and σi :“ SignpskSdr, txiq, and sends (txi, σi ) toSdr Sdr 
the nodes in pathi 

5: for u P pathi do 
6: u checks VerifypvkSdr, txi, σiSdr q, xi is smaller than the value vu,ppu,iq, and 

previous link cpu, iq Ñ u has been reduced by xi u decreases link value on 
pathi by xi resulting in xi 

1 

17: u creates m :“ pon hold||vk˚ 
u ||vk

˚ 
ppu,iq||xi||txiq, σu :“ Signpsk˚ 

u , mq and sends 
pσu, mq to ppu, iq

8: u receives σppu,iq :“ Signpsk˚ 
ppu,iq, mq from ppu, iq

9: u and ppu, iq locally store pstvk˚ ,vk˚ :“ mq and (σppu,iq, σuqu ppu,iq

10: end for 
11: Rcv σi :“ SignpskRcv, txiq and sends ptxi, σi q to SdrRcv Rcv 
12: end for 
13: for i P |LM| do 
14: Rcv sends ptxi, σi , σi q to every node in pathiSdr Rcv 
15: for u P pathi do 

116: u creates m :“ psettled||vk˚ 
u ||vk

˚ 
cpu,iq||xi||tsq, σu :“ Signpsk˚ 

u , mq and sends 
pσu, mq to cpu, iq

17: u receives σcpu,iq :“ Signpsk˚ 
cpu,iq, mq from cpu, iq

18: u and cpu, iq locally store pstvk˚ ,vk˚ :“ mq and pσcpu,iq, σuqu cpu,iq

19: end for 
20: end for 

Phase 3: Updating link values (lines 1-20, continuation): Link values on each 

path are updated so that the expected credit reaches the receiver. This process is 

performed in two steps. First, the transaction value for each path is decreased (i.e., 

on hold) on each link from the sender to the receiver (lines 3-10, continuation). This 

ensures that a user puts on hold credit on her outgoing link only after assuring the 

credit in the incoming link has been held, and thus a honest user in the path cannot 

incur in credit loss. This escrow serves as a commitment to accept the new link value 

if the receiver eventually accepts the transaction. 
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Second, after receiving the confirmation from the receiver (i.e., the receiver signature 

on the transaction’s value for a given path), the held value is adopted as the new 

credit value (i.e., settled) on each link, starting from the receiver to the sender (lines 

13-20, continuation). This reverse order ensures that each user in the path has an 

incentive to settle the final value: a user first settles the outgoing link (i.e., giving 

out credit), and thus is in the user interest to settle the incoming link (i.e., receiving 

credit) to recover the credit. In this manner, credit values on transaction paths can be 

consistently updated. Interestingly, if any user does not cooperate with her neighbor 

during this phase (e.g., a faulty user), the credit involved in the dispute is bounded 

and eventually would be resolved by either continuing the execution or aborting the 

payment in the complete path. 

Test Credit The test operation works similar to the transaction protocol. It only 

differs in the fact that the sender will not carry out the transaction, as the test 

operation only requires the sender to learn the available credit. 

Test Link and Change Link The testLink and chgLink can be easily performed 

by exchanging a message between the two end-points of the credit link through their 

authenticated private channel. 

5.4.2 Security and Privacy Analysis 

We hereby state the security and privacy results for SilentWhispers. We prove 

our result in the FNET, FSMT-hybrid model; i.e., the theorem holds for any UC-secure 

realization of FNET and FSMT. 

Theorem 5.4.1 (UC-Security) Let T be a secure secret sharing scheme and Π be 

an existentially unforgeable digital signature scheme, then SilentWhispers UC-realizes 

the ideal functionality FCN in the FNET, FSMT-hybrid model. 
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Proof [Sketch] The proof proceeds by describing the simulator S that interacts 

with the ideal functionality FCN in the ideal world and must provide to a corrupted 

environment E inputs that are computationally indistinguishable to the ones that A 

would output in the real-wold protocol. Thus the core of the proof is the simulation of 

the inputs that A is expecting from the protocol while interacting in the ideal world. 

We identify two main technical highlights in the proof: (i) any honestly computed 

signature in the protocol is simulated via the simulator offered by the security definition 

of digital signatures and (ii) shares of unknown secrets are simulated with values 

sampled uniformly at random from the appropriate domain. In the former case the 

indistinguishability from an honest execution is provided directly by the security 

definition of the signature scheme, while in the latter case it follows by the information 

theoretic hiding of the shared secret (throughout the experiment we always simulate a 

number of shares below the threshold value). The rest of the simulation focuses on 

adapting the adversarial behavior to the ideal functionality, aborting when appropriate. 

The full proof is elaborated in the full version of the paper [59]. 

5.4.3 Performance Analysis 

We have developed a C++ implementation to demonstrate the feasibility of 

SilentWhispers. We focus in particular on the payment protocol (Protocol 3), which 

dominates by far the computational complexity, simulating the main functionality of 

both landmarks and users in the credit network. Our realization relies on the MPC 

Shared Library [93], on the Shamir’s information theoretic construction [85] for secret 

sharing, and on Schnorr’s signatures [94, 95] due to their efficiency. 

Implementation-Level Optimizations There exist several independent opera-

tions in a transaction that can be parallelized. Intuitively, in the first phase, users can 

prepare fresh keys, signatures and shares of the link values for each path in parallel. 
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They can then be processed and verified by landmarks in parallel as well during the 

second phase of the transaction protocol. Finally, users can carry out the third phase 

by updating links for different paths independently of each other. 

Since the min function is associative, we can parallelize independent min operations 

to improve the efficiency of calculating the minimum value in a path. For instance, 

x :“ minpa, bq and y :“ minpc, dq can be done in parallel and then compute minpx, yq 

to obtain the minimum among a, b, c, d. Finally, the sender can reconstruct the mini 

values for each pathi and transmit it to the users in pathi in parallel. 

Performance We conduct our experiments in machines with 3.3 GHz processor and 

8 GB RAM to carry out decentralized operations involving landmarks (e.g., multiparty 

computation of the minimum value of a path). We simulate each landmark in a 

different machine. For our experiments, we have implemented the cryptographic 

schemes used in the transaction protocol. Based on their execution time, we calculated 

the total time for the transaction operations taking into account the implementation 

optimizations. 

Transaction Time The chgLink and testLink operations are performed directly 

between the users sharing a credit link and are extremely efficient. Among the other 

transactions, we have studied the pay transaction, since it is clearly more expensive than 

test. In particular, we first study the communication cost and then the computation 

time required for the pay operation. 

In the pay operation, each user in the path must forward messages to the neighbors. 

The longest message to be sent as defined in Algorithm 3 contains 340 bytes: 4 

verifications keys (i.e., 64 bytes each in the elliptic curve setting), 5 integers of 4 bytes 

each and a signature (i.e., extra 64 bytes). In the worst case, a user must forward 

one such messages for each of the max neighbors and thus the communication cost is 

max ̈  340 bytes. In practice, max is a small constant and forwarding such message 

can be done efficiently even with commodity communication links. 
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Table 5.1. 
Times in seconds to compute Min(a, b). We use 32 bits to represent a and 
b. In a setup (n, t), n denotes the total number of landmarks out of which 
t are compromised. 

Setup p5, 1q p5, 2q p7, 1q p7, 2q p7, 3q 

Time 0.304 0.314 0.357 0.346 0.349 

Regarding computation time, we observe that operations performed by users 

in phases 1 and 3 consist of the creation and verification of signatures, which are 

extremely efficient. Therefore, we focus on the computation of the credit value of a 

path (i.e., the minimum among the credit values of the links composing the path), 

since it is the most expensive operation. 

The time to compute the minimum between two values among a set of landmarks 

is shown in Table 5.1. The actual number of such min computations required to 

calculate the credit in a path depends on the length of the path (i.e., max). Using 

the implementation level optimizations, landmarks need to perform only rlogpmaxqs 

min operations sequentially. In Table 5.2 we show the time to compute the credit in 

a path for different path lengths. In particular, computing the minimum credit in a 

path takes roughly 1.7 seconds for max “ 20. 

Routing Time We consider the remaining protocols in SilentWhispers: the link 

setup and the routing protocol. The link setup is extremely efficient and can be 

done even offline. The routing protocol requires a decentralized BFS algorithm. The 

decentralized BFS is well studied in the literature and it has been shown to be 

practical [96]. In particular, the proposed algorithm has a communication complexity 

of OpEq and a time complexity of Opl2q, where E denotes the number of links and l 

denotes the height of the BFS tree. Moreover, BFS does not involve cryptographic 
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Table 5.2. 
Times in seconds to compute the credit on a path. We use a setup (7, 3): 
7 landmarks, 3 compromised. 

Path Length (max) 5 10 20 

Time 1.047 1.349 1.745 

operations and it can be run as a background process, thus it does not hinder the 

performance of the rest of system operations. 

Establishing System Parameters Running SilentWhispers requires setting up 

two system parameters: the maximum path length and the number of landmarks. 

To do that, we have extracted transactions carried out in Ripple [37]. Based on this 

information, we set up the system parameters such that SilentWhispers can process 

the transactions already performed in Ripple. 

First, for processing a transaction, the sender has to pad the number of links in 

the path to maintain the privacy properties. In order to find a meaningful value for 

the maximum path length, we have collected all transactions from the start of the 

Ripple network until December 2015, resulting in a set of 17,645,343 transactions. 

The maximum path length that we have observed is 10 links. Thus, we set up the 

maximum path length to 10 in our evaluation. 

Second, processing a transaction requires more than one path. The actual number 

of paths used in a transaction will determine the number of landmarks required in our 

system. In order to find this value, we have extracted the distribution on the number 

of paths that have been used for the Ripple transactions. We have observed that the 

maximum number of paths used in a transaction is 7 and thus we use 7 landmarks in 

our evaluation. We note that using the landmark routing algorithm in the current 

Ripple network might imply a variation in the number of required landmarks. However, 

choosing adequate users as landmarks will ensure that the maximum number of paths 
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is maintained within a small factor, as most of the transactions are routed through 

the landmarks. 

In practice, selecting those users with higher number of credit links as the landmarks 

facilitates finding suitable transaction paths between users for a transaction. For 

instance, banks are the natural candidate to serve as landmarks in a transaction 

network. Furthermore, we have extracted the Ripple network and observed that most 

nodes have links to a few highly connected nodes, which correspond to gateways. They 

are already well known to all users as most of them also contribute to validate the 

Ripple network, and they thus become the ideal landmark candidates when applying 

SilentWhispers in Ripple. 

In conclusion, SilentWhispers can simulate the Ripple network using 7 landmarks 

and a path length of 10. Given these system parameters, each user has to forward, 

in the worst case, a message of 10 ¨ 340 “ 3400 bytes, which can be done efficiently 

even with commodity communication links. Moreover, computing the minimum credit 

in a path takes roughly 1.3 seconds (see Table 5.2). A transaction in the currently 

deployed transaction network Ripple, takes approximately 5 seconds. Thus, our 

evaluation shows that SilentWhispers does not introduce any significant overhead to 

the transaction time. 
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6 SUMMARY 

In this dissertation we thoroughly study the security and privacy in credit networks 

and we expect that it motivates the use of secure and privacy-preserving transaction 

protocols in the current and emerging systems based on credit networks. In particular, 

this dissertation describes the following contributions. 

Security and Privacy Study of the Ripple Network As the most representative 

instance of credit network in practice, we have thoroughly studied the Ripple network 

to characterize its security and privacy issues. As a result, we describe the effect of 

unexpected redistribution of credit, the effect of faulty gateways and the effect of 

stale offers on the credit held by users. Our results show that the Ripple community 

must be educated about these issues to prevent them from credit losses. Moreover, 

we shed light on the gap –due to certain patterns of use and interaction between 

parties in the network— between the (supposedly) provided privacy available in the 

Ripple network and the actual privacy achieved by the current Ripple users and, most 

importantly, their transactions. Our analysis thus motivates the imperative need for 

better privacy-preserving transactions mechanisms for Ripple and any other emerging 

transaction network based on the same design principles. 

Security and Privacy Definitions for Credit Networks The lack of formal 

definitions of security and privacy notions of interest in a credit network hinders the 

design of systems aiming to provide secure and privacy-preserving transactions. In 

this state of affairs, we provide the first formalization for the notions of integrity, 

transaction value privacy and transaction sender/receiver privacy. These definitions 
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serve as the basis to formally assess the security and privacy guarantees achieved by 

new proposals of credit network systems. 

Anonymous Transactions in Ripple Currently deployed credit networks such 

as Ripple rely on a public available ledger that inherently leaks sensitive financial 

information such as credit links and transactions. Given that, we require a solution that 

provides anonymous transactions fully compatible with the current Ripple network. 

In order to achieve that, we have built PathShuffle, our novel protocol to perform 

atomic and anonymous transactions in the Ripple network. The atomicity provided 

by PathShuffle is of special interest not only for path mixing protocols, but also for 

other applications such as crowdfunding. 

Secure and Privacy-Preserving Decentralized Credit Networks Tailored 

privacy-enhancing protocols such as PathShuffle help to raise the bar, but do not 

provide a generic solution with strong privacy guarantees. In this dissertation we 

have presented SilentWhispers, a novel decentralized architecture for credit networks 

that achieves strong security and privacy properties. The distinguishing feature of our 

architecture is the avoidance of a global, publicly available ledger and still provides 

the functionality required by users in a credit network. 
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