
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2018

Credit Network Payment Systems: Security, Privacy and Credit Network Payment Systems: Security, Privacy and

Decentralization Decentralization

Pedro Moreno Sanchez
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Moreno Sanchez, Pedro, "Credit Network Payment Systems: Security, Privacy and Decentralization"
(2018). Open Access Dissertations. 2030.
https://docs.lib.purdue.edu/open_access_dissertations/2030

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/2030?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F2030&utm_medium=PDF&utm_campaign=PDFCoverPages

CREDIT NETWORK PAYMENT SYSTEMS: SECURITY, PRIVACY AND

DECENTRALIZATION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Pedro Moreno Sanchez

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Aniket Kate, Chair

Department of Computer Science, Purdue University

Dr. Elena Grigorescu

Department of Computer Science, Purdue University

Dr. Ninghui Li

Department of Computer Science, Purdue University

Dr. Sonia Fahmy

Department of Computer Science, Purdue University

Dr. Matteo Maffei

Department of Computer Science, TU Wien

Approved by:

Dr. Voicu Popescu, by Dr. William J. Gorman

Head of the Department Graduate Program

iii

A mis padres por todo su apoyo y ´ on posible. animos para que consiga la mejor educaci´

Yo realmente aprecio los sacrificios inconmensurables que han hecho en su vida para

hacer posible que yo escriba esta disertación. Gracias papá, gracias mamá.

iv

ACKNOWLEDGMENTS

I heartfully want to thank my supervisor Aniket Kate. Apart from his indisputable

research skills, I would like to highlight his honest and invaluable efforts to make me

the best researcher possible and a better person. They have been crucial during my

whole PhD journey. Learning from him during this time over two different continents

has been an invaluable and unforgettable experience that will follow me the rest of

my life. Thank you.

This dissertation would not have been possible without my collaborators. I would

like to specially thank Giulio Malavolta and Tim Ruffing. They are undoubtedly the

best co-authors and, overall friends, that one can have during his PhD journey. Also

special thanks to Matteo Maffei, his support during these years has been of vital

importance. Finally, I am really thankful to the selfless help from Ian Goldberg, Sonia

Fahmy, Navin Modi, Kim Pecina, Srivatsan Ravi, Stefanie Roos, Raghuvir Songhela

and Muhammad Bilal Zafar.

I feel really lucky to have met numerous friends during these years in both

Saarbruecken and West Lafayette. This dissertation would be endless if I mention all

of them here and I firmly believe that the time spent with them is among the most

enriching experiences during this journey. From my time in Saarbruecken, I will never

forget the long movie nights at Aurela and John’s house where they, along with Harrys

and Yuliya, attempted to improve my English pronunciation. The vibrant and long

discussions with Mariona are also unforgettable. My time in West Lafayette has also

brought good friends and enriching experiences. In special, I want to thank Glebys

and Maria Leonor for the many moments we have spent together, my favorite being

the day where we showed to everybody that canoeing is not that easy as it looks.

v

Special thanks also to Sze Yiu for suffering me as housemate and to all the colleagues

at the Freedom Lab for the endless geek conversations.

Last, but definitely not least, I would like to thank my father Antonio Jesus,

my mother Herminia and my brother Antonio for their continuous support. Their

unconditional encouragement to pursue and achieve all the goals I set in my life has

been crucial to be writing this dissertation. Papá, mamá, hermano, lo he conseguido

y vuestro apoyo ha sido fundamental. Muchas gracias!

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Challenges in Credit Networks . 2

1.2 Our Contributions . 3

1.3 Outline of the Dissertation . 5

I SECURITY AND PRIVACY IN CREDIT NETWORKS: STUDY AND
DEFINITIONS . 6

2 REAL-WORLD CASE STUDY: RIPPLE . 7

2.1 Description of the Ripple Network . 8

2.1.1 Credit Graph . 9

2.1.2 Key Roles . 11

2.1.3 Operations . 12

2.1.4 Consensus Protocol . 16

2.2 Security Study . 17

2.2.1 Effect of Unexpected Balance Shifts 17

2.2.2 Effect of Faulty Gateways . 19

2.2.3 Effect of the PayRoutes Gateway 21

2.2.4 Effect of Stale Offers . 25

2.3 Privacy Study . 28

2.3.1 Heuristic 1: Interledger Linkability 28

vii

Page

2.3.2 Heuristic 2: Hot-cold Wallets Linkability 34

2.3.3 Deanonymization of Ripple Businesses 41

2.3.4 Deanonymization Using a Ripple Server 45

2.4 Related Work . 46

3 CREDIT NETWORKS: SECURITY AND PRIVACY 48

3.1 Credit Network Definition . 49

3.2 Security and Privacy in Credit Networks 50

3.2.1 Attacker Model . 50

3.2.2 Goals Overview . 51

3.2.3 Formal Definitions . 52

3.2.4 Discussion . 57

II SECURE AND PRIVACY-PRESERVING TRANSACTION PROTOCOLS. 59

4 PATHSHUFFLE: ANONYMITY FOR RIPPLE TRANSACTIONS 60

4.1 Cryptographic Background and Notation 60

4.1.1 Ripple Network Operations . 60

4.1.2 Digital Signature Scheme . 61

4.1.3 Distributed Digital Signature Scheme 62

4.1.4 Shared Wallet . 63

4.2 Preliminaries . 63

4.2.1 Path Mixing . 64

4.2.2 Setup and Communication Model 64

4.2.3 Security and Privacy Goals . 65

4.2.4 Threat Model . 66

4.3 Solution Overview . 66

4.3.1 A Straw Man Path Mixing Approach 66

4.3.2 Atomic Transactions in Ripple 68

4.3.3 Creating the Set of Output Wallets Anonymously 70

4.4 Protocol Details . 71

viii

Page

4.4.1 Protocol Description . 71

4.4.2 Extensions and Applications . 75

4.4.3 Security and Privacy Analysis 76

4.4.4 Performance Analysis . 78

4.5 Anonymity Protocols for Bitcoin . 81

5 DECENTRALIZED CREDIT NETWORKS 82

5.1 Cryptographic Background and Notation 84

5.1.1 Secret Sharing . 84

5.1.2 Distributed Minimum Computation 84

5.1.3 Notation for Protocol Description 85

5.2 Preliminaries . 85

5.2.1 Adapting the Ripple Network 86

5.2.2 Setup and Communication Model 86

5.3 Solution Overview . 87

5.3.1 Routing . 87

5.3.2 Graph Management . 89

5.4 Protocol Specifications . 92

5.4.1 Protocol Description . 92

5.4.2 Security and Privacy Analysis 97

5.4.3 Performance Analysis . 98

6 SUMMARY . 103

REFERENCES . 105

VITA . 112

ix

LIST OF TABLES

Table Page

2.1 Illustrative examples of Ripple transactions 13

2.2 Summary of XRP/USD offers in the Ripple network 24

2.3 Summary of wallets clustered in the different heuristics 41

2.4 Deanonymization of Dividendrippler Bitcoin business 42

4.1 Description of the Ripple network operations 61

5.1 Summary of time required to compute Min(a, b) 100

5.2 Summary of time required to compute the credit on a path 101

x

LIST OF FIGURES

Figure Page

2.1 Illustrative example of the Ripple ecosystem 9

2.2 Illustrative example of the Ripple credit graph 10

2.3 Effect of faulty wallets in the Ripple network 20

2.4 Illustrative example of exchange offers in the Ripple network 26

2.5 An illustrative example of Heuristic 1 . 29

2.6 An illustrative example of deposit and withdrawal processes in a gateway . 32

2.7 An illustrative example of Heuristic 2 . 38

2.8 Deanonymization results for the main gateway wallets in the Ripple network43

2.9 A visualization of the deanonymization process over our clustered graph . 44

3.1 Description of the ideal functionality for routing FROUT 54

3.2 Description of the ideal functionality for payments FPAY 56

4.1 An illustrative example of the straw man approach for path mixing to mix
10 IOU among five users . 67

4.2 An illustrative example of atomic transaction in Ripple 69

4.3 An illustrative example of PathShuffle to mix 10 IOU among five users . . 72

5.1 Illustrative example of net balance conservation in credit networks 83

5.2 Illustrative example of the use of SMPC in SilentWhispers 90

5.3 Illustrative example of path construction in SilentWhispers 91

xi

ABSTRACT

Moreno Sanchez, Pedro PhD, Purdue University, August 2018. Credit Network
Payment Systems: Security, Privacy and Decentralization. Major Professor: Aniket
Kate.

A credit network models transitive trust between users and enables transactions

between arbitrary pairs of users. With their flexible design and robustness against

intrusions, credit networks form the basis of Sybil-tolerant social networks, spam-

resistant communication protocols, and payment settlement systems. For instance,

the Ripple credit network is used today by various banks worldwide as their backbone

for cross-currency transactions. Open credit networks, however, expose users’ credit

links as well as the transaction volumes to the public. This raises a significant privacy

concern, which has largely been ignored by the research on credit networks so far.

In this state of affairs, this dissertation makes the following contributions. First,

we perform a thorough study of the Ripple network that analyzes and characterizes

its security and privacy issues. Second, we define a formal model for the security

and privacy notions of interest in a credit network. This model lays the foundations

for secure and privacy-preserving credit networks. Third, we build PathShuffle, the

first protocol for atomic and anonymous transactions in credit networks that is fully

compatible with the currently deployed Ripple and Stellar credit networks. Finally,

we build SilentWhispers, the first provably secure and privacy-preserving transaction

protocol for decentralized credit networks. SilentWhispers can be used to simulate

Ripple transactions while preserving the expected security and privacy guarantees.

1

1 INTRODUCTION

Credit networks [1–3] model transitive trust among users through pairwise credit

allocations. A credit network user expresses trust on another user in the form of

a credit value that she is willing to extend to the other user, and by indicating

commitments to allow transactions across her different credit links. This enables

that the credit network users perform transactions over paths consisting of several

intermediate users. Moreover, by introducing suitable definitions of transaction, credit

networks have been shown useful in a plethora of scenarios. In fact, sybil-tolerant and

spam-resistant systems based on the concept of credit network have been proposed in

the last few years, such as Bazaar [4] and Ostra [5]. Prominently, credit networks are

also leveraged in two growing payment settlement systems: Ripple [6] and Stellar [7].

The Ripple Network The Ripple network has seen a widespread adoption as an

interesting alternative to avoid large fees charged by intermediate banks today while

performing world-wide transactions. The Kansas-based CBW Bank and Cross River

Bank [8], the Royal Bank of Canada [9] or Santander [10] are a few examples of

banks using the Ripple network after exploring the numerous available blockchain

options [11–14]. Companies are also using advantages of Ripple (e.g., fast and low-cost

international transactions) to build better cross-border payment services. For example,

Earthport [15, 16] has adopted Ripple to perform transactions between banks over

several countries over the world, while Saldo.mx uses the Ripple network to improve

cross-border transactions between USA and Mexico [17]. Moreover, Microsoft has

partnered with Ripple to use part of its Azure BaaS to contribute to the execution of

the Ripple network [18].

https://Saldo.mx

2

1.1 Challenges in Credit Networks

The Privacy Challenge Most of the credit network designs proposed so far (e.g.,

Bazaar and Ostra) are centralized, i.e., the credit network is maintained entirely in

a server environment. The others, such as Ripple and Stellar, make their entire sets

of transactions as well as the credit network topology visible in a publicly available

log (i.e., the blockchain) to establish credibility through transparency. As a result,

credit networks today cannot provide any meaningful privacy guarantee. This state

of affairs clearly conflicts with the desire of users, who instead strive for hiding their

credit links and their transactions: Businesses and customers are interested in hiding

their credit information and transactions from competitors and even service providers,

while regular users aim to protect their transactions as they might reveal personal

information (e.g., medical bills or salary).

Designing a privacy-preserving solution for credit networks is technically challenging.

Simple anonymization methods such as the pseudonyms employed in Ripple are

ineffective, as all transactions remain linkable to each other and they are susceptible to

deanonymization attacks [19]. Other techniques proposed in academia [20–23] do not

fully solve the problem either. For instance, providing the server environment only with

the topological network graph while keeping credit values private opens the system

up to correlation attacks that ultimately reveal the partners’ real identities [20, 21].

Perturbing the links or their credit values by means of differential privacy techniques [22,

23] would yield stronger privacy guarantees, but this is often unacceptable in payment

scenarios as it implies unexpected redistributions of credit.

The Decentralization Challenge A natural direction to overcome the privacy

challenge consists in envisioning a decentralized credit network, where each user locally

stores and maintains her own credit links. A decentralized credit network design fits

better the nature of certain applications such as the current financial ecosystem, where

each user is responsible for her own credit while each financial institution is responsible

for the credit with its customers. However, building a decentralized credit network

3

is not straightforward. There are several credit network operations that are trivially

solved in a centralized setting but become challenging in a decentralized design.

For instance, while a centralized service provider can easily determine a transaction

path between two users, it is not trivial to define how the routing information is

spread along a decentralized credit network. Similarly, a decentralized setting requires

finding out how much credit is available on the paths between any two users to

perform transactions. Finally, a decentralized setting requires a solution to ensure the

correctness of the transactions, while maintaining the credit balances of honest users

in the presence of malicious and offline users.

The Security Challenge Designing a secure solution for credit networks becomes

challenging in a decentralized setting, where every user maintains her own credit links

and relies on other users to carry out her transactions, some of which may behave

arbitrarily. For instance, a transaction over a path can be easily disrupted by a

malicious intermediate user aiming at a credit benefit or by a (possibly honest) user

that simply goes offline. Such behavior can lead to credit losses by honest users as

well as severely hamper the availability of the overall credit network. A decentralized

credit network must thus ensure atomic payments so that every credit link in a path

is correctly updated to carry out a successful transaction or no credit link is modified

otherwise. A decentralized credit network should ensure thereby that no honest user

incurs credit loss.

1.2 Our Contributions

This dissertation focusses on demonstrating the following statement:

Current credit network deployments provide limited guarantees in terms

of security, privacy or decentralization. It is possible to build a secure,

privacy-preserving and decentralized credit network system.

4

In the following, we briefly describe our contributions to demonstrate the veracity

of this statement.

A Security and Privacy Study of the Ripple Network In Chapter 2, we

present the first thorough study that analyzes the globally visible blockchain in the

Ripple network and characterizes the security and privacy issues related to it. In

particular, we have extensively studied the effect of unexpected redistribution of

credit, the effect of faulty gateways and the effect of stale offers and shown their

consequences in terms of credit loss by Ripple users. Regarding privacy, we define

two novel heuristics and perform clustering to group wallets owned by the same user.

We then propose reidentification mechanisms to deanonymize the operators of those

clusters and show how to reconstruct the financial activities of deanonymized wallets.

Security and Privacy Definitions for Credit Networks In Chapter 3, we lay

the foundations for security and privacy in credit networks, presenting a definitional

framework. In particular, we formalize the notions of integrity, value privacy and

sender/receiver privacy. Intuitively, we say that a credit network maintains integrity if

no honest user loses credit when cooperating as intermediate user in a payment path.

Moreover, we say that a credit network maintains value privacy if the adversary cannot

determine the value of a transaction between two non-compromised users. Finally, we

say that a credit network maintains sender (correspondingly receiver) privacy if the

adversary cannot determine the actual sender (receiver) of a transaction.

PathShuffle: Anonymous Transactions in the Ripple Network In Chapter 4,

we present PathShuffle, the first privacy-enhancing protocol compatible with the Ripple

network. As its essential building block, we propose a novel technique to perform

atomic transactions in credit networks and extend it to build a decentralized protocol

for anonymous transactions. We demonstrate the practicality of PathShuffle by

executing an instance of the protocol in the current Ripple network. This protocol

thereby provides a functionality otherwise missing in the current Ripple network.

5

SilentWhispers: A Decentralized Architecture to Enforce Security and

Privacy in Credit Networks In Chapter 5, we present SilentWhispers, the first

decentralized and provably secure and privacy-preserving transaction protocol for

credit networks. Partial solutions like PathShuffle are an interesting approach for

raising the privacy bar in the currently deployed Ripple network. However, the

distinguishing feature of SilentWhispers is the assurance of strong security and privacy

guarantees in credit networks without requiring a global, transparent and publicly

accessible blockchain. SilentWhispers can be used to simulate the Ripple transactions

in real time and therefore can be deployed as an online credit network.

1.3 Outline of the Dissertation

This dissertation is organized in two parts. Part I includes our study and defi-

nitional work on security and privacy for credit networks and comprises Chapter 2

and Chapter 3. In particular, in Chapter 2 we describe the background on the Ripple

network and our security and privacy study of the Ripple network; and in Chapter 3

we propose the security and privacy notions of interest in a credit network.

Part II focuses on the description of our novel systems that provide secure and

privacy-preserving transactions in credit networks and comprises Chapter 4 and

Chapter 5. In Chapter 4 we describe PathShuffle, the privacy-enhancing protocol fully

compatible with the current Ripple network. In Chapter 5 we detail SilentWhispers,

a decentralized architecture that provides strong security and privacy guarantees for

transactions in credit networks.

Finally, we summarize this dissertation in Chapter 6.

Part I

SECURITY AND PRIVACY IN

CREDIT NETWORKS: STUDY

AND DEFINITIONS

6

7

2 REAL-WORLD CASE STUDY: RIPPLE

The properties inherent to a credit network have been found of great utility in a

plethora of applications. In particular, several academic efforts [4,5,24–27] have shown

that by adapting the notion of credit to the specifics of a certain application, it is

feasible to come up with a tailored credit network to enforce key functionalities for

such application. Nevertheless, none of these academic proposals have been deployed

in practice at the time of writing. Existing deployments for a credit network have

focussed so far on the settlement of payments between users. In such application,

credit between two users is defined as the trust in each other in terms of the amount of

I Owe You (IOU) funds they are willing to extend to each other. Building upon this

concept of credit, a credit network can be leveraged to settle payments between any

two users improving upon many of the drawbacks of the alternative systems available

today (e.g., SWIFT) such as slowness, expensiveness and prone to thefts [28, 29].

Currently, Ripple and Stellar are the most prominent examples of credit networks

in practice. The Stellar network is still in an early but expanding stage and it has got

the support of a few financial institutions and payment aggregators, mostly focussed

on developing countries. The Ripple network instead, has gained more traction and it

has been tested and adopted by several major banks and financial institutions that

see in the publicly available Ripple network an alternative to improve the processing

of payments. For instance, the Spanish bank Santander has claimed that adopting

Ripple could save them $20 billion a year [10]. The Kansas-based CBW Bank and

Cross River Bank [8] are the first American banks to adopt Ripple. The Royal Bank

of Canada [9] has chosen Ripple over other settlement solutions after exploring the

numerous available blockchain options. And these are just a few examples in a still

8

growing list [11–14]. As of August 2017, the Ripple network cates a user base of more

than 180, 000 accounts, 350, 000 credit links and more than 29M transactions during

the period January 2013 – August 2017.

The potential of Ripple is not limited to the traditional banking system. Other

financial institutions are also using the advantages of Ripple to build better cross-border

payment services. For example, Earthport [30] has chosen Ripple to perform cross-

border transactions between more than 60 countries worldwide. Moreover, companies

such as Microsoft and universities such as MIT are using part of its computational

resources to contribute to the execution of the Ripple network [31, 32]. Given the

wider development in practice, we use the Ripple network as case study of credit

network in this dissertation. We note, however, that most of the descriptions apply

also to the Stellar network as both build upon (mostly) the same principles. In the

rest of this chapter, we overview the different components of the Ripple network. We

then study the security and privacy of the Ripple network.

2.1 Description of the Ripple Network

The Ripple network heavily relies in three components as shown in Figure 2.1: a

credit graph, a set of operations and a consensus protocol. The credit graph reflects

the IOU relations among payment providers, financial institutions and customers

among others. This financial network is updated by means of operations that allow

to create new IOU relations, update existing ones, settle credit among any two users

or provide currency exchange services, utterly necessary for liquidity and remittance.

These transactions would be, however, useless without a way to globally agree on

their validity. The Ripple consensus protocol provides a mean to create a blockchain

that unequivocally stores the set of valid transactions, as agreed by a set of protocol

players from all around the world in a decentralized fashion. In the rest of this section,

we describe in detail each of the components separately.

9

Consensus

50 70

20 10

80

Transaction(...),
Transaction(...),

CreateLink(...), Offer(...)

Edison

Fanny

Dave

Carol

Bob

Alice

Blockchain

Block

}
}

Credit graph

Operations

Fig. 2.1. Illustrative example of the Ripple ecosystem. Dashed arrows
represent communication between parties. Filled arrows represent credit
links. The Ripple credit graph represents wallets and credit links among
them. The graph is updated by means of operations. The operations are
submitted by the corresponding users to the participants in the consensus
protocol. Only validated operations are added to the blockchain (or ledger
in Ripple terms).

2.1.1 Credit Graph

At the core of the Ripple network lies a weighted, directed graph G “ pV , Eq. The

set V of vertices represents the accounts (or wallets in Ripple terms) in the network,

and the set E of directed and weighted edges represents the IOU credit links between

wallets. A Ripple wallet is initialized with a pair of private (signing) and public

(verification) keys. The wallet is then labeled with an encoding of the hashed public

key. The knowledgeable reader might have noticed that a Ripple wallet is created and

labeled similar to a cryptocurrency account such as Bitcoin.

10

15
0

/ 2
00

 U
SD

Alice

Bob

Carol

Edison

Dave

FannyGateway

40 / 80 GW
D

1500 / - EUR

20 / - EUR

85 / - EUR 15 / -
 EUR

5 / - EUR

0.01 / 0.05 BTC

Fig. 2.2. An illustrative example of the Ripple credit graph. For readability,
every wallet is represented by a name instead of the hashed public key
used in practice. Edges represent credit links between pairs of connected
nodes. The edges are labeled with tuples (x / y XYZ), where x denotes
the balance, y denotes the upper bound (- represents a not upper-bounded
credit link), and XYZ denotes the currency.

A directed edge (u1, u2) P E is labeled with a tuple (balance, currency, upper-limit),

where balance is a dynamic scalar value αu1u2 indicating the amount of unconsumed

credit that wallet u1 has extended to wallet u2 (i.e., u1 owes αu1u2 to u2); currency

denotes the denomination for such credit. The credit available on an edge is lower-

bounded by 0 and is upper-bounded by 8 by default, while a more strict upper bound

can optionally be adopted by the creditor’s wallet (i.e., u2 in the previous example)

by setting the upper-limit field. Additionally, every wallet has associated with it a

positive amount of XRP.

Therefore, Ripple supports its own native cryptocurrency, called XRP. Contrary

to other cryptocurrencies such as Bitcoin or Ethereum, where coins are continuously

being created until a predefined limit number of coins is reached, a fixed amount

of XRP were initially created and no more XRP will be ever created according to

the current protocol description. The XRP currency was initially envisioned as a

11

mean to protect the network from abuse and Denial-of-Service (DoS) attacks. In this

sense, the purpose of XRP is twofold. First, a wallet is considered active only if it

has a certain amount of XRP, deterring thereby the creation of a massive number of

wallets by a single user for spamming purposes. Second, each transaction requires a

certain transaction fee in XRP, hindering thereby massive spamming transactions.

Nevertheless, the financial usefulness of XRP is yet to be thoroughly studied.

An illustrative example of the Ripple network is shown in Figure 2.2. Here, consider

that Alice and Bob are two users in the Ripple network. Further consider that Alice

owes Bob 150 USD. This illustrative example is reflected in the Ripple network as one

edge Alice Ñ Bob with a balance of 150 USD. Note that the balance on an edge is

tagged with the corresponding currency, as well as the upper bound. In this case, Bob

allows Alice to owe him up to 200 USD. This value effectively limits the trust that

Bob has on Alice. The rest of credit links can be interpreted in a similar manner.

In summary, the Ripple credit graph is a directed graph where credit links expressed

in many different currencies coexist. It provides enough expressiveness to emulate the

complex relations among the different players in a plethora of financial applications.

2.1.2 Key Roles

The Ripple network heavily relies on two roles played by some of the wallets:

gateway and market maker. A gateway is a well-known reputed wallet established to

create and maintain a credit link in a correct manner with new users. Gateways are

therefore the counterparts of user-facing banks and loan agencies in the physical world.

As an illustrative example, consider a new user that wants to join for the first time the

Ripple network. For that, she would need to create a fresh wallet, create a new credit

link and get some balance on it from another wallet in the system. This is known as

bootstrapping problem and it is a common problem in many networks such as social

networks or communication networks. The Ripple network solves this bootstrapping

problem by introducing gateways. Therefore, the user can trust the gateway to create

12

a credit link and issue her first IOUs on such link. As wallets for gateways are highly

connected wallets in the Ripple network, the thereby created credit link will allow the

new wallet to interact with the rest of the Ripple network.

A market maker is a wallet that has credit links with balance denominated in

more than one currency and performs a currency exchange service, that is, it receives

a certain currency on one of its credit links and exchanges it for another currency

on another of its credit links. Market makers are therefore the counterparts of

physical currency exchange services. For instance, in the illustrative example depicted

in Figure 2.2, Bob can act as a market maker by accepting the exchange among USD,

BTC and GWD currencies. The role of market makers is crucial to provide liquidity

and enable cross-currency transactions in the Ripple network.

2.1.3 Operations

The Ripple network graph is updated by means of operations. For the ease of

exposition, we classify these operations in two groups: single-wallet and multi-wallet

operations. In a nutshell, single-wallet operations update a single wallet and the

credit links associated to it in the Ripple network. Single-wallet operations represent

the counterpart of bank account management operations in the real world. Instead,

multi-wallet operations may update several wallets and credit links among them to

effectively represent the settlement of funds among wallets in the Ripple network.

The Ripple network supports several single-wallet operations. First, the AccountSet

operation allows a user to update a wallet she possesses. Second, OfferCreate enables

the creation of an exchange offer. An additional OfferCancel operation can be used

to cancel a previously created offer. Finally, TrustSet operation allows the creation of

a credit link between two wallets if such credit link does not exist yet, or the update

of a credit link in case it already exists. For the sake of brevity, we omit a detailed

description of these operations and refer the reader to [33] for further details.

13

Table 2.1.
Ripple transaction examples for both direct XRP payments and path-based
settlement transactions. In the direct XRP payment, 20 XRP are sent
from Alice to Bob. In the settlement transaction, 10 EUR are transferred
from Dave to Edison via Gateway. The notation Alice denotes the Ripple
wallet owned by Alice. Irrelevant transaction fields have been omitted.

XRP Payment Path-based Settlement Transactions

Sender Alice Dave

Receiver Bob Edison

Amount 20 XRP 10 EUR

Path – Dave Ð Gateway Ñ Edison

SigningPubKey Alice’s public key Dave’s public key

Tx Signature 752EF7 . . .3402D1 42EF56 . . .34DDFF

The core activity in the Ripple network centers around multi-wallet operations.

As described earlier in this chapter, a wallet ui can hold two types of funds: XRP

coins and IOU credit issued by other wallets in the Ripple network connected to ui

through a direct link. As they are conceptually different, the Ripple network handles

them by two types of operations: direct XRP payments and path-based settlement

transactions. Intuitively, a direct payment involves a transfer of XRP between two

wallets which may not have a credit path between them. Path-based settlement

transactions transfer IOUs defined in any currency (fiat currencies, cryptocurrencies

and user-defined currencies) between two wallets having a suitable set of credit paths

between them.

We now describe both types of payments by an illustrative example. We start

with direct XRP payments. Assume that a wallet u1 wants to pay β XRP to another

wallet u2 and that u1 has at least β XRP in its XRP balance. Then, β XRP are

removed from u1’s XRP balance and added to u2’s XRP balance. For example, in the

transaction showed in Table 2.1, 20 XRP are about to be transferred from Alice to Bob.

Given that Alice’s XRP balance is high enough, 20 XRP are taken from Alice’s XRP

14

balance and added to Bob’s XRP balance. Notice that this type of transaction does

not require the existence of any (direct or indirect) credit line between the sender and

the receiver. Therefore, the Path field of the transaction is not used.

Path-based settlement transactions totally depart from direct payments as they use

the credit links available in the Ripple network. Assume that u1 wants to pay β IOUs

to un and that u1 and un are connected by a path of the form u1 ´ u2, . . . , un´1 ´ un.

Edges are considered undirected to find a path from the sender u1 to the receiver un

through intermediaries tuiuiPt2,...,n´1u. In order to perform the transaction, the weight

(i.e., credit value) on every edge in the path from u1 to un is updated depending on the

direction of the edge as follows: edges in the direction from u1 to un are increased by β,

while reverse edges are decreased by β. For the settlement transaction to be successful,

weights must always remain non-negative and must not exceed the pre-defined upper

bound of the edge (if the upper bound is other than 8).

In the settlement transaction shown in Table 2.1, assume that Dave wants to pay

10 EUR to Edison. This transaction can be routed using the path Dave Ð Gateway Ñ

Edison (see Figure 2.2). Since credit link Dave Ð Gateway holds 20 EUR (i.e., ą 10

EUR) and credit link Gateway Ñ Edison has no upper bound, the transaction can be

performed and credit links are updated as follows: link Dave Ð Gateway is decreased

to 10 EUR while link Gateway Ñ Edison is increased from 85 to 95 EUR.

It is not necessary to find a single path with available credit along each credit link.

Instead, the settlement transaction can be split across multiple paths such that the

sum of credit available on all paths is larger than or equal to β. For example, in the

network from Figure 2.2, assume now that Dave wants to pay 25 EUR to Edison. The

settlement transaction now can be split into two settlement transactions with amounts

of 20 EUR and 5 EUR. The 20 EUR settlement transaction can be performed as

explained earlier, while the 5 EUR settlement transaction is carried out over the path

Dave Ð Fanny Ñ Edison. In Ripple, it is possible to include the information about

the several paths used in a single settlement transaction: the list of paths are included

15

in the Path field annotated with the amount of credit used per path. The Amount

field still indicates the total amount of transacted IOUs.

Moreover, in our running example we have assumed that all the links have a

common currency. In the Ripple community, rippling denotes the redistribution of

credit for each intermediate wallet as a consequence of a transaction [34]. Rippling can

only occur between two credit links that belong to the same wallet and have credit in

the same denomination. Nevertheless, several rippling operations can be concatenated

to carry out a transaction with several intermediate wallets, as described above. We

expect that rippling is allowed by gateways; however, less active users may opt for

disabling this rippling functionality, effectively avoiding undesired balance shifts.

Nevertheless, settlement transactions are not restricted to same-currency transac-

tions. It is possible that the sender uses some of her IOU in any given currency and

the receiver receives the corresponding amount of IOU in any other currency, carrying

out thereby a cross-currency settlement transaction. Such transaction is possible only

if at least one of the intermediate wallets acts as market maker.

In summary, for completeness in this section we have described both payments

and settlement transactions. However, in the rest of this dissertation we focus on

settlement transactions as they are the only ones that transfer IOU credit among

wallets in the network. Moreover, we observe that the XRP currency might not be

required for implementing transaction fees. Instead, fees can be embedded in the IOU

settlement of the transaction itself: When a user in the path from the sender to the

receiver gets β IOU, she can forward only β ´ α IOU, effectively charging α IOU as

fee. This way of handling fees comes with the advantage that every intermediate user

can charge a custom fee according to her own criteria (e.g., the transacted amount,

transacted currency or transacting users).

16

2.1.4 Consensus Protocol

Inspired from the success of cryptocurrencies like Bitcoin, all Ripple operations

are also logged in a public available blockchain called Ripple ledger. The Ripple ledger

is thereby an immutable log that keeps track of all wallets, credit links and exchange

offers in the Ripple network as well as their evolution over the Ripple timespan. The

Ripple consensus protocol is carried out by a set of (somewhat fixed) participants

called validators and it is used to decide the set of operations that are added to the

Ripple ledger. In the following, we overview the Ripple consensus protocol.

An operation is authorized by the sending wallet’s owner by signing it with the

corresponding signing key. Such operation is then forwarded to a validator. Validators

are thus in charge of receiving authorized operations from users and validate their

correctness according to the current state of the ledger and the consensus rules.

Note that since different wallet’s owners might forward their operations to different

validators, they might end up with different sets of operations. The consensus protocol

must then ensure that all validators agree on an unique ledger.

The consensus protocol proceeds in rounds. In the first round, each validator

broadcasts its own candidate set of operations, that is the set of validated operations

that it has received so far and are not added to the ledger yet. Successive rounds

are used to vote a candidate ledger that contains the subset of operations from all

candidate sets that have been voted by “enough” validators. When a candidate

ledger is voted by 50%, . . . , 80% of the validators (increased by 10% per round), it

is considered final and it is added to the Ripple ledger. The operations that do not

make it into the ledger are either discarded or added to the next protocol iteration.

Although several permissioned consensus algorithms, such as Byzantine Fault

Tolerance (BFT) consensus [35], have been throughly studied in the distributed systems

literature over the last 35 years, the Ripple consensus protocol is a novel approach

informally presented in a whitepaper [36] along with an open source implementation.

Moreover, only some preliminary analysis have been performed so far [37–40]. In

17

general, the lack of formal definitions and security studies of the Ripple consensus

protocol, makes its safety and liveness analysis an interesting open problem.

2.2 Security Study

In this section, we overview the possible vulnerabilities of the Ripple network to

attacks that affect the IOU credit of users’ wallets and we refer the reader to [41] for

a more detailed discussion. In particular, we find that about 13M USD are at risk in

the current Ripple network due to inappropriate configuration of the rippling flag on

credit links, facilitating undesired redistribution of credit across those links. Although

the Ripple network has grown around a few highly connected hub (gateway) wallets

that constitute the core of the network and provide high liquidity to users, such a

credit link distribution results in a user base of around 112, 000 wallets that can be

financially isolated by as few as 10 highly connected gateway wallets. Indeed, today

about 4.9M USD cannot be withdrawn by their owners from the Ripple network due to

PayRoutes, a gateway tagged as faulty by the Ripple community. Finally, we observe

that stale exchange offers pose a real problem, and exchanges (market makers) have

not always been vigilant about periodically updating their exchange offers according

to current real-world exchange rates. For example, stale offers were used by 84 wallets

to gain more than 4.5M USD from mid-July to mid-August 2017. Our findings should

prompt the Ripple community to improve the health of the network by educating its

users on increasing their connectivity, and by appropriately maintaining the credit

limits, rippling flags, and exchange offers on their IOU credit links.

2.2.1 Effect of Unexpected Balance Shifts

Although a settlement transaction maintains the net balance of intermediate

wallets, its use is not innocuous for intermediate wallets. The main issue is that the

market value and stability of the IOU depends on the issuer of such IOU. In our

illustrative example of the Ripple network in Figure 2.2, Edison may trust the credit

18

from the gateway more than the credit from Fanny. Therefore, a transaction involving

rippling among the two corresponding credit links can induce a redistribution of IOU

from a more valuable to a less valuable issuer without the specific consent of the

involved wallet’s owner. We expect gateways to allow rippling; however, less active

users may wish to avoid balance shifts not initiated by them.

As a countermeasure, each credit link is associated with a flag no ripple. When

no ripple is set, the corresponding credit link cannot be part of a rippling operation.

This flag was first added in December 2013, and was updated in March 2015 to have

a default state of “set” (i.e., no rippling allowed by default), so users could selectively

opt-out and allow rippling. Additionally, a wallet has a new flag called defaultRipple

that, if set, enables rippling among all the wallet’s credit links. Gateway wallets, for

instance, follow this pattern [42].

In this state of affairs, we aim to identify wallets other than gateways that allow

rippling, and to extract how much credit they put at risk doing so. For that, we

proceed as follows. First, the credit links not including no ripple flag are tagged

as no ripple “ false. Second, for each wallet that has the defaultRipple flag set, we

set no ripple “ false (i.e., rippling is allowed) on all its credit links. Third, we use

the no ripple flag for the remainder of the links as specified in the Ripple network.

Now, we say that a wallet is prone to rippling if it has at least two credit links with

no ripple “ false (i.e., they allow rippling) and they hold credit in the same currency.

Following this methodology, we find that more than 11, 000 wallets are prone to

rippling and are not associated with well-known gateways. Moreover, more than 13M

USD are prone to rippling, counting only the credit links that wallets prone to rippling

have directly with gateways, as they are associated with real-world deposits. This

gives a lower bound on the amount of credit at risk, and the actual value could be

higher, if we count credit at risk with wallets other than the gateways. This result

demonstrates that unexpected balance shifts in the Ripple network can still affect a

significant number of wallets, and more importantly, their credit.

19

We also observe that many wallets prone to rippling maintain credit links with a

low balance (even zero), but with upper limit set to a value larger than zero. The

gap between balance and upper limit on these credit links can be used to shift the

balances of wallets, thus increasing the risk.

As a possible countermeasure, the users have the possibility of disabling the rippling

functionality on their credit links completely. Therefore, less active users may opt

for disabling rippling among their credit links to avoid balance shifts not initiated by

them. Moreover, more active users can also opt for dynamically adjust the amount of

credit prone to rippling and add a rippling fee to it. Finally, users with credit links

holding zero balance should reduce their upper limit to effectively void them.

2.2.2 Effect of Faulty Gateways

The gateway wallets are highly connected wallets included in the core of the Ripple

network and significantly contribute to the liquidity of the network. A faulty gateway

can disable rippling on most credit links of its wallet, ensuring that transactions routed

through it are no longer possible and effectively freezing the balance held at credit

links of its wallet [43, 44]. This would not only severely affect the liquidity of the

network, but also lead to monetary losses to the neighboring wallets, as they no longer

can use the credit issued by the compromised wallet.

Given that, we aim to study the effect of faulty gateway wallets (e.g., as a result

of adversarial wallet compromise) and the resilience of the Ripple network to them.

Towards this goal, we first select 100 candidate faulty wallets from the Ripple network

according to two different criteria: (i) Wallets with highest degree (100-deg) and (ii)

Wallets involved in most of the transactions (100-ftx). Although other strategies to

select wallets are definitely possible, these strategies lead us to select the key players in

the current Ripple network: Gateways and market makers. Second, we assess the most

disruptive set of wallets by removing them from the Ripple network and observing

how the network connectivity is affected. Figure 2.3 depicts the size of the largest

20

 0

 10000
 20000

 30000

 40000

 50000
 60000

 70000

 80000
 90000

 100000

 0 10 20 30 40 50 60 70 80 90 100

S
iz

e
 o

f
th

e
 c

o
m

p
o

n
e
n

t

Nodes

Transaction Wallets

Sorted Wallets

Fig. 2.3. Size of the largest connected component after removing wallets
sorted by number of credit links (blue) and number of appearances in
transactions (purple).

connected component after removing the wallets in 100-deg and 100-ftx. Intuitively,

the smaller the component, the fewer the possible transactions, since only wallets in

the same component can transact with each other. From this experiment, we conclude

that wallets included in 100-deg have a more profound impact on the connectivity

of the Ripple network (and therefore on the transactions) than wallets included in

100-ftx. Therefore, we use 100-deg in the rest of this section.

Afterwards, we define the resilience factor (rsl-factor) as the ratio between the

component size in the most disruptive splitting of the network after removing a wallet

(i.e., splitting the network in two components of equal size) and the size of the actual

largest component after removing a wallet. Therefore, the rsl-factor can take values

in the range r0.5, 1s. Values close to 1 indicate that the network has a low resilience,

as the removal of a wallet resulted in a component with (close to) half of the wallets

of the network. Conversely, values close to 0.5 indicate that the network has a high

resilience, as the largest component after removing a wallet is (close to) the entire

graph.

We observe that the rsl-factor of the Ripple network is maintained in the range

p0.5, 0.6q after the removal of each wallet in 100-deg, demonstrating that the core of

21

the Ripple network has high resilience. We conclude that we can divide the Ripple

network into: (1) A small network core of around 65, 000 wallets (36% of the total)

that includes the key wallets with high connectivity. This core is highly resilient to

the removal of highly connected wallets, and (2) A large set of around 112, 000 wallets

that can be easily disconnected from the network after removal of key wallets. Yet,

these highly vulnerable wallets have more than 42M USD of credit with the gateways,

which is at risk.

This result shows that the Ripple network still has a few wallets that are “too

big to fail.” The more centralized a credit network is, the higher the impact of a

failing well-connected wallet. This could effectively be comparable to a very large

bank failing in the traditional banking world (e.g., the case of Lehman Brothers). As

a countermeasure, it is necessary for many users to increase their connectivity and

split their credit among different credit links to avoid losses due to the failure of a

handful of wallets.

2.2.3 Effect of the PayRoutes Gateway

While studying the Ripple network, we observed that the Ripple community had

reported the unresponsiveness of the company running the gateway PayRoutes when

contacted regarding the credit issued by it [45]. We also emailed them, but got no

answer at the time of this writing. In this state of affairs, we study PayRoutes as an

example of a faulty gateway.

In a bit more detail, we consider two questions. First, we aim to find the amount

of credit in the Ripple network that can only be withdrawn with the cooperation of

PayRoutes and, given the unresponsiveness of the gateway, this credit is “stuck” in

the Ripple network. Second, we study why wallets with stuck credit obtained it in the

first place, even though PayRoutes was already reported as faulty. We describe our

methodology and results for each goal separately in the following two sections.

22

Credit with PayRoutes Here, we are interested in credit links of the form Pay-

Routes Ñ ui where PayRoutes has disabled rippling. This implies that the credit on

these links can only be used in a withdrawal operation jointly with PayRoutes: ui sets

the credit on the link to 0 to obtain the corresponding amount in the real world from

PayRoutes. However, as PayRoutes is a faulty gateway, this operation is no longer

available and the credit is stuck. Given that, we first address the question: how much

credit is stuck on credit links with PayRoutes?

In order to answer this question, we first pick the credit links with PayRoutes

as counterparty and positive balance, and derive the status of their rippling flag (as

described in Section 2.2.1). Then, we classify the neighbor wallets of PayRoutes into

two groups as follows. First, we identify those wallets that have a credit link with

PayRoutes for which rippling is not allowed, i.e., no ripple is set to true. We denote

this set of wallets by wallets-no-rippling. Second, we consider the set of wallets that

are not in wallets-no-rippling but yet cannot perform a transaction for an amount

equal to the balance on their credit link with PayRoutes. We denote this second set as

wallets-rippling-no-tx. As the wallets in either wallets-no-rippling or wallets-rippling-

no-tx cannot transfer the (entire) credit they have on a credit link with PayRoutes

to another wallet in the Ripple network, the only way for them to get their credit

back is to contact PayRoutes in the real world and withdraw the corresponding funds.

However, as PayRoutes is unresponsive, such credit is “stuck.”

As result of this procedure, we observe that, out of the 2, 958 wallets that have

at least one credit link with PayRoutes, there exist 621 wallets in either wallets-no-

rippling or wallets-rippling-no-tx, and therefore with stuck credit. We observe that

the stuck credit on these credit links is around 4.9M USD.

It is important to note that the PayRoutes case is not typical in the Ripple network.

There have been other gateways that have ceased their activities during the Ripple

network lifetime, but have not caused such an effect. We consider DividendRippler as

an example of such a gateway. The difference from PayRoutes is that before shutting

23

down, DividendRippler publicly announced it and mandated its clients to proceed to

withdraw the credit available in their credit links with DividendRippler.

We conduct the same above experiment for DividendRippler, and observe that,

although 665 wallets have credit stuck with DividendRippler, such credit accounts for

around 1, 000 USD only. This is how much DividendRippler currently owes to the rest

of wallets. This demonstrates that wallets followed the announcement of the gateway

and successfully managed to withdraw most of their credit before the gateway closed.

Obtaining Credit from PayRoutes In this part we focus on answering the

question: How did wallets with stuck credit obtain such credit in the first place?

For that, we first investigate how new credit links were created with PayRoutes

over the lifetime of the Ripple network. We observe a spike of 2, 527 credit links

created in October 2016 from a total of 1, 805 wallets. Out of these, 186 credit links

were created by 133 wallets and have balance stuck in PayRoutes. This implies that

21% of the wallets with stuck balance created credit links with PayRoutes during that

month. We denote these by stuck-wallets-Oct-16.

Given this unusual behavior, we study how those 133 wallets obtained credit. We

identify two possibilities: (i) A path-based transaction from another wallet in the

Ripple network; (ii) A circular transaction (i.e., sender and receiver of the transaction

are the same wallet), where a wallet pays a certain amount of XRP (or any currency

issued by a gateway other than PayRoutes) in exchange for credit issued by PayRoutes

on a credit link with it.

As a result from this study, we observe that wallets in stuck-wallets-Oct-16 do not

receive significant credit from other wallets in the Ripple network during October

2016. In particular, we find only three transactions with credit values of 10 USD, 100

ILS and 5 ILS. Instead, wallets in stuck-wallets-Oct-16 get their credit through circular

transactions. We find that 51 wallets perform a total of 286 circular transactions,

where these wallets received around 12, 000 USD in exchange for approximately 300

CNY and 12, 000 XRP.

24

Table 2.2.
Summary of the exchange offers between XRP and USD created in the
Ripple network during October 2016. Each row represents the combination
of all offers exchanging the corresponding pair of currencies.

Pay Val Pay Cur Get Val Get Curr Ratio

1062738.51

59678.62

XRP

USD

17009.50

33194.62

USD

XRP

62.48 to 1

1.78 to 1

In essence, wallets in stuck-wallets-Oct-16 invested mostly XRP to obtain USD

from PayRoutes. We find that the exchange rate XRP/USD in the Ripple network

was considerably “better” than in the real world at that time: In the Ripple network

at that time, a wallet could get 0.73 USD for 1 XRP on average, with a minimum of

0.14 and a maximum of 2.87 USD using stale offers available in the network. However,

in the real world, one could get less than 0.01 USD for 1 XRP at the average exchange

rate at that time and up to 0.28 USD for 1 XRP, even considering the best exchange

rate over the entire Ripple network lifetime.

The results presented above describe the origin of a small fraction of the credit

stuck on credit links with PayRoutes. We repeated the same experiment over the

complete Ripple network lifetime and observed similar patterns. First, the credit links

with stuck credit are involved in a total of 278 transactions where other wallets in the

Ripple network are sending credit to victim wallets at a favorable rate: The receiver

gets more credit than actually sent by the sender. Those transactions account for

around 158, 000 USD. Second, the highest amount of credit is received as a result of

circular transactions that use advantageous offers. In particular, we find that credit

links with stuck credit are involved in a total of 16, 469 transactions where they gained

more than 63M USD over the complete Ripple network lifetime.

Although wallets with stuck credit at PayRoutes obtained considerable revenue, a

broader perspective reveals that it was a risky operation. For instance, as a possible

countermeasure to this issue it is possible to check the exchange rates available in the

25

Ripple network at October 2016 to determine how likely it is to get the USD credit

back. In particular, we observe that although wallets in stuck-wallets-Oct-16 managed

to get “cheap” USD, the market values were not favorable to get them back: New

exchange offers created in the Ripple network in October 2016 (as shown in Table 2.2)

demonstrate this.

2.2.4 Effect of Stale Offers

Exchange offers and rippling are the key operations that enable path-based trans-

actions. The previous two sections investigated the security of rippling, so we now

investigate the safety of exchange offers, which are set by the owners of wallets at their

own discretion. Naturally, proposed offers should match those of the corresponding

currencies in the real world or even be in favor of market makers so that they get

credit for their exchange services. Otherwise, cunning users can leverage stale offers

to gain credit, while market makers may go bankrupt. This would adversely impact

the liquidity and availability of the Ripple network.

In this state of affairs, we aim to determine whether there are stale offers in the

Ripple network and, if so, study to what extent devilry users have taken advantage

of them. Here, we consider the coin market capitalization (https://coinmarketcap.

com/) as representative source to know the prices for cryptocurrencies outside the

Ripple network. In order to achieve our goal, we first search for sudden changes in the

currency’s market capitalization. We observed several such changes. We first examine

a spike in the price of XRP in late 2013: During a period of ten days (Nov 20th–30th,

2013), the price of 1 XRP with respect to BTC increased by 380%, i.e., 1 XRP was

exchanged at 0.00001 BTC at the beginning of the period but within a week, 1 XRP

was exchanged at 0.000038 BTC. Given that, we extract all the transactions that

occurred during this ten-day period, obtaining a total of 1, 932 transactions. We prune

this dataset by considering only cross-currency transactions that exchange XRP for

BTC or vice versa. We obtain a total of 112 transactions.

https://coinmarketcap

26

Fig. 2.4. Illustrative example of exchange offers in the Ripple network.
Market maker accepts XRP and pays BTC (top); market maker accepts
BTC and pays XRP (bottom). If the purple point (offer in Ripple) is
below the green point (offer in real world), the transacting user gained
credit. Otherwise, the market maker gained credit. These transactions
took place between November 20th and 30th, 2013.

We compare the exchange rate between XRP and BTC used in each transaction

to the exchange rate in the real world at the same time, as shown in Figure 2.4. In

both figures, a purple point represents the exchange rate in a Ripple transaction while

the corresponding green point denotes the exchange rate in the real world at the same

time. For both graphs, if the purple point is higher than the green point (Ripple’s

offer is more expensive than the real world offer), the market maker made money. In

contrast, if the purple point is below the green point, the user who conducted the

transaction gained credit.

27

We analyzed the transactions in which a sender gained credit by exploiting stale

offers. We make two observations. First, users could have gained up to around 250, 000

USD by fully exploiting XRP/BTC stale offers during the specified period. In other

words, market makers put at risk around 250, 000 USD due to stale offers. Second,

24 different wallets made a monetary benefit of at least 7, 500 USD by exploiting

XRP/BTC stale offers (and other offers available in the network at that time). Here,

we calculate the USD value by converting the BTC and XRP to their real world

exchange rates at the corresponding times. In summary, even in the nascent stages

of the Ripple network, when the transaction volume was considerably low, market

makers risked significant loss of credit by letting exchange offers become stale.

To confirm these results, we explored another, more recent, substantial change in a

currency exchange rate. We found a sudden increase in the price of BTC compared to

XRP in 2017, concretely during the period July 16th – August 16th: The value of 1

BTC went from 11, 713 XRP to 25, 735 XRP, that is, an increase of 120%. As before,

we extracted the transactions during that period of time and compared the exchange

rates of XRP from/to BTC in the Ripple network and in the real world. We observe

that market makers put at risk around 500, 000 USD due to stale offers exchanging

XRP to BTC and vice versa. Moreover, we observe that 84 wallets exploited these

stale offers (and possibly other offers) to gain more than 4.5M USD. These results

confirm that stale offers continue to be a risk for market makers. In fact, the effect of

stale offers is now amplified given the growth of the Ripple network and transactions.

As a possible countermeasure to this problem, a market maker can update a

previously offered exchange rate at any time. Therefore, a market maker should

continuously monitor the price for the currencies involved in its offers and promptly

update its exchange offers in the Ripple network when a sudden change occurs in the

real world. The gaps between exchange rates in the Ripple network and real world

are thereby reduced, and with them, the windows for cunning users to gain credit.

28

2.3 Privacy Study

The Ripple ledger serves as a unique and append-only log that keeps track of all

wallets in the Ripple network, credit links between them and all valid operations that

ever happened in the Ripple network. Remember that a wallet in Ripple is represented

by the hash of the corresponding public key that effectively serves as a pseudonym

for the wallet. Therefore, although pseudonyms are not directly tied to real world

identities, it is possible to reconstruct the complete financial activity performed by a

single pseudonym. Although several research works have shown privacy breaches in

Bitcoin due to the use of pseudonyms in the blockchain [46–52], the important issue of

privacy in credit networks has not been thoroughly studied yet. This state of affairs

leaves open important questions such as Is privacy a real problem in Ripple? Can we

measure it?

In this section, we overview our study of the Ripple network that sheds light to

these questions [19]. In particular, we propose two heuristics based on observations of

the interactions between Ripple wallets themselves and interactions of these wallets

with online exchange services to deposit and withdraw cryptocurrencies in and from the

Ripple network. By doing so, we show that it is possible to cluster wallets that belong

to the same user across different systems (not only Ripple but also cryptocurrencies).

Additionally, we propose deanonymization mechanisms to reveal the identity behind

the clustered wallets. These results show the privacy breaches inherent to a publicly

available ledger, a practice followed by other credit networks as well such as Stellar.

2.3.1 Heuristic 1: Interledger Linkability

Our first heuristic can be illustrated with the tale of two logs, as shown in Figure 2.5.

Assume that Alice has certain bitcoins in her Bitcoin wallet. Using the Bitcoin system,

she can only pay for services that accept payments in BTC. However, she cannot pay

to Bob as he only accepts payments in USD. In this state of affairs, Alice can instead

transfer these bitcoins into the Ripple network, getting thereby the corresponding

29

Alice Bob

Only USD
1

Alice

2

Alice

Gateway1

Gateway1 Gateway2

Alice
Bob

Carol

3

2
/ 2

 B
TC

6 / 8 BTC 15
0 /

 -
US

D

20 / 5000 USD

Gateway1 Gateway2

Alice
Bob

Carol

4

1.
5

/ 2
 B

TC

6.5 / 8 BTC 21
50

 / -
 U

SD 2020 / 5000 USD
6

6

4

2

Fig. 2.5. The tale of two logs. Alice cannot pay bitcoins to Bob as he
only accepts USD (top-left). Out of her 6 bitcoins, Alice pays 2 bitcoins
to a gateway in the Bitcoin network and keeps the other 4 bitcoins for
her (top-right). Alice gets the corresponding 2 BTC from the gateway in
the Ripple network (bottom-left). Finally, Alice performs a cross-currency
transaction to settle her debt with Bob (bottom-right).

amount of BTC IOU. For that, she needs to interact with a gateway that provides

the service of exchange funds among the two networks. In particular, Alice can pay to

the gateway in bitcoins within the Bitcoin network. The gateway in turn pays back to

Alice the corresponding BTC IOU in the Ripple network. Now, she is able to pay to

Bob as the Ripple network allows the exchange from BTC IOU into USD using the

currency exchanges offered by market makers (Carol in this example).

There are several gateways (e.g., Bitstamp and GateHub) which offers users the

possibility to transfer bitcoins (or any of the altcoins) into the Ripple network and vice

versa. As mentioned before, Alice can pay the gateway a certain amount of bitcoins.

The gateway, upon reception of the bitcoins, issues the corresponding BTC IOU to the

credit link that Alice has previously formed with the gateway. We call this transaction

30

deposit transaction. On the other hand, Alice could send (part of) her BTC IOU to

the gateway which in turn, transfers back the corresponding amount of bitcoins to the

Alice’s Bitcoin wallet. We call this transaction withdrawal transaction.

The key observation here with respect to privacy is that the a priory independent

payments carried out during deposit and withdrawal transactions are logged in the

corresponding ledgers and can be linked together following the aforementioned me-

chanics. For instance, in the example depicted in Figure 2.5, the payment from Alice

to the gateway (top-right) is logged in the Bitcoin blockchain while the issue of credit

from the gateway to Alice (bottom-left) is logged in the Ripple ledger. Although

Alice must use different wallets in Bitcoin and Ripple, the fact that both logs are

publicly available allows an observer to link both operations together and in turn

determine Alice’s wallets in both systems. As the reader can imagine, this process

can be extended to link wallets that belong to the gateway as well as to extract other

blockchain-based cryptocurrencies (i.e., altcoins) wallets that can further be linked.

Heuristic 1 [Deposit and withdrawal at the gateway] The heuristic for deposit

operations to link Bitcoin and Ripple wallets belonging to the same user involves the

following steps:

1. Assume wg is a Ripple wallet owned by the gateway. Extract the set of all

transactions in the Ripple network where wg is the sender. We denote this set

by Tspwgq. Moreover, for every transaction t P Tspwgq, obtain the corresponding

Bitcoin transaction.We denote the corresponding Bitcoin transaction by tb.

2. For every transaction t P Tspwgq create a pair (wg, rcvptbq), where rcvptbq is the

receiver of the Bitcoin transaction tb corresponding to t. All these pairs thereby

created correspond to Ripple, Bitcoin wallets belonging to the gateway. On the

other hand, for every transaction t P Tspwgq, create a pair (rcvptq, sdrptbq),

where rcvptq denotes the receiver wallet of the Ripple transaction t and sdrptbq

denotes the sender wallet of the corresponding Bitcoin transaction. The two

wallets of such a pair are owned by the same user.

https://transaction.We

31

The heuristic for withdrawals to link together Bitcoin and Ripple wallets belonging

to the same user involves the following steps:

1. Assume that wg
1 is a Ripple wallet owned by the gateway. Extract the set of all

transactions in the Ripple network where wg
1 is the receiver. We denote this set

by Trpw
1 q. Moreover, for every transaction t1 P Trpw

1 q, obtain the corresponding g g

Bitcoin transaction, which we denote by t1 b.

2. For every transaction t1 P Trpw
1 q create a pair (w1 , sdrpt1 bq), where sdrptb

1 q is theg g

sender of the Bitcoin transaction t1 b corresponding to t1 . All these pairs thereby

created correspond to Ripple, Bitcoin wallets belonging to the gateway. On the

other hand, for every transaction t1 P Trpwg
1 q, create a pair (sdrpt1q, rcvpt1 bq),

where sdrpt1q denotes the sender wallet of the Ripple transaction t1 and rcvpt1 bq

denotes the receiver wallet of the corresponding Bitcoin transaction. The two

wallets contained in such a pair are owned by the same user.

Figure 2.6 (top) shows an illustrative example for a deposit transaction. Assume

Alice wants to get 2 BTC IOU into her Ripple wallet Alice
1 . To achieve that, she first

creates a Bitcoin transaction where she transfers 2 BTC from her Bitcoin wallet AliceB
1

to the gateway’s Bitcoin wallet GwB
1 . Once the gateway has checked the validity of the

Bitcoin transaction, it creates a Ripple settlement transaction where it issues 2 BTC

IOU from its Ripple wallet Gw
1 to Alice’s Ripple wallet Alice

1 . This implies that

AliceB
1 and Alice

1 are owned by Alice while GwB
1 and Gw

1 are owned by the gateway.

Moreover, following the heuristics regarding Bitcoin change addresses proposed by

Meiklejohn et al [47], we can infer that AliceB
2 also belongs to Alice.

Figure 2.6 (bottom) shows a withdrawal transaction. Assume Alice wants to

withdraw 1 BTC IOU from the Ripple network into her Bitcoin wallet. For that,

2 to the gateway’s Ripple she first sends 1 BTC IOU from her Ripple wallet Alice

wallet Gw
2 . Once the gateway has received the BTC IOU, it transfers 1 BTC from

its Bitcoin wallet GwB
2 to Alice’s Bitcoin wallet AliceB

3 . The withdrawal implies that

32

Ripple Transaction

Field Value

Sender Gw
1

Receiver Alice
1

Path
1Gw Ñ Alice

1

Amount 2 BTC IOU

Bitcoin Transaction

Input Output

Alice : 6B
1

Gw : 2

Alice : 4B
2

B
1

W
IT

H
D
R
A
W

A
L

D
E
P
O
S
IT

Ripple Transaction

Field Value

Sender Alice
2

Receiver Gw
2

Path Alice Ð Gw
2

2

Amount 1 BTC IOU

Bitcoin Transaction

Input Output

B
2Gw : 15

B
3

B
3

Alice : 1

Gw : 14

Fig. 2.6. An illustrative example of deposit and withdrawal processes in
a gateway. For a deposit, first Alice sends 2 BTC to the gateway and
then, the gateway sends 2 BTC IOU in the Ripple network to Alice. For a
withdrawal, first Alice sends 1 BTC IOU to the gateway within the Ripple
network and then the gateway sends 1 BTC back to Alice in Bitcoin.

22and Alice and Gw

Moreover, as mentioned before, we can infer that Gw

B BAlice are owned by Alice while Gw are owned by the gateway. 3 2

B
3 belongs to the gateway.

We tested the Heuristic 1 in the gateway DividendRippler. Although this gateway

is not currently active, at the time of our experiment it was one of the most active

gateways in terms of deposit and withdrawals of cryptocurrencies from and to the

Ripple network. We limit our description to how we have extracted the necessary

information for the steps defined in Heuristic 1 for the deposit process (i.e., steps 1-2).

The heuristic for the withdrawal process has been implemented in a similar manner.

1. The DividendRippler wallet (i.e., wg) is publicly available at its website. The

set Tspwgq has been obtained from our crawled Ripple transactions.

33

2. Every deposit has its own page in the DividendRippler’s website. This page

details both the Bitcoin (correspondingly the Altcoin) and the Ripple transaction

involved. Therefore, the tb corresponding to every transaction t P Tspwgq can be

obtained from it. Later in this section, we discuss how to generalize this step

to get the Bitcoin transaction corresponding to a Ripple settlement transaction

even if the gateway does not publicly show it.

3. For every transaction t P Tspwgq, sdrptq and rcvptq have been obtained from our

Ripple database. The transaction t’s webpage also contains a link to the Bitcoin

(correspondingly the altcoin) block where the corresponding tb is stored. From

this block, we have obtained the fields sdrptbq and rcvptbq.

Our heuristic finds out a total of 435 Ripple wallets involved in trading with the

gateway DividendRippler. Moreover, we have been able to extract 3,145 Bitcoin

wallets and 1,173 altcoin wallets divided into 841 Litecoin wallets, 178 Terracoin

wallets and 154 Namecoin wallets.

This heuristic impacts the privacy provided by Ripple. In particular, this heuristic

enlarges the set of wallets among different cryptocurrencies that can be linked to

a given user. This fact has several privacy implications. First, it paves the way to

reconstruct the business of a company in a more accurate manner. It is interesting to

note that since a business must publicly announce at least one wallet to its customers,

the complete (and possible large) set of wallets linked to it are deanonymized. Second,

larger sets of linked wallets among different systems affect also the privacy of users.

For instance, even if a given user has private wallets in Bitcoin (e.g., she always uses

mixing techniques for her transactions), deanonymizing one of her Ripple wallets

directly deanonymizes her Bitcoin wallets as well.

Although in this experiment we use a gateway that publishes the Ripple and

Bitcoin transactions involved in deposits and withdrawals, our heuristics are also

applicable to gateways not publishing this information. In such case, it is possible

to collect the Ripple transactions performed by the gateway and link them with

high probability to Bitcoin transactions issued in a similar time and transacting the

34

corresponding amount of bitcoins. This approach leads, however, to a probabilistic

guarantee on accuracy and might include false positives in the results. Moreover, as

mentioned earlier, our heuristic enables to link not only Ripple and Bitcoin wallets,

but also wallets corresponding to other transaction networks (e.g., Stellar) and other

cryptocurrencies (e.g., Litecoin, Namecoin or Terracoin).

2.3.2 Heuristic 2: Hot-cold Wallets Linkability

The concept of hot-cold wallet is associated to a behavior that many of us have in

our daily life. Instead of carrying all of her funds in her pocket wallet, Alice carries

only part of it and spends it on her daily purchases. If she runs out of cash in her

pocket wallet, she goes to her bank and withdraws more funds to top-off her wallet.

This behavior is also present in the interactions between wallets in the Ripple network,

a fact that we leverage in our novel heuristic to link Ripple wallets controlled by the

same user.

In a nutshell, users willing to use the Ripple network to attract new business must

publicly announce (at least) one of their wallets (i.e., issuing wallet) so that future

clients can create credit link with those. For example, gateways publicly advertise

their issuing Ripple wallet in their websites. Then, the issuing wallet’s owner can issue

credit to the clients through the newly created links. However, this practice has two

main drawbacks.

First, the issuing wallet becomes an attractive target for an attacker: if the secret

key of such wallet gets compromised, the attacker can freely issue an amount of

unauthorized IOUs bounded only by the upper bound on these wallet’s links. This

problem is even more prominent given that upper bounds in the links are set to 8 by

default unless the user changes them. Such an attack has already been observed in the

Ripple network and the stolen wallet’s owner has gone bankrupt. Second, as the Ripple

ledger is publicly available, announcing ownership of a wallet and using it to carry

out all the settlement transactions clearly leads to privacy leaks: everybody can track

35

the settlement transactions of the issuing wallet and reconstruct the complete activity

of the given user. Nevertheless, current businesses (such as banks and gateways) seek

to maintain privacy of their activities while using the Ripple network.

In order to overcome these issues, Ripple defines the hot-cold wallet security

mechanism to issue IOUs of any currency [53,54]. The cold wallet is publicly linked

to a certain user. However, actual issuing of the IOUs in a credit link extended to the

cold wallet is performed by the hot wallet as follows. First, the hot wallet creates a

credit link with the cold wallet. Then, when the owner of the cold wallet must extend

credit to a user, she uses the hot wallet to extend that credit, using for this settlement

transaction the existing path (hot wallet) Ð (cold wallet) Ñ (user wallet).

The hot wallet is therefore considered to be online as it is used for daily settlement

transactions. For example, the secret key of the hot wallet might be used by a web

application to automatically perform settlement transactions to other users when

requested. When the credit link between the hot and cold wallet runs out of IOUs,

the cold wallet extends extra IOUs. This operation happens, however, less often and

can be performed offline (e.g., signing locally the necessary transaction). Thus, the

cold wallet is considered offline.

Following this mechanism, if the thief steals the private key of the hot wallet, he

can issue a number of unauthorized IOUs bounded by the IOUs extended from the

cold wallet to the hot wallet. Two observations are important here. First, this bound

is normally notably smaller than the bound on the number of IOUs a cold wallet can

issue. Second, the maximum number of IOUs in the link between hot and cold wallet

is totally controlled by the owner of the cold wallet. She, however, does not have any

control over the upper bound with the credit links created with the rest of the users.

With respect to privacy, we note that a settlement transaction from the hot wallet

to any other user’s wallet has the same path structure as a settlement transaction

between any two users (i.e., (sender wallet) Ð (cold wallet) Ñ . . . Ñ (receiver wallet)).

Thus, in principle, settlement transactions from the hot wallet to any user cannot

be directly linked to cold wallet’s owner. However, we observe that implementing

36

the hot-cold wallet mechanism forces the user to use her Ripple wallets following

a pattern that makes it possible to link her wallets together. Intuitively, first our

heuristic detects the possible cold wallets. Then, it checks settlement transactions

where the cold wallet is the sender. The receivers of these transactions are the possible

hot wallets. Finally, our heuristic links together hot and cold wallets that belong to

the same user.

Heuristic 2 [Hot and cold wallets] The heuristic to link hot and cold wallets belonging

to the same user involves the following steps:

1. Extract the wallets that only have outgoing credit links in the Ripple network.

They form the initial set of potential cold wallets and we denote it by CW .

Among the wallets connected to a cold wallet in CW , those that have being paid

at least once by such cold wallet are potential hot wallets, which we denote by

HW . The rest of the connected wallets (say, a set HW) are discarded as they

are wallets from users other than cold wallet’s owner.

2. Reduce the set of potential hot wallets HW to those that are paying to other

wallets connected to the cold wallet (i.e., the set HW Y HW). Let HW 1 be the

thereby reduced set of potential hot wallets. Discarded wallets in this step (i.e.,

HW - HW 1) are added to HW , obtaining the set HW 1 .

This step intuitively ensures that potential hot wallets are being used to issue

IOU to other wallets.

3. Reduce the set of potential cold wallets CW to those that have less potential hot

wallets than discarded hot wallets. In other words, for each cold wallet cwi P CW ,

accept cwi only if |HW 1pcwiq| ă |HW 1pcwiq|. Let CW 1 be the thereby reduced

set of cold wallets. This step ensures there are indeed many wallets demanding

IOUs, which are then supplied using a few hot wallets.

37

4. For each cold wallet cwi P CW 1 , create pairs (cwi, hwj) for each hot wallet

hwj P HW 1pcwiq. Here, each pair of wallets thereby created belongs to the same

user.

Figure 2.7 depicts an illustrative example of Heuristic 2. The wallet Carol
1 is the

cold wallet of Carol as it does not have any incoming link in the Ripple network. In

other words, the cold wallet can issue IOUs to other wallets in the network, but no

other wallet can issue IOUs to it.

Carol uses her cold wallet (Carol
1) to fund her hot wallet (Carol

2) with 80 and 70

credits in two settlement transactions, while no other wallet is paid by the cold wallet.

Then, Carol
2 is used to issue credit to wallets that have extended a credit line with

1 , in this example Alice, Bob and Dave. Interestingly, althoughthe cold wallet Carol

Bob transfers credit to Alice, it is not linked to Carol given that Bob does not receive

1any settlement transaction from Carol’s cold wallet Carol .

1

2Our heuristic can thereby derive the fact that Carol and Carol belong to the

2same user (i.e., Carol), even though settlement transactions from Carol to other users

follow the same path structure as transactions among other users (e.g., settlement

transaction from Bob to Alice).

We aim to devise the effect of our heuristic in terms of privacy breaches when

applied to the Ripple network. For that, we run the Heuristic 2 to link wallets that

belong to the same user. Our algorithm results in 261 cold wallets, 268 hot wallets,

having a total of 529 Ripple wallets that have been clustered. Although the results of

this heuristic in practice has resulted in a low percentage of clustered wallets, they

cover a large number of settlement transactions as we show in Section 2.3.3.

The hot-cold wallet mechanism is a rather recent addition to the Ripple network,

and it is not yet extensively applied by the Ripple users. Therefore, it is important to

avoid false positives while applying this heuristic. In the following, we describe our

mechanism to handle false positives.

During our process to handle false positives we apply the principle of being as

strict as possible in order to reduce the number of them. Moreover, from our results

38

Alice

Dave

Carol1

Carol2

Bob

75 / - USD 15 / - U
SD

40 / - USD
20 / - U

SD

Ripple Ledger

Sender Receiver Amount Sender Receiver Amount

Carol
1 Carol

2 $80
2Carol Bob $50

Carol
2 Alice $10

2Carol Dave $75

Carol
1 Carol

2 $70 Bob Alice $10

Fig. 2.7. An illustrative example of Heuristic 2. The arrows show the credit
links. The dashed line represents the wallets linked by the heuristic. Cold
wallets (Carol

1) do not have incoming credit links. Hot wallets (Carol

2)

receive credit from the cold wallets. XRP balances are omitted as they
are not used in this heuristic.

we observe that false positives fall into two categories: wallets that do not follow the

hot-cold wallet mechanism yet and wallets that follow such mechanism but have used

the cold wallet to make sporadic payments to wallets other than the hot wallets. We

perform the following steps to detect false positives.

First, we calculate the distribution of settlement transactions from cold wallets to

potential hot wallets. In the absence of significant ground truth data, we use three

gateways (Bitstamp, RippleFox and SnapSwap) well known in the Ripple community

for using the hot-cold wallet mechanism, to bootstrap a minimal ground truth for

the settlement transaction distributions. Their settlement transaction distributions

resemble the Poisson distribution with parameter λ “ 1. We then compute the

39

divergence of each distribution and the Poisson distribution to detect falsely tagged

cold wallets.

In detail, we calculate the statistical distance between two distributions using the

Kullback–Leibler (KL) divergence [55] as a measure. Then, we flag a cold wallet as

false positive if its settlement transaction distribution diverges from Poisson more than

a threshold T . We set up T as the maximum divergence value between our ground

truth distributions and Poisson with λ “ 1.

This mechanism has flagged as false positives those cold wallets that do not follow

the hot-cold wallet mechanism. In such case, the cold wallet is used to transfer IOUs

to many other wallets with a somewhat equal probability, thus having a diversion from

Poisson greater than T . We believe that these gateways’ behavior is transient and

that eventually they will correctly apply the hot-cold security mechanism. Otherwise,

as it has happened already, they risk huge losses and the possibility of even going out

of business in case their wallet’s key is stolen.

In addition, we observe some wallets following the hot-cold mechanism sporadically

paying other wallets other than the hot wallets. We conjecture that these cases repre-

sent anomalous settlement transactions. A reason for having anomalous transactions

is that, in early stages, users employ the hot-cold wallet mechanism in a non-consistent

manner. However, we expect that over the period they will start using this hot-cold

wallet mechanism correctly and in a consistent manner; otherwise, they may risk

huge credit losses and even bankruptcy as it has been already observed in the Ripple

network. Moreover, for known gateways using the hot-cold wallet mechanism, we have

observed that percentage of anomalous transactions is fairly small. In order to flag

these anomalous cases as false positives, we rely on the fact that cold wallet must

refund the hot wallet repeatedly over time.

In detail, we consider 3 months (i.e., an economic quarter) as a time frame. Then,

only potential hot wallets that are refunded by the cold wallet at least once per quarter

for a period of at least two quarters are flagged as real hot wallets. The rest are flagged

as false positives. There is a tradeoff choosing these thresholds. First, enforcing a

40

less frequent refund or a shorter time frame would tag less wallets as false positives,

decreasing thus the accuracy of the approach. Enforcing that hot wallets are refunded

periodically from when they are created until today would tag real hot wallets as false

positives, reducing also the accuracy: Ripple developers suggest to have several hot

wallets [53], so that some cold wallets use one hot wallet for a period of time and then

change to another hot wallet. Moreover, thresholds for this criteria have been selected

following our design principle of being as strict as possible considering the fact that

there are path-based settlement transactions in Ripple only for less than 2 years.

Finally, we study the impact of this heuristic in the privacy guarantees of the

Ripple network. The hot-cold wallet mechanism has been proposed by Ripple aiming

at disassociating settlement transactions from hot wallet and cold wallet so that

privacy for cold wallet’s owner is increased. However, our heuristic shows a novel

technique to link back hot and cold wallets belonging to the same user, thus allowing

to reconstruct the complete business (see Section 2.3.3). Thus, our heuristic shows

that hot-cold wallet mechanism does not increase privacy in practice.

Moreover, linking hot and cold wallets using our heuristic leads to hinder the

security supposedly provided by the hot-cold wallet mechanism. Using our heuristic,

an attacker can lucratively target the hot wallets belonging to the target business in

order to compromise their private keys and use them to issue unauthorized IOUs. This

forces the attacked business to create new hot wallets. This simple countermeasure

however does not help as the attacker can repeat the linkability process described in

this section and focus his efforts to target the newly created wallet belonging to the

target business.

Additionally, our heuristic works for any IOU network following the hot-cold wallet

mechanism as described earlier. We focus on the Ripple network as it is currently

the most widely deployed credit network in practice. However, we observe that the

hot-cold wallet mechanism is also present in the Stellar network so that our heuristic

will directly apply to it when they grow to the level of Ripple network.

41

2.3.3 Deanonymization of Ripple Businesses

We have presented two heuristics that enable the finding of a set of Ripple wallets

as well as cryptocurrencies wallets which are owned by a certain user. Table 2.3 shows

a summary of our findings as of December 2015, when these experiments where carried

out. This process has allowed us to cluster a total of 959 Ripple wallets, 3, 113 Bitcoin

wallets and 1, 130 altcoin wallets. Moreover, Ripple wallets clustered by our heuristics

are involved in 161, 624 XRP payments and 772, 860 settlement transactions. Our

clustered wallets were jointly involved in a bit more than 7% of the transactions in

the Ripple network.

In the rest of this section, we describe how we leveraged this clustering to

deanonymize the business of most of the main gateways. This implies that any-

body accessing the publicly available Ripple data can reconstruct the total number of

transactions carried out by a gateway, and not only transactions associated to the

gateway’s public wallets, thereby having a significant privacy breach. Remember that

the gateways and their associated transactions represent the main activity for the core

of the current Ripple network. They are used to transfer value from the real world

into Ripple and vice versa, a crucial task to create liquidity in any starting transaction

network such as Ripple or Stellar.

Table 2.3.
Number of wallets clustered in the different heuristics. In Altcoins we
consider Litecoin, Namecoin and Terracoin. Finally, for each heuristic and
for their grouping, we show the number of Ripple transactions where either
the sender or the receiver is a clustered wallet.

Heuristic Ripple Bitcoin Altcoins
Wallets Transactions Wallets Wallets

1 435 96, 009 3, 145 1, 173
2 529 863, 614 – –

Grouped 959 934, 484 3, 113 1, 130

42

Single Gateway Business We first consider the deanonymization of business

of a single gateway at a time for both DividendRippler and Bitstamp. Although

DividendRipple is currently out of business, it was one of the most active gateways for

deposits and withdrawals of cryptocurrencies at the time of the experiment. Bitstamp

continues being today one of the most active gateways over the complete Ripple

network.

In the deanonymization process of the businesses associated to DividendRippler, we

observed that DividendRippler publicly announced only one Bitcoin wallet. Extracting

the transaction history of such wallet from the Bitcoin blockchain, we observe that

more than 1, 000 bitcoins have been transacted. However, this is only a partial view

of the gateway’s business. As shown in Table 2.4, the transaction history of Bitcoin

wallets linked to the gateway by our heuristics shows that more than 5, 000 bitcoins

have been ever transacted at this gateway. These results have been possible given the

wallets linked by Heuristic 1.

At the time of these experiments, Bitstamp had only published its cold wallet and

one of its hot wallets, for which we observed that there have been 72, 042 transactions.

However, our Heuristic 2 flagged another Ripple wallet as belonging to Bitstamp.

Using this extra information, it is possible to derive that Bitstamp has instead been

involved in 132, 543 transactions. Therefore, our heuristics enable the finding of

60, 501 extra transactions involving Bitstamp. During our deanonymization process,

we considered transactions where either the sender or the receiver is the linked wallet

by our heuristic.

Table 2.4.
Deanonymization of Dividendrippler Bitcoin business.

Total Sent Total received Total Balance

Public wallets 1062.29 1064.08 1.79

Clustered wallets 5724.38 5724.41 0.03

43

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000

Bitstamp
RippleFox

SnapSwap

RippleChina
Chriswen

DividendRippler
DYM

GeckoCoin
N

um
be

r o
f p

ay
m

en
ts

Most prominent gateways

Known payments
Heuristic payments

Fig. 2.8. Comparison of the number of transactions associated to pub-
licly known gateways’ wallets (i.e., Known payments) and transactions
performed with wallets clustered by our heuristics to those gateways (i.e.,
Heuristic payments). Dashed line groups gateways sharing an owner.

We observed that it is possible to monitor the gateway’s business even further.

Once the clustering is performed, it is possible to monitor the network to notice every

time a transaction is received by a given Ripple wallet. Using this approach it is

possible to monitor the complete set of wallets in the cluster of a given gateway, and

thereby its full activity in real time.

Several Gateways Business We have carried out the reconstruction of the business

associated to the most widely deployed gateways in the same manner we did with

Bitstamp’s business. We show the most interesting results in Figure 2.8.

We make the following observations. First, there are gateways for which the

numbers of publicly available transactions are different. However, adding up the

transactions performed with the wallets resulting from our heuristics (Figure 2.8, red

bar), they have performed the same total amount of transactions. DividendRippler,

DYM and Chriswen constitute an example of this observation. We have verified that

indeed DividendRippler and DYM are operated by the same owner. Chriswen has

been linked due to the combined results of both heuristics presented in this work: the

44

The Rock

DividendRippler
BitStamp

DYM

RippleFox

RippleCN

Chriswen

SnapSwap

GeckoCoin

Coinex

Fig. 2.9. A visualization of the deanonymization process over our clustered
graph. The sizes of the nodes correspond with the number of transactions
involving the nodes. Nodes with the same color belong to the same cluster.
Gray nodes depict wallets not deanonymized by our heuristics. Links are
colored with the color of the sending wallet.

hot wallet for Chriswen extracted from Heuristic 2 has been used in DividendRippler

and it appears in the cluster for DividendRippler and DYM resulting from Heuristic 1.

Second, there are gateways with a few transactions made by their public wallets.

However, when adding the payments associated to wallets clustered to them by our

heuristics, the number of transactions increases. This is the case, for example, for

RippleChina. Finally, we observe that no gateway (except for DividendRippler)

publishes its Bitcoin wallets. As our heuristics link Bitcoin and other cryptocurrencies

wallets to them, we can further deanonymize their financial activities.

In summary, we have deanonymized 85, 962 XRP payments and 649, 640 settlement

transactions, which jointly represent the 78.7% of the total transactions we have

considered in our de-anonymization process (see Table 2.3). We have also studied

the interactions between the clusters we have obtained from our deanonymization

process, as shown in Figure 2.9. We observe that Bitstamp is the gateway with the

largest amount of transactions within our cluster. Moreover, we have deanonymized

98 Ripple wallets belonging to the gateway DividendRippler (Figure 2.9, blue nodes).

We have observed that most of these wallets were clustered to DividendRippler by

the Heuristic 1. In general, these results follow the fact that the probability that

45

a Ripple wallet gets deanonymized is bigger when the wallet is clustered with our

heuristics. This is an important privacy breach: we have shown how to use it to

reproduce the business of gateways. Moreover, we contacted several gateways with

the list of Ripple wallets linked to them by our heuristic aiming at validating our

deanonymization results. We have received responses from two of them (i.e., Bitstamp

and RippleFox) and both have confirmed the ownership of such wallets. Moreover,

these response do not include any wallet missed by our heuristics.

2.3.4 Deanonymization Using a Ripple Server

In the literature, there are several attacks based on maliciously including certain

nodes in a network to deanonymize other nodes in the same network. For example, in

the case of the Bitcoin network, a series of works [51,52,56] have shown that by including

a few machines in the Bitcoin network it is possible to link Bitcoin transactions to their

corresponding source IP addresses. Our results increase the privacy breach resulting

from these techniques since if a Bitcoin wallet is deanonymized, the complete cluster

(including Ripple and other cryptocurrency wallets) is deanonymized.

Ripple transactions are collected by Ripple validator servers. Similar to Bitcoin,

it is possible to further deanonymize Ripple transactions and wallets by deploying a

Ripple validator server. As of today, validator servers are run by the core Ripple team

(e.g., s-west.ripple.com) and by a few big gateway owners (e.g, SnapSwap). These

parties can leverage our heuristics to further deanonymize Ripple wallets, and users

are particularly vulnerable to deanonymization by them.

Assume we deploy one Ripple server. Then, a Ripple client can create an IP

connection to our deployed server to send us the Ripple transactions. As Ripple

transactions are sent in the clear, we can inspect them, and by looking at the Sender

field (see Table 2.1) it is possible to associate the IP address of the incoming connection

to the Ripple wallet specified in the Sender field.

https://s-west.ripple.com

46

This privacy breach can be further exploited to link more than one Ripple wallet

to a certain IP address. In detail, assume that different connections from the same IP

address submits n transactions tt1, . . . , tnu, where ti has a Ripple wallet wi specified

in the Sender field. This assumption is realistic: the currently Ripple web clients

(e.g., RippleTrade) issue all the transactions by default to the same Ripple server.

Given this scenario, it is likely that all the wi are owned by the same person and we

can further associate this cluster of wallets to the IP address used to establish the

connection with our Ripple server.

Although the possibility to employ an anonymous communication network (e.g.,

Tor [57]) to forward the transactions to the transaction collecting server has been

explored, such techniques are found to be vulnerable to denial of service and blacklisting

attacks [58].

2.4 Related Work

Since its inception, questions regarding the security and privacy of the Bitcoin

system have attracted interest from the research community. Barber et al. [46] observed

that Bitcoin exposes its users to the possible linking of their Bitcoin wallets. Thus,

recent works [47–50] have proposed simple heuristics to thwart anonymity in Bitcoin.

In a somewhat different direction, other recent works [51, 52] show the possibility of

identifying ownership relationships between Bitcoin wallets and IP addresses. Although

it is possible to extract lessons from those works, the conceptual differences between

cryptocurrencies such as Bitcoin and the Ripple network mandate a dedicated look.

Our novel heuristics are focused and have special interest for transaction networks

such as Ripple, including the integration of several available cryptocurrencies.

There is limited work studying the evolution, security and privacy of the Ripple

network. Di Luzio et al. [38] consider two aspects of the Ripple network. They study

the evolution of the amount and behavior of participants in the consensus protocol

used to add transactions to the ledger during the first three years of the Ripple network.

47

They also propose a novel technique to deanonymize the transactions of a given user,

leveraging side-channel information (e.g., the amount of a recent transaction performed

by the victim).

Armknecht et al. [37] present an overview of the Ripple network and give statistics

about the number of transactions, and types of transactions and exchanges. The work

is limited to the first two years of operation of the Ripple network. The work also

demonstrates the conditions under which the Ripple consensus protocol fails, leading

to a situation where the Ripple ledger might be forked. We consider this orthogonal

to the content of this dissertation.

48

3 CREDIT NETWORKS: SECURITY AND PRIVACY

After we have overviewed the Ripple network, an example of credit network deployed

in practice, and the possible security and privacy issues with the current deployment,

we are in position of building the foundations for credit networks as well as their

security and privacy notions of interest.

For starters, we envision a credit network as a combination of two main blocks:

routing and graph management. In a nutshell, routing enables to construct credit paths

between two users in the credit network; graph management allows to update the

credit network upon operations queried by the users. In particular, payment transfers

credit between a sender and a receiver through a credit path, change link updates

the credit held at a credit link, test credit calculates the available credit that can be

transferred in a payment between any two users in the credit network, and test link

provides the credit available in a credit link.

In the rest of this chapter, we first formally define the concept of credit network

along with the aforementioned operations. We then introduce security and privacy

notions of interest in a credit network in the form of ideal functionalities. An ideal

functionality represents the expected behavior of each operation in an idealized world,

simplifying thereby its description. In subsequent chapters, we detail how to construct

a credit network that realizes this ideal functionality and thus achieves the expected

security and privacy guarantees. More details can be found in [59].

49

3.1 Credit Network Definition

We denote the security parameter of our system by λ. Let polyp¨q and νp¨q be a

polynomial function and a negligible function, respectively. Let tAλuλPN and tBλuλPN

be two distribution ensembles indexed by λ. Then, we say that Aλ « Bλ if for all

probabilistic polynomial time algorithms A, there exists a negligible function ν such

that

|PrrApxq “ 1 | x ¨̈“ Aλs ´ PrrApxq “ 1 | x ¨̈“ Bλs| ď νpλq.

A credit network is defined as follows.

Definition 1 (Credit network) A credit network nw :“ GpV , Eq, where V is the

set of users and E is the set of credit links, is a graph equipped with the six operations

psetup, route, pay, chgLink, test, testLinkq described below:

setupp1λq Ñ params: On input of a security parameter, output a set of public

parameters params.

routepparamsq: On input a set of public parameters, initializes the routing information

required by each node in the credit network.

paypu1, u2, vq Ñ t0, 1u: On input of two user identifiers u1, u2 P V and the credit

value v, if the payment is approved by u1 and if there exists enough credit flow

between u1 and u2, perform a payment from u1 to u2 of value v and return 1.

Otherwise, return 0.

chgLinkpu1, u2, vq Ñ t0, 1u: On input of two user identifiers u1, u2 and a credit value

v, if u1 approves the operation, modify the link u1 Ñ u2 P E by v and return 1.

Otherwise, return 0.

testpu1, u2q Ñ v: On input of two user identifiers u1, u2, if u1 approves the operation,

return the available credit flow between u1 and u2.

testLinkpu1, u2q Ñ v: On input of two user identifiers u1, u2, if one of the users

approves the operation, return the credit available in the link u1 Ñ u2.

50

Correctness For a given credit network nw , let v Ð testpui, uj q. A credit network

is considered correct if the following equalities hold for all chgLink and pay operations

performed on it for any two users ui and uj .

- Let nw 1 be the network obtained after performing paypui, uj , v1q on nw . Then, for

the v2 Ð testpui, uj q computed on nw 1 , v2 “ v if the pay operation is unsuccessful,

2 1else v “ v ´ v .

- Let nw 1 be the resultant network after performing chgLinkpui, uj , v1q on nw . Then, for

the v2 Ð testpui, uj q computed on nw 1 , v2 “ v if the chgLink operation is unsuccessful

(due to disapproval by ui), else v2 “ pv ` v1q.

3.2 Security and Privacy in Credit Networks

In this section, we introduce the security and privacy notions of interest in a

credit network. As a warm up, we first introduce them informally and later we

formally describe them as ideal world functionalities. In particular, here we identify

serializability as an important system property and integrity as a fundamental security

property for a credit network. Additionally, we characterize two privacy requirements

for transactions: Value privacy and sender/receiver anonymity. In the following we

provide an intuitive description of these properties.

3.2.1 Attacker Model

We consider a decentralized network where the adversary can potentially corrupt,

spawn, or impersonate an arbitrary set of users. The adversary is allowed to adaptively

choose the set of corrupted parties. This models the fact that the adversary can include

her own users in the credit network and that the adversary might also compromise

some of the honest users’ machines. We consider only passive, but still adaptive,

corruption of a minority (less than half of the total set) of the landmark users,

which are thus assumed to be honest-but-curious. We assume that the non-corrupted

51

landmarks execute the algorithms according to our specifications and do not share

private information among each other (i.e., they do not collude). In our vision,

landmarks represent the root of trust in our network and they can be seen as the

network operators (e.g., banks are the natural candidate to serve as landmarks in

a transaction system). We advocate that it is in the interest of the landmarks to

follow the protocol in order to maintain the availability of their network. That being

said, it is easy to extend our definitions to fit a full corruption of the landmark users.

Furthermore, we remark that integrity guarantees, i.e., the fact that credit cannot be

stolen, must hold unconditionally in our model.

3.2.2 Goals Overview

Integrity A credit network achieves integrity if for all pairs of sender and receiver

users pu1, u2q P V2 , for all values v P N, for all successful payments paypu1, u2, vq

and for all intermediate honest users u3 P V , such that u3 ‰ u1 and u3 ‰ u2, the

following holds: Let u4, u5 P V2 be the predecessor and successor of u3 in the

payment path. Then, if there exists some credit value x P N such that u4 Ñ u3

is decreased by x, then u3 Ñ u5 is decreased by x.

Serializability Transactions in a credit network are serializable if, for all sets of pay

and chgLink operations successfully performed in a concurrent manner, there

exists a serial ordering of the same operations with the same outcome (i.e.,

changes in the credit available in the corresponding paths).

Value Privacy We say that a credit network maintains value privacy if for all pairs

of honest users pu1, u2q P V2 and for all pairs of values pv, v1q P N2 it holds that

1 paypu1, u2, vq « paypu1, u2, v q

to the eyes of any malicious user not involved in the transaction, as long as both

operations are either successful or fail.

52

Sender/Receiver Anonymity We say that a credit network has sender anonymity

if for all pairs of honest users pu0, u1, u2q P V3 and for all values v P N we have

that, for any two simultaneous and successful payments,

paypu0, u2, vq « paypu1, u2, vq

to the eyes of any malicious intermediate user involved either in both or none of

the two transactions, such that the honest neighbors of such a corrupted node

are the same for both transactions. Receiver anonymity is defined along the

same lines.

3.2.3 Formal Definitions

We formally define the security and privacy goals of decentralized credit networks

according to the Universal Composability (UC) paradigm [60]. The main idea of this

security notion is to compare a real protocol τ with some ideal world Φ, the so-called

ideal functionality. The ideal functionality can be seen as a trustworthy entity that

implements the intended behavior of the protocol. Given a real protocol τ and an

ideal protocol Φ, we say that τ UC-realises Φ if for any adversary A attacking the

protocol τ there is a simulator S performing an attack on the ideal protocol Φ such

that no environment E can distinguish between τ running with A and Φ running

with S. Here E may choose the protocol inputs and read the protocol outputs and

may communicate with the adversary or simulator (but E is, of course, not informed

whether it communicates with the adversary or the simulator). This is different from

the traditional settings in that the environment may communicate with the adversary

during the protocol execution and that the environment does not need to choose its

inputs at the beginning of the protocol execution. Instead, it may adaptively send

inputs to the protocol parties at any time, and it may choose these inputs depending

on the outputs and the communication with the adversary. This formalization has

the advantage of modelling attacks that exploit parallel instances of the protocol and

53

therefore it allows one to reason about security also in presence of parallel execution.

Due to the distributed nature of credit networks, we believe that it is of paramount

importance to capture the presence of interleaving executions also in the definition of

security. We informally define UC-Security in the following and we refer the reader to

the work of Canetti [60] for a comprehensive discussion on the matter.

Definition 2 (UC-Security) Let EXECτ,A,E be the ensemble of the outputs of the

environment E when interacting with the adversary A and parties running the protocol

τ (over the randomness of all the involved machines). A protocol τ UC-realizes an

ideal functionality Φ if for any adversary A there exists a simulator S such that

for any environment E the ensembles EXECτ,A,E and EXECΦ,S,E are computationally

indistinguishable.

We describe in the following the ideal functionality FCN, which models the intended

behavior of all the components of a credit network, in terms of functionality, security,

and privacy. We consider a connected network of n nodes where each node is labeled

either as a standard end-user (u) or as a landmark (LM). We denote by landmark a

well-connected node in the credit network. For instance, a gateway could carry out the

role of a landmark in the Ripple network whereas a bank could be the landmark in the

current network of financial institutes. We model the synchronous network as an ideal

functionality FNET as well as the secure and authenticated channels that connect each

pair of neighboring nodes, FSMT, as proposed in [60]. In our abstraction, messages

between honest nodes are directly delivered through FSMT, i.e., the adversary cannot

identify whether there is a communication between two honest users. The attacker

can corrupt any instance by a message corrupt sent to the respective party ID. The

functionality FNET hands over to the attacker all the static information related to ID.

In case ID is a standard node, all its subsequent communication is routed through A,

which can reply arbitrarily (active corruption). If ID is a landmark, all its subsequent

communication is recorded and the transcripts are given to A (i.e., thereby modeling

passive corruption).

54

Functionality FROUT

1) LM sends to FROUT two tuples of the form pu1, . . . , umq, indicating the sets of
neighbors of LM in the BFS trees.

2) FROUT runs a BFS algorithm over the links among registered users to construct
an arborescence and an anti-arborescence rooted at the landmark IDLM.

3) Specifically, the algorithm operates on a set of users to be visited, initially set to
the one specified by the landmark. For each user u in this set, FROUT sends her a
message psid, IDLM, h, upq via FSMT, where h is the number of hops that separates
u from IDLM and up is the parent node on that path. u can either send pK, sidq,
causing FROUT to roll back to the previous user, or pu1 , sidq to indicate the next
user u1 to visit, which is thus added to the set. The algorithm terminates when
the set is empty.

Fig. 3.1. Description of the ideal functionality for routing FROUT

Ideal Functionality Our ideal functionality for a credit network, FCN, maintains

locally the static information about nodes, credit links, and their credit using a matrix.

Additionally, FCN logs all of the changes to the credits between nodes that result from

successful transactions. FCN is composed by a set of functionalities (FROUT, FPAY,

FTEST, FCHGLINK, FTESTLINK) that interact as follows: FCN periodically executes a

functionality to update the routing information of the nodes in the network (FROUT)

using FNET as a mean of synchronization. Nodes can contact the ideal functionality

to perform transactions (FPAY), test the available credit (FTEST), update the credit

on a link (FCHGLINK) or to test the credit available in a link (FTESTLINK). Under these

assumptions, we describe the routines executed by FCN in the following.

FROUT The routing algorithm as described in Figure 3.1 allows the ideal functionality

to construct multiple spanning trees (i.e., Breadth-First Search trees) in the credit

network, each spanning tree encoding transaction paths between pairs of nodes. The

landmark fixes the set of children nodes for the computation of the Breadth-First

55

Search (BFS) (step 1) and the ideal functionality executes the BFS (steps 2-3) by

exchanging messages with each node in the network, starting from the set specified by

the landmark. Each node can decide whether to interrupt the algorithm or to indicate

the next node to visit. This models possible disruptive users in a distributed credit

network. At the end of the execution each node learns its parent from and to the

input landmark. Two types of BFS trees are created: Arborescence tree considers

the credit links in the direction from a landmark to the users; anti-arborescence tree

considers the credit links in the direction from the users to a landmark.

FPAY The algorithm shown in Figure 3.2 constitutes the ideal functionality of the

pay operation in a distributed credit network. The protocol is initiated by the Sdr that

communicates the two ends of the transaction to the ideal functionality FPAY (step 1).

For each landmark, FPAY derives two paths connecting the sender to the landmark

(resp. the receiver to the landmark) in a distributed fashion (step 2): the functionality

interacts with each intermediate node that can choose the next node where to route

FPAY, until the landmark is reached (or the maximum length of the path is exceeded).

Again, each node along the path can arbitrarily delay the operation and potentially

choose any next node to visit, to model possibly malicious nodes. FPAY computes then

the total amount of credit associated with each of the derived paths and sends the

information to the sender (step 3) who can either interrupt the execution or inform

FPAY of the values to transfer through each path (step 4). FPAY informs the nodes of

the value transacted through them and the receiver of the total amount of transacted

credit (steps 5-6). Each node involved in this phase can either confirm or abort the

operation if the transacted amount exceeds the capacity of some link. If all of the

nodes accept, FPAY updates the credit information of each node involved consistently

with the transacted amount. Then FPAY informs the set of nodes that participated

to the protocol (starting from the receiver) of the operation’s success (step 7). This

is done again iteratively such that any node can interrupt the communication, if

traversed.

56

Functionality FPAY

1) For each LM, a sender Sdr sends the tuple pSdr, Rcv, Txid, IDLMq to FPAY, where Rcv,
Txid, and IDLM denote the receiver, the transaction identifier, and the landmark
identifier of the transaction.

2) For each LM, FPAY derives the path from Sdr to Rcv, by concatenating the
respective paths to LM, as follows: starting from Sdr and Rcv, FPAY sends (Txid,
IDLM, u) via FSMT, where u is the previous user in the chain, if any. Each node
can either send pK, Txid, IDLMq, to have FPAY ignoring the path, or pJ, Txid, IDLMq

to let the functionality follow the path constructed by FROUT, or pu1 , Txid, IDLMq

to indicate the next user on the path to LM. FPAY proceeds until it reaches LM
from both ends (or the maximum length of the path is exceeded) and it computes
the minimum value vLM among credits of the links on the path to LM.

3) For each LM, FPAY calculates the set of tuples P “ tIDLM, vLMu, where vLM is the
credit associated to the path from the Sdr to the Rcv through LM (pathLM). FPAY

sends then (P , Txid) to the Sdr via FSMT.

4) The Sdr can either abort by sending pK, Txidq to FPAY or send a set of tuples
pIDLM, xLM, Txidq to FPAY via FSMT.

5) For each LM, FPAY informs all the nodes in pathLM of the value xLM by sending
pxLM, IDLM, Txidq via FSMT. Each node can either send pK, IDLM, Txidq to abort
the transaction, or paccept, IDLM, Txidq to carry out the transaction. In the latter
case FPAY checks whether for the corresponding edge e : ve ě xLM, and if yes
FPAY subtracts xLM from ve. If one of the conditions is not met or there is at least
one pK, IDLM, Txidq message, then FPAY aborts the transaction and restores the
credits on the corresponding links of pathLM.

6) FPAY sends to Rcv the tuple pSdr, Rcv, v, Txidq via FSMT, where v is the total
amount transacted to Rcv. Rcv can either abort the transaction by sending
pK, Txidq or allow it by sending psuccess, Txidq.

7) For each LM, FPAY sends either psuccess, Txidq (or pK, Txidq depending on the out-
come of the transaction) to each user in the path from the Rcv to the Sdr, starting
from the Rcv. Such a user can either reply with pK, Txidq to conclude the func-
tionality or with paccept, Txidq to have FPAY passing the message psuccess, Txidq
(or pK, Txidq) to the next user until Sdr is reached.

Fig. 3.2. Description of the ideal functionality for payments FPAY

57

FTEST The test algorithm computes the credit available on the paths connecting

any two nodes in the network, and it works analogously to the steps 1-3 in FPAY.

FTESTLINK At any point of the execution, each node can query the FTESTLINK

functionality to obtain informations about her adjacent links.

FCHGLINK Each pair of neighboring nodes can jointly query FCHGLINK to update

their link or generate a new one.

3.2.4 Discussion

In the following we motivate our choices in the design of the ideal functionality

for a distributed credit network. First of all, we point out that in the transaction

functionality FPAY we let each node decide ‘on the fly’ the next node where to route the

transaction in the path from the sender to the receiver: this captures the distributed

nature of the network where each node can route transactions arbitrarily. Nevertheless,

note that any malicious attempt to redirect the transaction would fail unless the

receiver is eventually reached, in which case the functionality of the network is not

harmed. We do not see any reason why a node should not have the capability to

switch between paths if it wishes to. It must be also pointed out that malicious

nodes cannot cause the ideal functionality to run indefinitely on a path: FPAY will

ignore the path after a certain maximum length is reached and the landmark is not

an intermediate node. Another controversial point is the possibility for each node to

cause an abort of the transaction that traverses it at several points of the executions.

In this case a similar reasoning as above holds: we first note that such an attack is

confined to links that the adversary is connected to, so it would require to establish

many trust relationships with honest nodes to carry out a denial of service on a large

scale. Additionally, we believe that each node must be able to decide whether it wants

to take part to a transaction: although its total balance remains intact, some credit

is shifted from one node to another and this may be undesirable. Such a behavior

58

can also easily be detected by other nodes in the network who can eventually route

subsequent transactions to other paths not traversing the faulty node.

What is left to be shown is that our ideal functionality captures the security and

privacy properties that one would expect for a credit network.

Integrity In the ideal world, integrity is guaranteed by the ideal functionality, who

maintains a database of the link values and updates them consistently with the

successful transactions.

Serializability We observe that any set of chgLink operations on the same link is

executed serially by the ideal functionality. Assume for the moment that only chgLink

operations are performed: as any two concurrent operations are necessarily executed

on two different links, it is easy to find a scheduler that returns the same outcome by

performing those operation in some serial order (i.e., any order). Since a pay operation

can be represented as a set of chgLink operations performed atomically (due to the

integrity notion), the property follows.

Value Privacy We observe that the only information revealed to the nodes about a

transaction is the value of the transaction that traverses them (while the total amount

of transferred credit is kept local by the ideal functionality). It is unavoidable to leak

this information to each node since it affects its direct links and thus the leakage for

the transaction value in our protocol is optimal.

Sender/Receiver Anonymity For sender/receiver anonymity it is enough to ob-

serve that the ideal functionality addresses each transaction with a uniformly sampled

id that does not contain any information about the identity of the sender nor of the

receiver. Thus in the ideal world each user does not learn any information beyond the

fact that some transaction has traversed some of her direct links, which is inevitable

to disclose.

Part II

SECURE AND

PRIVACY-PRESERVING

TRANSACTION PROTOCOLS

59

60

4 PATHSHUFFLE: ANONYMITY FOR RIPPLE TRANSACTIONS

While the Ripple network offers several benefits to the current financial industry, the

public nature of its transaction ledger exposes its individual users, groups, organiza-

tions, and companies to the same severe privacy attacks as already observed in Bitcoin.

The privacy study of the Ripple network described in Section 2.3 makes this privacy

concern justifiable by showing that a significant portion of Ripple transactions today

can be easily deanonymized such that everybody can determine who paid what to

whom. In this state of affairs, we require a privacy solution for the currently deployed

Ripple network.

In order to fill this gap, in this chapter we overview PathShuffle, the first mixing

protocol for path-based transactions in credit networks that is fully compatible with

the current Ripple network. A full description can be found in [61].

4.1 Cryptographic Background and Notation

In this section, we introduce the notation that we follow in the rest of this chapter.

4.1.1 Ripple Network Operations

We use the operations available in the current Ripple network as described in Ta-

ble 4.1. A transaction tx becomes valid when it is signed by the appropriate wallet’s

signing key. A transaction tx from CreateTx and ChangeLink must be signed by sk1

(i.e., the signing key of wallet vk1), whereas a transaction tx from CreateLink must

be signed by sk2. Finally, a transaction tx from testLink does not require a signature.

A transaction tx is applied to the Ripple network after invoking Applyptx, σq with

61

Table 4.1.
Description of the Ripple network operations.

Operation Description

pvk, skq ¨ ¨“ AccountGenp q Generate wallet keys

tx ¨ ¨“ CreateTxpvk1, vk2, vq Create path-based transaction

tx ¨ ¨“ CreateLinkpvk1, vk2, vq Create link vk1 Ñ vk2 (limit v)

tx ¨ ¨“ ChangeLinkpvk1, vk2, vq Modify link vk1 Ñ vk2 by v

tv, Ku ¨ ¨“ testLinkpvk1, vk2q Query IOU on link vk1 Ñ vk2

t0, 1u ¨ ¨“ Applyptx, σq Apply signed transaction to network

the correct signature. For simplicity, with Applyptx, σq we abstract away the process

of being written to the blockchain after agreed upon consensus nodes. Moreover,

for clarity of exposition, we assume that Applyptx, σq returns immediately after tx is

applied to the Ripple network. In practice, tx is applied in a matter of seconds [36].

4.1.2 Digital Signature Scheme

A digital signature scheme allows a signer who has established a public key vk to

sign a message m using the associated secret key sk and creating thereby a signature

σ. A digital signature further allows then anyone with access to the message m,

the signature σ and the public key vk to verify that the signer correctly signed the

message m. A bit formally, a digital signature scheme Π consists of three algorithms

(KeyGen, Sign, Verify) defined as follows:

KeyGenpλq Ñ sk, vk: The key generation algorithm takes as input the security param-

eter λ and returns a pair of public key vk and secret key sk.

Signpsk, mq Ñ σ: The signing algorithm takes as input a secret key sk and a message

m and returns a signature σ.

62

Verifypvk, m, σq Ñ t0, 1u: The verification algorithm takes as input a public key vk, a

message m and a signature σ and returns 1 if σ is a valid signature on message

m. Otherwise, it returns 0.

Security of a Digital Signature Scheme Given a fixed public key vk generated

by a signer, a forgery consists of a message m˚ along with a valid signature σ˚ , where

m˚ has not been previously signed by the signer. Now, security intuitively means that

it should be infeasible for anybody not possessing the corresponding secret key sk, to

produce a forgery. We refer the reader to [62] for a formal security definition in the

Universal Composability framework.

4.1.3 Distributed Digital Signature Scheme

In a distributed signature scheme, every user creates a fresh pair of verification

and signing keys, publishes the verification key, and combines the fresh verification

keys from all users to derive the shared verification key. Every user then uses her

fresh signing key to generate her signature (share) on a message m (e.g., a transaction

agreed among all users). The combination of all these signature shares results in a

new signature on the message m verifiable under the shared verification key.

A bit more formally, a distributed digital signature scheme consists of three

protocols (SAccountCombine, SSign, Verify) defined as follows:

SAccountCombinepvk1, . . . , vknq Ñ vks: The distributed key generation protocol takes

as input a set of verification keys vk1, . . . , vkn and returns the combined public

key vks.

SSignpsk1, . . . , skn,mq Ñ σ: The distributed signing protocol takes as input a set of

signing keys sk1, . . . , skn and returns a signature σ.

Verifypvks, m, σq Ñ t0, 1u: The verification algorithm is defined as for the digital sig-

nature scheme.

63

We refer the reader to [61] for a detailed description of SAccountCombine and SSign

as well as its security discussion.

4.1.4 Shared Wallet

A wallet vks can be shared among a set of n users so that only when all users agree,

a transaction involving the shared wallet vks is performed. We use the distributed

signature scheme described in the previous section to achieve this functionality. In a bit

more detail, a shared wallet is created as follows. First, each user locally creates a fresh

Ripple wallet (vki , sk
˚ ˚

i), using AccountGen, that constitutes her share for the shared
˚

˚

¨“ SAccountCombineptvki uq,

i u denotes the set containing one verification key share vk for each user.

¨ wallet vks. The shared wallet can be then calculated as vks

where tvk˚
i

Note that it is possible to construct only the verification key of a shared wallet but

not the corresponding signing key. Instead, users can jointly create a signature σ on a

message m verifiable by the shared wallet’s verification key vks. For that, the users
˚jointly execute σ ¨̈“ SSignptsk

share sk˚
i

˚
i u,mq, where tski u is the set containing one signing key

for each user, and m is the message to be signed. This protocol returns a

signature σ. This signature can be then verified locally by every user by invoking

Verifypvks, m, σq.

4.2 Preliminaries

In this section, we first present path mixing (Section 4.2.1), our approach to

improve anonymity in credit networks. We then describe the communication model

(Section 4.2.2), the security and privacy goals (Section 4.2.3), and the threat model

(Section 4.2.4)).

64

4.2.1 Path Mixing

Assume that each user has a pair of wallets, that we denote by input and output

wallets. Furthermore, assume that users participating in the path mixing protocol

have agreed beforehand on mixing β IOU.

In this setting, a path mixing protocol aims to transfer β IOU from every input

wallet to every output wallet so that an adversary controlling the network and some

of the participating users cannot determine the pair of input and output wallets

belonging to an honest user. We denote this as a successful path mixing. Otherwise,

no IOU must be transferred from any input wallet and the path mixing is unsuccessful.

Towards achieving that, the path mixing protocol must only require functionality

already available in credit networks.

4.2.2 Setup and Communication Model

We assume that users communicate to each other through a bulletin board, e.g., a

server that receives a message from a user and broadcasts it to the rest of users. We

require that the protocol achieves anonymity even if the bulletin board is malicious

and colludes with the attacker. We thus consider the bulletin board only as an

efficient mean of communication. Additionally, we assume the bounded synchronous

communication setting, where time is divided in fixed epochs: Messages broadcast by

a user are available to all other users within the epoch and absence of a message from

a user in an epoch indicates that the user is offline.

This bulletin board can seamlessly be deployed in practice using already deployed

Internet Relay Chat (IRC) servers with appropriate extensions (see [63] for details).

The bulletin board can be alternatively implemented by a reliable broadcast proto-

col [64, 65] at an increased communication cost.

We assume that users participating in the protocol have a verification/signing key

pair (e.g., key pair for the input wallet). Moreover, we assume that each user knows

65

other users’ public verification keys and that all users have agreed on mixing a fixed

amount β IOU prior to start executing the protocol.

Finally, we assume that there is a bootstrapping mechanism in place for users

to know other users willing to carry out the protocol. A malicious bootstrapping

mechanism could hinder the anonymity of an honest user by peering him with other

users under the attacker’s control. Although this is an important threat in practice,

we consider it orthogonal to our work. Note that the fees needed to carry out the

path mixing limit the number of mixings that the attacker can join.

In practice, we envision that the bulletin board enabling the communication

between users also offers a service for users to register. The users could be then

grouped together to carry out the protocol following a transparent mechanism (e.g.,

based on public randomness). Nevertheless, since it is an orthogonal problem, any

bootstrapping mechanism with the desired properties could be used in our work.

4.2.3 Security and Privacy Goals

In this chapter, we consider a subset of the security and privacy goals that we

have established in Chapter 3. They are clearly a restricted version but still capture

fundamental security and privacy properties of credit networks. Moreover, they open

the possibility to have a protocol fully compatible with the current Ripple network.

Unlinkability If the path mixing protocol is successful, it should not be possible

for the attacker to determine which output wallet belongs to which honest user.

Integrity No matter whether the path mixing protocol is successful, the total credit

available to a user should not change (except for possible transaction fees).

These security and privacy goals are in tune with those presented in Chapter 3 but

with the limitations inherent to a path mixing approach. In particular, unlinkability is

a weaker privacy notion than sender/receiver privacy: The set of possible sender and

receivers for a given transaction is limited to the set of participants in one instance

66

of the path mixing protocol. The integrity property remains the same as presented

in Chapter 3: As integrity deals with the total balance of honest users, a weaker notion

directly leads to unacceptable credit loss by honest users. Finally, we do not consider

serializability here as it is directly provided by the consensus protocol available in the

underlying credit network. We do not consider value privacy either as it is at odds

with an underlying public ledger that logs all the transactions and their values.

4.2.4 Threat Model

We assume that the attacker controls an arbitrary number f of users participating

in the path mixing protocol. We further assume that the attacker also controls the

bulletin board (and thus the network). The anonymity set of an honest user is the set

of all honest users. Thus, in order to achieve any meaningful anonymity guarantee,

we need that f ă n ´ 1. In other words, we do not consider the n ´ 1 attack [66] in

this work.

4.3 Solution Overview

In this section, we first show a straw man approach for path mixing (Section 4.3.1)

to illustrate the challenges we have to overcome. Then, we overview the two building

blocks of our approach: atomic transactions in Ripple (Section 4.3.2) and the creation

of a set of wallets anonymously (Section 4.3.3).

4.3.1 A Straw Man Path Mixing Approach

Path mixing can be achieved following a straw man approach as shown in Figure 4.1.

Assume that all users participating in the path mixing trust a third-party server to

carry out the required operations on their behalf. Further assume that the server is a

gateway in the Ripple network and that there exists a path from every input wallet to

the gateway’s wallet with a capacity of at least β IOU.

67

vkin
A vkout E vkin

A vkout E

40

25

35

20

50

vkgw

vkin
E

vkout C

vkout D

vkout Avkin
E

vkgw

30

15

25

10

40
0{10

0{10
0{10

0{10

0{
10

vkin
B vkout C vkin

B

vkin
C vkout B vkin

C vkout B

vkin
D vkout D vkin

D

vkout A

(a) Credit network before the transactions are (b) Credit network after carrying out the straw
carried out in the straw man approach man path mixing

Fig. 4.1. An illustrative example of the straw man approach for path
mixing to mix 10 IOU among five users. Solid arrows depict credit links
between two wallets. Single values on edges denote the current balance
and no upper limit. Values a{b on the links denote: a current balance and
b upper limit. After finishing the straw man protocol, user A can perform
a settlement transaction for up to 10 IOU using vkout A and vkgw as the first
hops in the transaction path.

In this setting, first every user can send her output wallet to the gateway using

an authenticated, private channel (e.g., TLS). An example of the protocol at this

step is shown in Figure 4.1(a). Second, every user can transfer β IOU in the Ripple

network from her input wallet to the gateway’s wallet. Finally, the gateway, working

as a mixing proxy, creates a credit link from each output wallet to the gateway’s

wallet with a credit upper limit of β IOU. In this manner, now every user can perform

a transaction for up to β IOU using the gateway’s wallet as the first hop in the

transaction path (see Figure 4.1(b)).

For every user i, the gateway must create a credit link from the output wallet vkout i

Ð vkoutto its own wallet of the form vkgw i i owes credit to vkgw) to ensure(i.e., vkout

unlinkability against an attacker observing the communication and the Ripple ledger.

To see that, assume for a moment that the gateway creates the credit link of the

Ñ vkoutform vkgw i . Such operation must be confirmed with a signature by the user

68

i (see Section 4.1.1). Now, user i must submit the signed operation to the Ripple

network. If a network attacker associates the signed message to the IP address of user

i, he directly learns that vkout i belongs to user i. As the attacker also knows the input

wallet belonging to user i, he trivially breaks the unlinkability property.

In this straw man approach, the server is trusted for unlinkability and integrity

properties. First, the server must be trusted not to reveal the pair of input and output

wallets belonging to a user. Second, after receiving the credit from the users’ input

wallets, the server is trusted not to steal it and instead create the credit link with the

output wallets and set up the correct credit upper limit in each credit link.

We overcome the aforementioned drawbacks by designing a decentralized path

mixing protocol, where the users jointly transfer credit from their input wallets to

their output wallets without requiring any third-party mixing proxy. For that, the

decentralized path mixing protocol must provide the two main functionalities provided

by the trusted server in the straw man approach: Atomic transactions and creating a

set of output wallets in an anonymous manner.

4.3.2 Atomic Transactions in Ripple

Assume a generic setting with a set of n input wallets tvkin
i u and a set of m output

wallets tvkout u. Moreover, assume that instead of a fixed amount of credit β, each j

input wallet must transfer βi
in IOU and each output wallet must receive βj

out IOU.

Although the sets of input and output wallets might not be of the same size (i.e., n

might not be equal to m), naturally the IOU to be transferred must be equal to the
ř ř

βin βoutIOU to be received (i.e., “). In such setting, PathShuffle, our novel i i j j

protocol to enforce atomic transactions fully compatible with Ripple, must ensure that
ř

βineither all the i i IOU are transferred from input to output wallets or no IOU is

transferred.

Using a Shared Wallet It is possible to create a wallet shared among the users

such that only when all users agree, a transaction involving the shared wallet is

69

vkin
s

vkin
A

vkin
B

vkin
C

vkin
D

vkin
E

vkgw

vkout s

vkout Z

vkout Y

20

10

30

15

5

40

25

35

20

50
0

0{25

0{55

(a) Credit network after the set up of the shared wallets and the output wallets has been
carried out

vkin
s

vkin
A

vkin
B

vkin
C

vkin
D

vkin
E

vkgw

vkout s

vkout Z

vkout Y

0

0

0

0

0

20

15

5

5

45

80

0{25

0{55

(b) Credit network after PathShuffle has been carried out without any disruptive user

Fig. 4.2. An illustrative example of an atomic transaction. The input
wallets vkin

A , vk
in
B , vk

in
C , vkD

in and vkin
E transfer 20, 10, 30, 15 and 5 IOU

and vkoutcorrespondingly. The output wallets vkout Y Z receive 55 and 25 IOU,
respectively. Solid arrows depict credit links between two wallets. Single
values on edges denote the current balance and no upper limit. Values a{b
on the links denote: a current balance and b upper limit. After a successful
execution of PathShuffle, it is possible to perform a settlement transaction
from the output wallets (e.g., from vkout Y for up to 55 IOU using vkout s , and
vkgw as the first hops in the transaction path).

70

performed. This effectively allows to add one synchronization round: Each user i first
ř

βintransfers βin IOU to a shared wallet and only when IOU are collected, they i i i

are sent to the output wallets. This, however, does not solve the fairness problem

either. Once all the IOU are collected in the shared wallet, a (malicious) user could

collaborate with the rest to create and sign a transaction to one of the output wallets

and then disconnect. In this manner, the IOU to be transferred to the rest of output

wallets are locked in the shared wallet.

Solution: Two Shared Wallets The idea underlying our approach for an atomic

transaction is to use two synchronization rounds via two shared wallets (say vkin
s and

vkout).s

An example is depicted in Figure 4.2: Five users with input wallets tvkin
A , vk

in
B , vkC

in ,

vkin
D , vk

in
E u would like to transfer t20, 10, 30, 15, 5u IOU into two output wallets tvkout Y ,

vkout Z u. These two output wallets must receive t55, 25u IOU. To achieve that, in the

first round users jointly create a credit link from each input wallet (vkin
i) to vk

in
s with

βin ris IOU on them. Moreover, users jointly create a credit link from each of the output

) to vkoutwallets (vkout j s with no IOU on them but an upper limit of βj
out . At this point,

credit at each vkout j cannot be issued as part of a settlement transaction because vkout s

does not have incoming credit yet (see Figure 4.2(a)). The second synchronization

round can be then used to overcome that. All users jointly create a transaction from
ř

vkin to vkout βin
s s for a value of i i IOU. Then, vks

out gets enough credit that can be

used by each of the output wallets vkout j (see Figure 4.2(b)).

4.3.3 Creating the Set of Output Wallets Anonymously

The possibility of performing atomic transactions on its own does not provide a

complete path-mixing solution. Assume an atomic transaction from n input wallets to

n output wallets, where each wallet transfers a fixed amount of IOU β. Even then, a

naive path mixing where each user publishes her output wallet in a manner that can

be linked to her identity, clearly violates unlinkability in the presence of a network

71

attacker. In order to overcome this challenge, users need to jointly come up with a set

of their output wallets such that the owner of a given output wallet is not leaked to

the rest of users.

4.4 Protocol Details

In this section, we describe the details of PathShuffle, our novel protocol for atomic,

anonymous transactions in credit networks (Section 4.4.1). Additionally, we describe

possible extensions and applications (Section 4.4.2). We analyze the security and

privacy guarantees of PathShuffle (Section 4.4.3). Finally, we evaluate the performance

of PathShuffle (Section 4.4.4).

4.4.1 Protocol Description

The PathShuffle protocol works as described below. We first describe our assump-

tions and then we detail each phase of the protocol. We depict a sample execution for

PathShuffle in Figure 4.3. Finally, a detailed pseudocode for the protocol is presented

in Algorithm 1.

Assumptions We assume that the users have agreed on β, the amount of IOU (in

some currency) to be mixed in the path mixing (i.e., @iβ
in “ β). We further assumei

that the users have agreed on a common wallet (i.e., vkgw) and that each user has

a credit link vkin
i Ð vkgw with at least β IOU. Moreover, we assume that there is

only one IOU currency (e.g., USD) over the credit links in the Ripple network, as

otherwise unlinkability can be trivially broken: Input and output wallets using a

distinct currency belong to the same user.

In multiple steps of the protocol, each user will submit to the Ripple network a

copy of the same correctly signed transaction. This does not have negative security

implications: The transaction is only applied once to the Ripple network since every

transaction contains a sequence number to avoid replay attacks.

72

vkin
s

vkin
A

vkin
B

vkin
C

vkin
D

vkin
E

vkgw

vkout s

vkout A

vkout D

vkout B

vkout C

vkout E

10

10

10

10

10

40

25

35

20

50

0

0{10

0{10
0{1
0

0{10

0{
10

(a) Credit network after the set up of the shared wallets and output credit has been
issued

vkin
s

vkin
A

vkin
B

vkin
C

vkin
D

vkin
E

vkgw

vkout s

vkout A

vkout D

vkout B

vkout C

vkout E

0

0

0

0

0

30

15

25

10

40

50

0{10

0{10
0{1
0

0{10

0{
10

(b) Credit network after carrying out PathShuffle without any disruptive user

Fig. 4.3. An illustrative example of PathShuffle to mix 10 IOU among five
users. Solid arrows depict credit links between two wallets. Single values
on edges denote the current balance and no upper limit. Values a{b on
the links denote: a current balance and b upper limit. After a successful
path mixing, user A can perform a settlement transaction for up to 10
IOU using vkout s and vkgw as first hops in the transaction path.

73

Algorithm 1 PathShuffle protocol.

pskin , vkin q: User i input wallet’s keys i i

pskout , vkout q: User i output wallet’s keys
Input : i i

β, sid: Agreed amount of IOU to mix and session identifier

vkgw: Agreed gateway wallet

1: {Exchange output wallets anonymously}
tvkout2: Πpiqu ¨̈“ Shuffleptvkout i uq

3: {Create shares for shared wallets and broadcast them}
4: for i P t1, . . . , nu do

5: pvk˚in , sk˚in q ¨̈“ AccountGenpqi i
6: pvk˚out , sk˚out q ¨̈“ AccountGenpqi i
7: broadcast pvk˚in , vk˚out , Signpskin , pvk˚in , vk˚out , sidqqqi i i i i
8: end for
9: {Create shared wallets }
10: vkin ¨̈“ SAccountCombineptvk˚in uqs i

vkout11: s ¨̈“ SAccountCombineptvk˚out uqi
Ñ vkin12: {Create credit links vkin and fund them}i s

13: for i P t1, . . . , nu do

14: LINKin ¨̈“ CreateLinkpvkin , vkin , 8qi i s
σin in15: ¨̈“ SSignptsk˚in u, LINK qi i i

in16: ApplypLINK , σin qi i
17: LINKi

1in
¨̈“ ChangeLinkpvkin , vks

in , βqi
1in 1in18: σ ¨̈“ Signpskin , LINK qi i i

1in 1in19: ApplypLINK , σ qi i
20: end for
21: {Verify credit link vkin Ñ for every user }i
22: for i P t1, . . . , nu do

23: v ¨̈“ testLinkpvkin , vkin qi s
24: if v “ K_ v ă β then abort end if
25: end for
26: {Create credit links vkout Ñ vkout }i s
27: for i P t1, . . . , nu do

28: LINKout ¨̈“ CreateLinkpvkout , vkout , βqi i s
σout out29: ¨̈“ SSignptsk˚out u, LINK qi i i

out30: ApplypLINK , σout qi i
31: end for

Ñ vkout32: {Create credit link vkgw }s
33: LINKgw ¨̈“ CreateLinkpvkgw, vkout , 8qs
34: σgw ¨̈“ SSignptski

˚out u, LINKgwq

35: ApplypLINKgw, σgwq
36: {Final settlement transaction}
37: tx ¨̈“ CreateTxpvks

in , vkout , β ¨ nqs
38: σtx ¨̈“ SSignptsk˚in u, txqi
39: Applyptx, σtxq

74

Phase 0: Exchange Output Wallets Anonymously Several P2P mixing pro-

tocols proposed in the literature implement a permutation that ensures that output

messages (i.e., wallets in this case) cannot be linked to their owners, as required in

our decentralized path mixing protocol. Among them, we decide to use DiceMix [63]

due to its efficiency, but in principle we could have used any P2P mixing protocol.

Given that PathShuffle is parametric to the P2P mixing protocol, we omit its details

here and refer the reader to [63] for a detailed description. In the rest, we denote a

P2P mixing protocol by Shuffle.

Phase 1: Create and Connect Input Shared Wallet The users jointly create

a shared input wallet, that we denote by vkin
s . We require that only transactions

starting at vkin
s can be performed. For that, the rippling option (see Section 2.2) must

be disabled at each credit link with vkin
s wallet.

Then, users jointly create a credit link from each input wallet vkin
i to vk

in
s . Such

credit links are then signed by all users using their signing key shares for the input

shared wallet. If a user generates a wrong partial signature, the honest users consider

her to be malicious. Otherwise, these credit links along with their signatures are

submitted to the Ripple network.

Additionally, each user i locally creates and signs a transaction that issues βi
in

credit to the recently created link vkin
i Ñ vkin

s . Such signature is then broadcast to

every other user in the protocol, what allows them to apply the funding transactions

in the Ripple network. If some user refuses to fund such a credit link, the honest users

consider her to be malicious.

Phase 2: Create and Connect Output Shared Wallet The shared output

wallet vkout s is created in the same manner as the shared input wallet vks
in . However,

transactions that use vkout s as intermediate hop must be allowed in this case and for

that, the rippling option must be enabled for the credit links of vkout s . Then, for each

to vkoutoutput wallet j, users jointly create a credit link from each vkout j s with an

75

Ñ vkout upper limit of βj
out . Moreover, the users jointly create a link vkgw with no IOUs

on it. These links will later allow to transfer up to βj
out IOU from the wallet vkout j .

The details of creating the links and verifying the corresponding signatures are

similar to the previous case involving the input shared wallet. As before, users ensure

that only links from known output wallets are created. If during this phase some user

generates an invalid signature, the honest users consider her to be malicious.

Phase 3: Final Transaction sAt this point, the vkout wallet does not have any

incoming credit and thus no transaction from an output wallet through vkout s can be

performed yet. To solve this situation, the users jointly create a settlement transaction
ř

βout to vkouttransferring j j IOU from vkin
s s . This settlement transaction is possible

using the n available paths through each of the users’ input wallets. If some user does

not sign such transaction, the honest users consider her to be malicious.

to vkoutInterestingly, this settlement transaction makes credit to flow from vkin
s s so

ř
and vkout βoutthat the credit link between vkgw has now IOU. This fact enabless j j

now settlement transactions from each output wallet to the rest of the credit network.

4.4.2 Extensions and Applications

Other Credit Networks We have focused the description of PathShuffle to the

Ripple network since it is currently the most widely deployed credit network. Never-

theless, the same protocol can be used to achieve atomic transactions in other credit

networks provided that they offer all the functionality required by PathShuffle. For

instance, PathShuffle can be also deployed in the Stellar network. The Stellar network

provides functionality to create links, set their upper limit and perform path-based

transactions [67]. Moreover, Stellar implements a mechanism to enable and disable the

rippling option as in Ripple [68]. Finally, Stellar supports the same digital signature

schemes as Ripple and thus shared wallets can also be implemented in Stellar.

76

Crowdfunding Application We use atomic transactions as a building block to

achieve anonymous transactions. Nevertheless, we note that atomic transactions

become of interest on its own for other scenarios. For example, they can enable a

crowdfunding transaction in a credit network. Interestingly, the example depicted

in Figure 4.2 is indeed a crowdfunding transaction where the five input wallets are used

to fund the two output wallets. PathShuffle ensures that either every user participating

in the crowdfunding transfers the expected amount of IOU into the crowdfunding

wallets (e.g., vkout Y and vkout Z) or none of the users transfers any IOU.

4.4.3 Security and Privacy Analysis

In this section, we argue why PathShuffle achieves the security and privacy goals of

interest. We refer the reader to [61] for a more detailed security and privacy analysis.

Correctness The final transaction ensures that exactly β are transferred through

the input wallet of the user i (i.e., vkin
i). Moreover, the upper limit on the links from

each output wallet to vkout ensures that wallet vkout has only access to vkout IOU. This s j j

demonstrates the correctness of PathShuffle.

Atomicity A path mixing protocol is atomic if either β IOU are transferred from

input wallets to output wallets or no IOU is transferred.

In the following, we argue that PathShuffle achieves atomicity. In order to see

that, we make the following observations. First, the creation and set up of the shared

wallets do not involve the credit to be transferred. Second, the deactivation of rippling

option on vkin
s credit links ensures that only settlement transactions starting at vkin

s are

accepted by the Ripple network. This prevents a malicious user from stealing honest

user’s credit using vkin
s as intermediate wallet, e.g., by means of a settlement transaction

vkinwith path: vkmalicious – s – vkhonest – vkgw – vkmalicious. (Circular transactions are

accepted and used in the Ripple network. For example, a transaction of the form vki –

77

vkgw1
– . . . – vkgw2

– vki, where . . . denotes an arbitrary set of wallets, can be used by

user i to exchange IOU from gateway 1 to gateway 2.)

to vkoutThird, the settlement transaction from vkin
s s sends all the credit at once.

Thus, either all users contribute the expected credit for the transaction or none of

them do. Moreover, this transaction is created and submitted to the Ripple network

only if there is a link from each output wallet to vkout s with the expected credit upper

limit. In this manner, it is ensured that credit in the output wallets can be used later

to perform a transaction to any other wallet in the credit network.

to vkoutNote that the settlement transaction from vkin
s s is the last step of the

protocol. Thus, whenever the current run of the protocol is disrupted by a malicious

user, the credit on the links between the tvkin
i u and vkgw is not used and can be reused

in another invocation of PathShuffle. Finally, the links between tvkin
i u and vkin

s might

stay funded after disruption is detected. However, this credit is created only for the

purpose of running the protocol and it does not have value outside of it.

Unlinkability PathShuffle relies on a secure P2P mixing protocol to construct the

list of output wallets and this building block ensures that the output wallets are

published without leaking the relation between a single output wallet and its owner.

Moreover, a look at the pseudocode for the rest of the PathShuffle protocol shows

that operations on PathShuffle are totally independent on who is the owner of each

output wallet: Each input wallet transfers β IOU and each output wallet receives β

IOU. Therefore, PathShuffle does not leak the owner of any output wallet. This shows

that PathShuffle achieves unlinkability.

Integrity The underlying P2P mixing protocol does not perform any operation

involving the credit of the users. Moreover, the underlying P2P mixing protocol

ensures for each user that the rest of the P2P mixing protocol is only called if the list

of output wallets contains her own output wallet. Thus if the PathShuffle succeeds,

the same amount β of IOU that is taken from her input wallet is transferred to her

78

output wallet. If PathShuffle fails, no IOU is transferred at all. This shows that

PathShuffle achieves integrity.

4.4.4 Performance Analysis

In PathShuffle, we use the DiceMix protocol as defined in the original paper [63]

as the underlying P2P mixing protocol. Thus, in this section we restrict our analysis

to the additional operations required by PathShuffle and the performance analysis for

the core of DiceMix described in [63] carries over in our work.

Implementation We have implemented PathShuffle in JavaScript by modifying

the current Ripple code [69]. In particular, we have implemented the shared wallet

management by modifying the elliptic library, an implementation of the EdDSA digital

signature scheme supported in Ripple. Moreover, we have used the API provided by

the ripple-lib library [70] to implement the submission of transactions to the Ripple

network. Our source code is publicly available [71] under the MIT license.

Implementation-level Optimizations For readability, we have specified Algo-

rithm 1 in sequential steps. However, several of these steps can be carried out in

parallel, improving thereby the overall performance of the PathShuffle protocol. First,

and vkoutboth shared wallets vkin
s s can be created in parallel. Second, the creation

of links between vkin
s and input wallets and the creation of links between vkout s and

output wallets are independent operations and can be fully parallelized. Thus, it

is possible to perform a single SSignp. . . q invocation to jointly sign the create link

transactions for all of these links.

Additional optimizations are possible to reduce the number of communication

rounds. In particular, the SSignp. . . q procedure requires two broadcast rounds (see Sec-

tion 4.1.3): One round to broadcast the randomness chosen by each user, and a second

round to broadcast the signature share from each user. As the randomness is chosen

independently of the message to be signed, this broadcast can be integrated with a

79

previous communication round in the protocol. In this manner, a call to SSignp. . . q

costs only one extra communication round.

Communication Overhead A protocol based on DiceMix needs pc ̀ 3q` pc ̀ 1qf

communications rounds, where c is number of communication rounds required by

Confirmp. . . q and f is the number of disrupting users.

In our case c “ 2, so PathShuffle needs 5`3f communication rounds. As mentioned

above, broadcast of random elements (e.g., shares for vkin
s and vkout s and randomness for

each of the invocations of SSignp. . . q) can be carried out before PathShuffle is invoked.

Then, one communication round is required for each of the two times SSignp. . . q is

Ñ vkoutinvoked: First to jointly sign the creation of the links vkin
i Ñ vkin

s , vkgw s , and

vkout Ñ vkout ; and second to jointly sign the final transaction that transfers IOU fromj s

to vkoutvkin
s s . Note that, as the credit links created in PathShuffle are deterministically

defined from the input of the protocol, the signatures on the funding transactions for

the links VKin ris Ñ vkin can be broadcast the first time SSignp. . . q is invoked. s

Computation Overhead In this evaluation, we measure the computation time

required by each user on a computer with an Intel i7, 3.1 GHz processor and 16

GB RAM. Given the aforementioned implementation-level optimizations, we have

studied the running time for a single run of SAccountCombinep. . .q and SSignp. . .q

algorithms. This thus simulates the creation of a single shared wallet and the signature

of a transaction involving a shared wallet. We have observed that even with 50

participants, SAccountCombinep. . .q takes 537 ̆ 66.8 milliseconds and SSignp. . .q takes

45 ˘ 3.57 milliseconds using our unoptimized implementation. It is important to note

that it takes approximately 5 seconds for a transaction to be applied into the current

Ripple network [36]. Thus, the overall running time of PathShuffle even considering

the computation time required for DiceMix is mandated by the time necessary for the

Apply operations at each communication round of PathShuffle.

80

Running Time We observe that each communication round in the confirmation

algorithm requires to submit (possibly several parallel) transactions to the Ripple

network. It takes approximately 5 seconds for a transaction to be applied to the

current Ripple network. Therefore, we expect that this mandates the time per

communication round. Altogether, we expect the protocol to run in under 20 s with

a reasonable number of 50 non-disruptive users: Confirmation takes 2 ¨ 5 s and the

required functionality from DiceMix needs about 8 s to complete [63].

Scalability The time to execute DiceMix is dominated by its communication cost,

as it requires each user to send n ¨ |m| bits, where n is the number of users and

|m| is the number of bits of the mixed message (e.g., a Ripple wallet in our case).

Nevertheless, it has been shown that DiceMix can scale up to a moderate number of

users (e.g., 50 users) [63].

In PathShuffle, the execution time is dominated by the Applyp. . .q operations.

Although PathShuffle requires a number of credit links linear in the number of users,

their corresponding operations can be parallelized so that only 5 seconds are needed per

synchronization round. Overall, given the synchronization required for the broadcasts

in DiceMix and the interaction with the Ripple network in PathShuffle, we expect

that PathShuffle provides anonymity guarantees to moderate size groups of users.

Compatibility We have simulated a run of PathShuffle without disruption in the

currently deployed Ripple network. In particular, we have successfully recreated the

scenario depicted in Figure 4.3. As a proof-of-concept, users are simulated by our

JavaScript implementation in a single machine. The mixed IOU are denominated in

PSH, a user-defined currency created for the purpose of this experiment. We describe

the details in the original paper [61].

81

4.5 Anonymity Protocols for Bitcoin

In the realm of Bitcoin and other cryptocurrencies, several solutions have been

proposed to achieve anonymous payments [46,63,72–84]. These solutions are tailored to

the specifics of blockchain-based cryptocurrencies. Given the fundamental differences

between credit networks and cryptocurrencies, it remains an interesting future work to

study whether it is feasible to adapt the underlying ideas of these solutions to credit

networks.

For example, it is conceivable that simple centralized mixing protocols such as

Mixcoin [75] and Blindcoin [77], which do not rely on smart contracts, can be adapted

to Ripple with non-trivial modifications. In these solutions, the mixing server can

steal coins from the users, although such theft is accountable. In this work, instead,

we instead strive for a solution where no theft is possible in the first place. All existing

theft-resistant mixing protocols for cryptocurrencies either rely on multi-input-multi-

output transactions or on script-based smart contracts, none of which are supported in

credit networks such as Ripple. Therefore, none of the privacy-enhancing technologies

proposed for cryptocurrencies are directly applicable to path-based transactions in

the Ripple network.

82

5 DECENTRALIZED CREDIT NETWORKS

As we described in Section 2.3, the Ripple ledger maintains a log of every credit link

between the wallets in the credit network and all the transactions settled between the

wallets, what becomes the key source of several privacy issues. In this state of affairs,

the following question naturally arises: Is it possible to build a credit network without

a ledger?

We observe that the net credit balance of a user in a credit network (i.e., difference

between the credit that the user is owed and the credit the user owes to others) is

fully determined by her own credit links. Therefore, a user can ensure that she does

not incur in credit loss solely checking that her net balance does not change without

her being a sender or receiver of a transaction.

The illustrative example depicted in Figure 5.1 shows the net balances for each

user before and after the transaction from Fabi to Bob for a credit value of 8 IOU

(with no fees for clarity of explanation). Although inflow and outflow values change

for all transaction participants, intermediate users Carol and Edward maintain their

net balance intact. The net balance only changes for the sender Fabi (it is reduced by

8 IOU) and the receiver Bob (it is increased by 8 IOU).

We build upon the aforementioned observation to create a decentralized credit

network where users locally store their own credit links. In the example depicted

in Figure 5.1, Alice locally stores the credit value on her link with Carol. Similarly,

Carol locally stores the credit on her links with Alice, Bob and Edward. The rest of

users locally store their credit links in a similar manner.

In such setting, where a complete ledger is no longer available, several challenges

arise. How to calculate the path between sender and receiver of a transaction? How

83

Alice Bob

Carol

Edison

Fanny20 / -
USD

50 / - U
SD58 / - U

SD
15 / - USD

23 / - USD

18 / - USD

10 / - USD

Al Bo Ca Ed Fa
P
ri
o
r Inflow

Outflow

Net

20

0

20

10

0

10

50

30

20

15

50

-35

0

15

-15

P
os
te
ri
or Inflow

Outflow

Net

20

0

20

18

0

18

58

38

20

23

58

-35

0

23

-23

Fig. 5.1. Illustrative example of net balance conservation. Fanny performs
a settlement transaction with Bob for a credit value of 8 IOU. Although
inflow and outflow change, net balance is maintained for intermediate users
(e.g., Carol and Edison). Values crossed in red denoted stale values due to
the settlement transaction.

to calculate the credit available between two users to perform a transaction? How to

perform a transaction involving several users? And finally, how to carry out all the

previous operations while preserving privacy?

We answer these questions in SilentWhispers [59], an architecture to enforce

security and privacy in decentralized credit networks. In such settings, a transaction

is jointly executed by all the users involved in such transaction, who contribute their

locally stored credit links in a privacy-preserving manner. In this manner, assuming

that participating users are online, SilentWhispers ensures that privacy properties of

interest, such as transaction value privacy, sender and receiver privacy as well as link

privacy, are preserved.

r s

s

84

5.1 Cryptographic Background and Notation

We start with an intuitive description of the cryptographic primitives that we have

deployed in SilentWhispers. We describe here only the additional primitives that were

not shown in Section 4.1.

5.1.1 Secret Sharing

A secret sharing scheme [85] allows a dealer to distribute shares of a secret among

different parties such that any arbitrary subset of shares above the threshold allows a

receiver to fully reconstruct the secret. We refer to such a sharing mechanism as a

pt, Nq-threshold secret sharing scheme. A bit more formally, a secret sharing scheme

T consists of two algorithms (Share, Reconstruct) defined as follows:

Sharepsq Ñ rs1, . . . , sN s: The share creation algorithm takes as input the secret s and

returns a set of N shares rrs1, . . . , sN s.

Reconstructprrs1, . . . , stssq Ñ s: The secret reconstruction algorithm takes as input t

shares of a secret s and returns the secret s itself.

Security of a Secret Sharing Scheme Given a fixed number of parties N , it

should be infeasible for anybody in possession of any subset of less than t shares of a

secret s, to reconstruct the secret s itself.

5.1.2 Distributed Minimum Computation

A secret sharing scheme as presented above can be leveraged to perform multiparty

computations. In a multiparty computation protocol, each user i has an input xi and

a function to be computed fpq. The goal of a multiparty computation protocol is to

let a set of N users to compute y :“ fpx1, . . . , xN q without them learning anything

about the input from any other user other than what is trivially revealed by y.

85

In SilentWhispers, we require a multiparty computation where the function f

is defined as the minimum among all the input values. On input secret shares of

values x1, . . . , xn shared using scheme T among a set of computing parties, we use a

multi-party computation protocol minpq that results in each party having a share of the

minimum of those values. We employ a distributed integer comparison protocol [86]

for this distributed computation.

5.1.3 Notation for Protocol Description

We use the following termonology to describe our protocols.

ppu, iq Parent of node u in the pathi

cpu, iq Child of node u in the pathi

vu1,u2 Credit value on link u1 Ñ u2

stu1,u2 Last value on u1 Ñ u2 agreed by u1, u2

mris Element at position i in array m

vki u Fresh verification key of user u in pathi

max Maximum path length (system parameter)

ts Current timestamp

5.2 Preliminaries

In this section, we describe how to adapt the Ripple Network to fit our description

of credit network. Moreover, we review the setup and communication model. Here, we

consider the threat model as described in Chapter 3 and aim to achieve the security

and privacy goals described in Chapter 3.

86

5.2.1 Adapting the Ripple Network

In this chapter, we consider a credit network as described in Chapter 3. In

particular, for ease of exposition, we consider a transformation of the credit network

to denote how much IOU can be transferred between wallets instead of how much IOU

one wallet owes to its counterparty, as described by Dandekar et al. [87]. For example,

a credit link of the form u1 Ñ u2 with balance α and limit β, is now represented as

two credit links: one credit link u1 Ñ u2 with weight β ´ α, and a second link u1 Ð u2

with weight α.

In this alternative way of representing the credit network, a payment operation

works slightly different. A payment for a value v requires to reduce v in each credit

link from the sender to the receiver and to increase v in each link from the receiver to

the sender. One advantage of this representation is to calculate the credit available in

a path: It simply consists on calculating the minimum weight in the credit links from

the sender to the receiver.

5.2.2 Setup and Communication Model

Throughout this chapter, we assume that the set of landmarks is fixed at the

beginning of each epoch and that it is known to all users. Any changes to the set

become effective in the next epoch. This is crucial as this allows users to know the

root of all Breadth-First Search trees in advance (and therefore the number of possible

paths) during the routing operation, and to securely communicate with them. In

practice, one can maintain the set of landmarks in a public and authenticated log

(e.g., as Tor directory authorities listing).

We assume that the communication between two honest users is not observable by

the attacker. This is a stronger requirement than the presence of a secure channel,

since, in addition to hiding the messages exchanged by the two clients, we want

to hide the fact that communication happened in the first place. If the adversary

observes whether two honest users communicate, it is not possible to enforce any

87

meaningful notion of sender/receiver privacy. We note that, in practice, this condition

can be enforced by having the two users deploying some anonymous communication

channel (e.g., Tor [57]). Moreover, we require all of the involved users to be online

during a given transaction for the execution of the algorithms. We discuss later in the

extensions of SilentWhispers how to relax this condition.

5.3 Solution Overview

As a warm up, we propose a näıve solution to build a secure, privacy-preserving

decentralized credit network and discuss its flows. We then overview our approach

towards our constructions in SilentWhispers. We divide our exposition in the two main

functionality blocks that compose a credit network: Routing and graph management.

5.3.1 Routing

A common, prominent challenge in a credit network is to determine credit routes

between the senderand the receiver. Ghosh et al. [1] have shown that the problem of

maximizing the possible transactions (which they term as social welfare) in a credit

network is NP-hard. Existing credit networks instead consider one transaction at a

time and employ the maximum flow approach [88] to check the available credit among

all possible paths between sender and receiver. However, the most efficient known

max-flow algorithms run in OpV 3q [89] or OpV 2logpEqq [90] time. For this reason,

recent work explored the possibility to efficiently calculate only a subset of all possible

paths between senderand receiver, thereby underestimating the available credit. The

idea of this algorithm, called landmark routing [91], is to calculate a path between

senderand receiverthrough an intermediary node called a landmark. As demonstrated

by Viswanath et al. in the Canal credit network [92], landmark routing performs much

better in large networks than the max-flow approach, with an accuracy loss of only

5%. Canal is split into two processes:

88

1. Universe creator: This process has access to the plain network graph along

with all links’ weights. It randomly selects a small subset of nodes denoted

as landmarks. For every landmark, it calculates the shortest path from the

landmark to every other node in the graph using a breadth-first search (BFS)

algorithm, resulting in a BFS tree. The resulting set of BFS trees is stored in

the so-called landmark universe.

2. Path stitcher: For a request to pay β credits from a sendernode to a re-

ceivernode, the path stitcher reads the landmark universe looking for paths with

available credit between senderand receiver. When the process finds a set of

paths with a total of at least β available credits, it carries out the transaction

by decreasing the credit of the corresponding links and returning a successful

result. If the process instead reaches the end of the landmark universe without

success, the graph is kept unchanged and it returns an unsuccessful result.

Routing information must be repeatedly recalculated to account for the dynamic

nature of credit networks: credit links among users are continuously updated, created,

and deleted as a result of carrying out the transactions. Under the assumption

that users are loosely synchronized, we divide the time in well-known epochs: BFS

arborescences and anti-arborescences are created at the beginning of each epoch and

users utilize that routing information throughout the duration of the epoch.

We assume that the set of landmarks is fixed and known to all users and that

the credit network is a connected graph. Then, the correctness of BFS ascertains

that each user receives routing information from all her neighbors for each landmark.

This ensures that no honest user is alienated by a malicious neighbor; the absence of

BFS related communication from a neighbor for any landmark serves as a detection

mechanism of misbehavior so that further actions (e.g., removing the link with the

misbehaving neighbor) can be adopted.

89

5.3.2 Graph Management

The central technical challenge in the design of a credit network is the computation

of the credit available in a certain path, which is necessary for performing a transaction.

A first, trivial solution would be to let every user in the path privately communicate

her own link’s value to the corresponding landmark so that the landmark can thereby

compute the minimum value over the path and notify the intended recipients. It

is easy to see, however, that this approach fails to guarantee privacy against an

honest-but-curious landmark as the landmark would learn the credit associated with

each link.

A local approach, where the credit on the path gets computed step-by-step by each

user in the path, does not solve the privacy problem either. For instance, suppose

that each user sends to the next user in the path the lower value between the one of

its own link and the one received from the previous user: It is easy to see that such a

protocol leaks all the intermediate values.

The idea underlying our approach is to design a secure Multi-Party Computation

(SMPC) protocol to compute the credit available on a path. In order to boost the

efficiency of our construction, we let landmarks play the role of computation parties,

each receiving a share of the credit on each link from the sender to the receiver.

Landmarks can jointly compute the credit on the whole path, intuitively by computing

a series of minimum functions, but without learning anything about the result of the

computation, nor of course the credit on the links.

An illustrative example is shown in Figure 5.2. First, every user in the payment

path from the sender (Alice) to the receiver (Dave), creates a share of the link’s value

for each of the landmarks. After receiving all shares, landmarks locally compute the

“minimum” function over the shares, thereby obtaining a share of the result that is

then sent to the sender. Finally, the sender reconstructs the result and carries out the

payment.

90

Alice Bob Carol

15 70 25 5

[[1
5]]

[[15]]

[[70]]
[[70]]

[[25]][[15]]

[[2
5]]

[[25]]
[[5]]

[[5]]

[[5]]

[[min(15, 70, 25, 5)]]

[[min(15, 70, 25, 5)]]

Dave

Fig. 5.2. An illustrative example of the use of SMPC in SilentWhispers:
Dashed lines show communication between parties and solid arrows repre-
sent credit links, while notation ras indicates a (secret sharing) share of
value a. We consider a payment from Alice to Dave. First, every user in
the path sends a share of her link value to each landmark. Then, landmarks
locally compute the share of the minimum credit on the path and send it
to the sender. Transfer of the share from the landmark in the middle to
the sender has been omitted for readability.

This approach, however, leaves two important concerns unanswered. First, how to

assure that the shares come from users forming a path from the sender to the receiver

without compromising their privacy (e.g., revealing the links); and second, how to

enforce the correctness of the updates of links caused by the transaction without using

a public ledger.

We ensure that all shares come from users in a path from the sender to the receiver

by resorting to a chain of signatures. Näıvely, we could assume that every user uses a

long-term key pair to sign the verification key from her predecessor and her successor

in a given path. This would result in a unique signature chain serving as a valid proof

of the existence of a path from sender to receiver.

91

Alice Bob Carol Dave

����(, (,))��∗

A ��∗

A ��∗

B

����(, (, ,))��∗

B ��∗

A ��∗

B ��∗

LM

LM

����(, (, ,))��∗

LM ��∗

B ��∗

LM ��∗

C

����(, (, ,))��∗

C ��∗

LM ��∗

C ��∗

D

����(, (,))��∗

D ��∗

C ��∗

D

Fig. 5.3. Illustrative example of path construction in SilentWhispers. Every
user i has a pair (sk˚

i , vk
˚
i) of signing and verification keys. Every user in

the path privately exchanges the fresh verification key to both neighbors.
Then, each user publishes a signed tuple containing the fresh verification
keys of the neighbors and his/her own. A path is correct if contiguous
verification keys in the path are equal.

However, the exposure of the same long term keys across different transactions

would allow for correlation attacks and ultimately compromise user privacy. Using

fresh keys per transaction to overcome this issue does not entirely solve the problem

either: since fresh keys are not bound to a user, an adversary can always impersonate

an honest user with her own keys.

Our idea, instead, is to combine long term and fresh keys. First, a user signs a

fresh verification key with her long term signing key so that they are bound together.

The (sensitive) long term verification key is revealed only to the counterparty in a

credit link so that the relation between a fresh verification key and a user is verifiable

to the counterparty but remains hidden for the rest of users in the credit network.

Second, a user can use her fresh signing key to sign the fresh verification key of the

predecessor and successor in any given path, thereby creating a signature chain. A

pictorial description of the approach is reported in Figure 5.3.

92

5.4 Protocol Specifications

In this section, we first describe the SilentWhispers protocol and then discuss on

possible extensions to cope with offline users or malicious landmarks among others

aspects. Finally, we analyze the security, privacy and performance of our proposed

protocol.

5.4.1 Protocol Description

In the following we describe the routines of SilentWhispers.

Routing Users have access to a synchronous network through FNET. Every pair of

users sharing a credit link communicate through a secure and authenticated channel,

described by FSMT. Secure realizations of FNET and FSMT have been proposed in [60].

Finally, users have access to the routing protocol described in FROUT: this functionality

is executed periodically at epochs (e.g., according to some system parameter) so that

frequent changes in the inherently dynamic topology of credit networks are taken into

account for subsequent transactions.

Setup Link The credit link updates are handled as defined in the link setup proto-

col (Algorithm 2). This protocol allows two users sharing a credit link to agree on the

link’s value at the beginning of each routing epoch. This is later used as a reference for

subsequent updates within the epoch. For that, each user signs the other’s long-term

verification key and the current credit with her own long-term signing key.

93

Algorithm 2 Link setup protocol.

u1, u2: Nodes creating a shared link

v: Value of the link u1 Ñ u2
Input :

psk˚
ui
, vk˚

ui
q: User i long term keys

epoch: Current epoch

¨ ¨“ Signpsk
¨ ¨“ Signpsk

2 , psettled||vk
:“ psettled||vk

˚

˚

˚

˚
2

˚

˚

˚
1

˚
21 , psettled||vk

2 , psettled||vk
||vk1 2

˚

˚

˚

||vk ||v||epochqq to u2

||v||epochqq to u1

1: u1 sends σ1

2: u2 sends σ2
˚ ˚||vk1 2

if then3: u1 stores
||vk1 2
˚

||v||epochq, σ2q
||v||epochqq˚

Verifypvk
pσ1, σ2, stvk

if
˚
1 ,vk

||vk1 2
˚

then4: u2 stores1 , psettled||vk
:“ psettled||vk˚

2
||vk
||v||epochq, σ1q

||v||epochqq˚
Verifypvk

pσ1, σ2, stvk˚
1 1 2,vk

Payment For easing the presentation, we have made two simplifications. First,

we assume the set of paths tpath1, . . . , pathLMu as input of the transaction protocol,

although in reality every user notifies her parent on the path that she is part of a

transaction path and she needs to carry out the corresponding operations. Second,

at certain steps of the protocol we write that users submit messages directly to the

corresponding landmark (e.g., line 10) to mean that such messages are sent to the

landmark by forwarding it among neighbors in the path. The creator of such message

encrypts it under the public key of the landmark and signs it with her fresh signing

key to avoid tampering from other users.

Phase 1: path construction and shares submission (lines 1-15): In this phase, users

on each path create a signature chain and submit the shares of their link values to the

landmarks. In detail, starting from the sender, each user signs her fresh verification

key with her long term signing key and sends the signature to both the successor and

the predecessor in the path (lines 3-4). This signature binds a fresh verification key to

a user and thus avoids illegitimate impersonations. Neighbors can then exchange the

shares of their shared link’s value and check that they reconstruct to the same value

94

(i.e., the two end-points agree on the credit between them) (lines 5-6). Finally, each

user on the path signs all this information along with a timestamp (to avoid replay

attacks) and sends it to the landmarks (lines 8-10). The signature is created with the

user’s fresh signing key so that the user’s identity is concealed from the landmarks.

Finally, the sender must create additional messages for each path in order to pad it

into a length predefined by the system (i.e., max) in order to avoid inference attacks

based on the path length (line 14). The same procedure is symmetrically carried out

on the paths from the receiver to each landmark.

Concerning the integrity of paths, we observe that a malicious user could divert the

signature chain using fresh keys of her choice. However, she cannot get an honest user

into the fake chain continuation, since that user would refuse to sign the attacker’s

fresh key, making the attack ineffective.

Phase 2: computation of credit on a path (lines 16-24): In this phase, landmarks

verify the correctness of the signature chain and calculate the credit available in each

path. In particular, after the landmarks receive messages from up to max users for

each path, they verify that neighboring keys in a path are consistent and calculate

the minimum value of each path using a secure multi-party computation (lines 17-24).

This results into each landmark having a share of the minimum value for each path

which is then sent to the sender.

In a nutshell, the use of fresh keys hides users identities and the multiparty

computation over shared values does not reveal the actual link values to the landmarks.

Additionally, due to the use of fresh keys for each path, landmarks cannot detect

whether a given link is shared in more than one path. This could result in landmarks

calculating a path value greater than the available one. Nevertheless, this over-

approximation is detected in the next phase when a link cannot be updated due to

insufficient credit and this path is then ignored for the transaction without incurring

any credit loss for the users involved in the transaction.

s

s

r

95

Algorithm 3 Transaction protocol.

Sdr, Rcv: Transaction sender and receiver

Input: tpath1, . . . , pathLMu Set of paths Sdr to Rcv

psk˚ , vk˚ q: user ui long term keysui ui

1: {Phase 1: signature chain }
2: for i P |LM| do
3: for u P pathi do
4: u creates fresh keys psku, vkuq, σu :“ Signpsk˚ , vkuq and sends pσu, vkuq tou

ppu, iq and to cpu, iq
5: u receives pσcpu,iq, vkcpu,iqq from cpu, iq and pσppu,iq, vkppu,iqq from ppu, iq

1 16: u receives from cpu, iq shares rrs1, . . . , s|LM|
ss , u reconstructs v’ from

1 1 1rrs1, . . . , s|LM| s and checks whether v “ vcpu,iq,u

7: u creates rrs1, . . . , s|LM| s for the value vu,ppu,iq and sends them to ppu, iq
8: if Verifypvk˚

cpu,iq, vkcpu,iq, σcpu,iqq ^ Verifypvk˚
ppu,iq, vkppu,iq, σppu,iqq then

9: for j P |LM| do
110: u creates m :“ pvkcpu,iq||rrs ss||vku||vkppu,iq||rrsj ss||Txid||tsq, u createsj

σLMj
¨̈“ Signpsku, mq and finally sends pσLMj , mq to LMj

11: end for
12: end if
13: end for
14: Sdr creates k :“ pmax ´ |pathi|q more tuples pm, σLMi q , where all shares

reconstruct to the maximum possible credit in a link, and sends them to LMi

15: end for
16: {Phase 2: Minimum computation}
17: for i P |LM| do
18: Each LM checks whether |pathi| “ max ^
19: for all j P t1, . . . , |pathi|u do
20: Verifypmj r3s, mj , σj q ^ mj r1s “ mj´1r3s ^ mj r4s “ mj`1r3s ^ mj´1r6s “

mj r6s “ mj`1r6s
21: end for
22: Each LM computes the share smini as result for function minp¨q over the

shares rs1, . . . , smaxss belonging to pathi.
23: Each LM sends the resulting tuples pi, smini , vk

i
1, vk

i q to Sdrmax
24: end for

96

Algorithm 4 Transaction protocol (continued)

1: {Phase 3: Carrying out transaction}
2: Sdr reconstructs the tuples pi, miniq and verifies that vki 1 and vki are the firstmax

and last keys of pathi as she expects
3: for i P |LM| do
4: Sdr chooses the transaction value xi, generates txi :“

pts||xi||Txid||vkSdr||vkRcvq and σi :“ SignpskSdr, txiq, and sends (txi, σi) toSdr Sdr
the nodes in pathi

5: for u P pathi do
6: u checks VerifypvkSdr, txi, σiSdr q, xi is smaller than the value vu,ppu,iq, and

previous link cpu, iq Ñ u has been reduced by xi u decreases link value on
pathi by xi resulting in xi

1

17: u creates m :“ pon hold||vk˚
u ||vk

˚
ppu,iq||xi||txiq, σu :“ Signpsk˚

u , mq and sends
pσu, mq to ppu, iq

8: u receives σppu,iq :“ Signpsk˚
ppu,iq, mq from ppu, iq

9: u and ppu, iq locally store pstvk˚ ,vk˚ :“ mq and (σppu,iq, σuqu ppu,iq

10: end for
11: Rcv σi :“ SignpskRcv, txiq and sends ptxi, σi q to SdrRcv Rcv
12: end for
13: for i P |LM| do
14: Rcv sends ptxi, σi , σi q to every node in pathiSdr Rcv
15: for u P pathi do

116: u creates m :“ psettled||vk˚
u ||vk

˚
cpu,iq||xi||tsq, σu :“ Signpsk˚

u , mq and sends
pσu, mq to cpu, iq

17: u receives σcpu,iq :“ Signpsk˚
cpu,iq, mq from cpu, iq

18: u and cpu, iq locally store pstvk˚ ,vk˚ :“ mq and pσcpu,iq, σuqu cpu,iq

19: end for
20: end for

Phase 3: Updating link values (lines 1-20, continuation): Link values on each

path are updated so that the expected credit reaches the receiver. This process is

performed in two steps. First, the transaction value for each path is decreased (i.e.,

on hold) on each link from the sender to the receiver (lines 3-10, continuation). This

ensures that a user puts on hold credit on her outgoing link only after assuring the

credit in the incoming link has been held, and thus a honest user in the path cannot

incur in credit loss. This escrow serves as a commitment to accept the new link value

if the receiver eventually accepts the transaction.

97

Second, after receiving the confirmation from the receiver (i.e., the receiver signature

on the transaction’s value for a given path), the held value is adopted as the new

credit value (i.e., settled) on each link, starting from the receiver to the sender (lines

13-20, continuation). This reverse order ensures that each user in the path has an

incentive to settle the final value: a user first settles the outgoing link (i.e., giving

out credit), and thus is in the user interest to settle the incoming link (i.e., receiving

credit) to recover the credit. In this manner, credit values on transaction paths can be

consistently updated. Interestingly, if any user does not cooperate with her neighbor

during this phase (e.g., a faulty user), the credit involved in the dispute is bounded

and eventually would be resolved by either continuing the execution or aborting the

payment in the complete path.

Test Credit The test operation works similar to the transaction protocol. It only

differs in the fact that the sender will not carry out the transaction, as the test

operation only requires the sender to learn the available credit.

Test Link and Change Link The testLink and chgLink can be easily performed

by exchanging a message between the two end-points of the credit link through their

authenticated private channel.

5.4.2 Security and Privacy Analysis

We hereby state the security and privacy results for SilentWhispers. We prove

our result in the FNET, FSMT-hybrid model; i.e., the theorem holds for any UC-secure

realization of FNET and FSMT.

Theorem 5.4.1 (UC-Security) Let T be a secure secret sharing scheme and Π be

an existentially unforgeable digital signature scheme, then SilentWhispers UC-realizes

the ideal functionality FCN in the FNET, FSMT-hybrid model.

98

Proof [Sketch] The proof proceeds by describing the simulator S that interacts

with the ideal functionality FCN in the ideal world and must provide to a corrupted

environment E inputs that are computationally indistinguishable to the ones that A

would output in the real-wold protocol. Thus the core of the proof is the simulation of

the inputs that A is expecting from the protocol while interacting in the ideal world.

We identify two main technical highlights in the proof: (i) any honestly computed

signature in the protocol is simulated via the simulator offered by the security definition

of digital signatures and (ii) shares of unknown secrets are simulated with values

sampled uniformly at random from the appropriate domain. In the former case the

indistinguishability from an honest execution is provided directly by the security

definition of the signature scheme, while in the latter case it follows by the information

theoretic hiding of the shared secret (throughout the experiment we always simulate a

number of shares below the threshold value). The rest of the simulation focuses on

adapting the adversarial behavior to the ideal functionality, aborting when appropriate.

The full proof is elaborated in the full version of the paper [59].

5.4.3 Performance Analysis

We have developed a C++ implementation to demonstrate the feasibility of

SilentWhispers. We focus in particular on the payment protocol (Protocol 3), which

dominates by far the computational complexity, simulating the main functionality of

both landmarks and users in the credit network. Our realization relies on the MPC

Shared Library [93], on the Shamir’s information theoretic construction [85] for secret

sharing, and on Schnorr’s signatures [94, 95] due to their efficiency.

Implementation-Level Optimizations There exist several independent opera-

tions in a transaction that can be parallelized. Intuitively, in the first phase, users can

prepare fresh keys, signatures and shares of the link values for each path in parallel.

99

They can then be processed and verified by landmarks in parallel as well during the

second phase of the transaction protocol. Finally, users can carry out the third phase

by updating links for different paths independently of each other.

Since the min function is associative, we can parallelize independent min operations

to improve the efficiency of calculating the minimum value in a path. For instance,

x :“ minpa, bq and y :“ minpc, dq can be done in parallel and then compute minpx, yq

to obtain the minimum among a, b, c, d. Finally, the sender can reconstruct the mini

values for each pathi and transmit it to the users in pathi in parallel.

Performance We conduct our experiments in machines with 3.3 GHz processor and

8 GB RAM to carry out decentralized operations involving landmarks (e.g., multiparty

computation of the minimum value of a path). We simulate each landmark in a

different machine. For our experiments, we have implemented the cryptographic

schemes used in the transaction protocol. Based on their execution time, we calculated

the total time for the transaction operations taking into account the implementation

optimizations.

Transaction Time The chgLink and testLink operations are performed directly

between the users sharing a credit link and are extremely efficient. Among the other

transactions, we have studied the pay transaction, since it is clearly more expensive than

test. In particular, we first study the communication cost and then the computation

time required for the pay operation.

In the pay operation, each user in the path must forward messages to the neighbors.

The longest message to be sent as defined in Algorithm 3 contains 340 bytes: 4

verifications keys (i.e., 64 bytes each in the elliptic curve setting), 5 integers of 4 bytes

each and a signature (i.e., extra 64 bytes). In the worst case, a user must forward

one such messages for each of the max neighbors and thus the communication cost is

max ̈ 340 bytes. In practice, max is a small constant and forwarding such message

can be done efficiently even with commodity communication links.

100

Table 5.1.
Times in seconds to compute Min(a, b). We use 32 bits to represent a and
b. In a setup (n, t), n denotes the total number of landmarks out of which
t are compromised.

Setup p5, 1q p5, 2q p7, 1q p7, 2q p7, 3q

Time 0.304 0.314 0.357 0.346 0.349

Regarding computation time, we observe that operations performed by users

in phases 1 and 3 consist of the creation and verification of signatures, which are

extremely efficient. Therefore, we focus on the computation of the credit value of a

path (i.e., the minimum among the credit values of the links composing the path),

since it is the most expensive operation.

The time to compute the minimum between two values among a set of landmarks

is shown in Table 5.1. The actual number of such min computations required to

calculate the credit in a path depends on the length of the path (i.e., max). Using

the implementation level optimizations, landmarks need to perform only rlogpmaxqs

min operations sequentially. In Table 5.2 we show the time to compute the credit in

a path for different path lengths. In particular, computing the minimum credit in a

path takes roughly 1.7 seconds for max “ 20.

Routing Time We consider the remaining protocols in SilentWhispers: the link

setup and the routing protocol. The link setup is extremely efficient and can be

done even offline. The routing protocol requires a decentralized BFS algorithm. The

decentralized BFS is well studied in the literature and it has been shown to be

practical [96]. In particular, the proposed algorithm has a communication complexity

of OpEq and a time complexity of Opl2q, where E denotes the number of links and l

denotes the height of the BFS tree. Moreover, BFS does not involve cryptographic

101

Table 5.2.
Times in seconds to compute the credit on a path. We use a setup (7, 3):
7 landmarks, 3 compromised.

Path Length (max) 5 10 20

Time 1.047 1.349 1.745

operations and it can be run as a background process, thus it does not hinder the

performance of the rest of system operations.

Establishing System Parameters Running SilentWhispers requires setting up

two system parameters: the maximum path length and the number of landmarks.

To do that, we have extracted transactions carried out in Ripple [37]. Based on this

information, we set up the system parameters such that SilentWhispers can process

the transactions already performed in Ripple.

First, for processing a transaction, the sender has to pad the number of links in

the path to maintain the privacy properties. In order to find a meaningful value for

the maximum path length, we have collected all transactions from the start of the

Ripple network until December 2015, resulting in a set of 17,645,343 transactions.

The maximum path length that we have observed is 10 links. Thus, we set up the

maximum path length to 10 in our evaluation.

Second, processing a transaction requires more than one path. The actual number

of paths used in a transaction will determine the number of landmarks required in our

system. In order to find this value, we have extracted the distribution on the number

of paths that have been used for the Ripple transactions. We have observed that the

maximum number of paths used in a transaction is 7 and thus we use 7 landmarks in

our evaluation. We note that using the landmark routing algorithm in the current

Ripple network might imply a variation in the number of required landmarks. However,

choosing adequate users as landmarks will ensure that the maximum number of paths

102

is maintained within a small factor, as most of the transactions are routed through

the landmarks.

In practice, selecting those users with higher number of credit links as the landmarks

facilitates finding suitable transaction paths between users for a transaction. For

instance, banks are the natural candidate to serve as landmarks in a transaction

network. Furthermore, we have extracted the Ripple network and observed that most

nodes have links to a few highly connected nodes, which correspond to gateways. They

are already well known to all users as most of them also contribute to validate the

Ripple network, and they thus become the ideal landmark candidates when applying

SilentWhispers in Ripple.

In conclusion, SilentWhispers can simulate the Ripple network using 7 landmarks

and a path length of 10. Given these system parameters, each user has to forward,

in the worst case, a message of 10 ¨ 340 “ 3400 bytes, which can be done efficiently

even with commodity communication links. Moreover, computing the minimum credit

in a path takes roughly 1.3 seconds (see Table 5.2). A transaction in the currently

deployed transaction network Ripple, takes approximately 5 seconds. Thus, our

evaluation shows that SilentWhispers does not introduce any significant overhead to

the transaction time.

103

6 SUMMARY

In this dissertation we thoroughly study the security and privacy in credit networks

and we expect that it motivates the use of secure and privacy-preserving transaction

protocols in the current and emerging systems based on credit networks. In particular,

this dissertation describes the following contributions.

Security and Privacy Study of the Ripple Network As the most representative

instance of credit network in practice, we have thoroughly studied the Ripple network

to characterize its security and privacy issues. As a result, we describe the effect of

unexpected redistribution of credit, the effect of faulty gateways and the effect of

stale offers on the credit held by users. Our results show that the Ripple community

must be educated about these issues to prevent them from credit losses. Moreover,

we shed light on the gap –due to certain patterns of use and interaction between

parties in the network— between the (supposedly) provided privacy available in the

Ripple network and the actual privacy achieved by the current Ripple users and, most

importantly, their transactions. Our analysis thus motivates the imperative need for

better privacy-preserving transactions mechanisms for Ripple and any other emerging

transaction network based on the same design principles.

Security and Privacy Definitions for Credit Networks The lack of formal

definitions of security and privacy notions of interest in a credit network hinders the

design of systems aiming to provide secure and privacy-preserving transactions. In

this state of affairs, we provide the first formalization for the notions of integrity,

transaction value privacy and transaction sender/receiver privacy. These definitions

104

serve as the basis to formally assess the security and privacy guarantees achieved by

new proposals of credit network systems.

Anonymous Transactions in Ripple Currently deployed credit networks such

as Ripple rely on a public available ledger that inherently leaks sensitive financial

information such as credit links and transactions. Given that, we require a solution that

provides anonymous transactions fully compatible with the current Ripple network.

In order to achieve that, we have built PathShuffle, our novel protocol to perform

atomic and anonymous transactions in the Ripple network. The atomicity provided

by PathShuffle is of special interest not only for path mixing protocols, but also for

other applications such as crowdfunding.

Secure and Privacy-Preserving Decentralized Credit Networks Tailored

privacy-enhancing protocols such as PathShuffle help to raise the bar, but do not

provide a generic solution with strong privacy guarantees. In this dissertation we

have presented SilentWhispers, a novel decentralized architecture for credit networks

that achieves strong security and privacy properties. The distinguishing feature of our

architecture is the avoidance of a global, publicly available ledger and still provides

the functionality required by users in a credit network.

REFERENCES

105

REFERENCES

[1] A. Ghosh, M. Mahdian, D. M. Reeves, D. M. Pennock, and R. Fugger, “Mechanism
design on trust networks,” in Internet and Network Economics, ser. WINE, 2007,
pp. 257–268.

[2] R. Fugger, “Money as IOUs in Social Trust Networks and A Proposal for a
Decentralized Currency Network Protocol,” 2004, http://library.uniteddiversity.
coop/Money and Economics/decentralizedcurrency.pdf (Accessed May 2018).

[3] D. do B. DeFigueiredo and E. T. Barr, “TrustDavis: A non-exploitable online
reputation system,” in Conference on E-Commerce Technology, ser. CEC, 2005,
pp. 274–283.

[4] A. Post, V. Shah, and A. Mislove, “Bazaar: Strengthening user reputations in
online marketplaces,” in Symposium on Networked Systems Design and Imple-
mentation, ser. NSDI, 2011, pp. 183–196.

[5] A. Mislove, A. Post, P. Druschel, and K. P. Gummadi, “Ostra: Leveraging trust to
thwart unwanted communication,” in Symposium on Networked Systems Design
and Implementation, ser. NSDI, 2008, pp. 15–30.

[6] “Ripple website,” https://ripple.com/ (Accessed May 2018).

[7] “Stellar website,” https://www.stellar.org/ (Accessed May 2018).

[8] A. Liu, “Ripple Labs signs first two US banks,” Ripple blog, 2014, https://ripple.
com/blog/ripple-labs-signs-first-two-us-banks/ (Accessed May 2018).

[9] T. Yablonskaya, “Royal Bank of Canada teams up with Ripple
for blockchain remittance system,” Coinspeaker blog, 2016, http:
//www.coinspeaker.com/2016/02/25/royal-bank-of-canada-teams-up-with-
ripple-for-blockchain-remittance-system/ (Accessed May 2018).

[10] A. Liu, “Santander: Distributed ledger tech could save banks $20 billion a year,”
Ripple blog, 2015, https://ripple.com/blog/santander-distributed-ledger-tech-
could-save-banks-20-billion-a-year/ (Accessed May 2018).

[11] A. Goel, “Bank-wise analysis of blockchain activity,” Let’s Talk Payments blog,
2015, http://letstalkpayments.com/bank-wise-analysis-of-blockchain-activity (Ac-
cessed May 2018).

http://letstalkpayments.com/bank-wise-analysis-of-blockchain-activity
https://ripple.com/blog/santander-distributed-ledger-tech
www.coinspeaker.com/2016/02/25/royal-bank-of-canada-teams-up-with
https://ripple
https://www.stellar.org
https://ripple.com
http://library.uniteddiversity

106

[12] P. Rizzo, “Japan’s SBI holdings teams with Ripple to launch new company,” Coin-
Desk blog, 2016, http://www.coindesk.com/sbi-holdings-ripple-new-company/
(Accessed May 2018).

[13] J. Southurst, “Australia’s Commonwealth Bank latest to experiment with Ripple,”
CoinDesk blog, 2015, http://www.coindesk.com/australia-commonwealth-bank-
ripple-experiment/ (Accessed May 2018).

[14] M. Long, “Santander becomes the first U.K. bank to use Ripple for cross-border
payments,” Ripple blog, 2016, https://ripple.com/insights/santander-becomes-
first-uk-bank-use-ripple-cross-border-payments/ (Accessed May 2018).

[15] P. (Pseudonym), “How EarthPort and Ripple are teaming up to
make cross-border payments instant,” PYMNTS.com blog, 2015,
http://www.pymnts.com/in-depth/2015/how-earthport-and-ripple-are-
teaming-up-to-make-cross-border-payments-instant/ (Accessed May 2018).

[16] F. F. (Pseudonym), “Earthport launches distributed ledger hub via Ripple,”
Banking Technology blog, 2016, http://www.bankingtech.com/420912/earthport-
launches-distributed-ledger-hub-via-ripple/ (Accessed May 2018).

[17] C. Hunt, “How Marco Montes is empowering migrant workers,” Ripple
blog, 2015, https://ripple.com/blog/how-marco-montes-is-empowering-migrant-
workers/ (Accessed May 2018).

[18] P. Rizzo, “Microsoft explores adding Ripple tech to blockchain toolkit,” CoinDesk
blog, 2015, http://www.coindesk.com/microsoft-hints-future-ripple-blockchain-
toolkit/ (Accessed May 2018).

[19] P. Moreno-Sanchez, M. B. Zafar, and A. Kate, “Listening to whispers of Ripple:
Linking wallets and deanonymizing transactions in the Ripple Network,” in
Privacy Enhancing Technologies Symposium, ser. PETS, 2016, pp. 436–453.

[20] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large sparse
datasets,” in Symposium on Security and Privacy, ser. S&P, 2008, pp. 111–125.

[21] K. Sharad and G. Danezis, “An automated social graph de-anonymization tech-
nique,” in Workshop on Privacy in the Electronic Society, ser. WPES, 2014, pp.
47–58.

[22] A. Sala, X. Zhao, C. Wilson, H. Zheng, and B. Y. Zhao, “Sharing graphs using
differentially private graph models,” in Internet Measurement Conference, ser.
IMC, 2011, pp. 81–98.

[23] P. Mittal, C. Papamanthou, and D. X. Song, “Preserving link privacy in social
network based systems,” in Network and Distributed System Security, ser. NDSS,
2013.

[24] N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-resilient online content voting,”
in Symposium on Networked Systems Design and Implementation, ser. NSDI,
2009, pp. 15–28.

[25] A. Mohaisen, H. Tran, A. Chandra, and Y. Kim, “Trustworthy distributed com-
puting on social networks,” in Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security, 2013, pp. 155–160.

http://www.coindesk.com/microsoft-hints-future-ripple-blockchain
https://ripple.com/blog/how-marco-montes-is-empowering-migrant
http://www.bankingtech.com/420912/earthport
http://www.pymnts.com/in-depth/2015/how-earthport-and-ripple-are
https://PYMNTS.com
https://ripple.com/insights/santander-becomes
http://www.coindesk.com/australia-commonwealth-bank
http://www.coindesk.com/sbi-holdings-ripple-new-company

107

[26] A. Molavi Kakhki, C. Kliman-Silver, and A. Mislove, “Iolaus: Securing online
content rating systems,” in Proceedings of the 22Nd International Conference
on World Wide Web, ser. WWW ’13. New York, NY, USA: ACM, 2013, pp.
919–930. [Online]. Available: http://doi.acm.org/10.1145/2488388.2488468

[27] A. Mohaisen, N. Hopper, and Y. Kim, “Keep your friends close: Incorporating
trust into social network-based Sybil defenses,” in INFOCOM, 2011 Proceedings
IEEE, 2011, pp. 1943–1951.

[28] T. Bergin and J. Finkle, “Exclusive: SWIFT confirms new cyber thefts,
hacking tactics,” Reuters press, 2016, http://www.reuters.com/article/us-usa-
cyber-swift-exclusive/exclusive-swift-confirms-new-cyber-thefts-hacking-tactics-
idUSKBN1412NT (Accessed May 2018).

[29] M. J. Schwartz, “Another SWIFT hack stole $12 million,” Blog entry,
2016, https://www.bankinfosecurity.com/another-swift-hack-stole-12-million-a-
9121 (Accessed May 2018).

[30] “Earthport blockchain offering secures fintech finance award,” Blog en-
try, 2017, https://www.earthport.com/news-insights/news/earthport-blockchain-
offering-secures-fintech-finance-award (Accessed May 2018).

[31] D. Patterson, “MIT running a Ripple validator,” Ripple blog, 2016, https://
ripple.com/insights/mitvalidator/ (Accessed May 2018).

[32] S. Marquer, “XRP ledger decentralizes further with expansion to 55 validator
nodes,” Ripple blog, 2017, https://ripple.com/insights/xrp-ledger-decentralizes-
expansion-55-validator-nodes/ (Accessed May 2018).

[33] “Ripple transactions overview,” https://ripple.com/build/transactions/ (Accessed
May 2018).

[34] “Understanding the NoRipple flag,” https://ripple.com/build/understanding-the-
noripple-flag/ (Accessed May 2018).

[35] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Symposium on
Operating Systems Design and Implementation, ser. OSDI, 1999, pp. 173–186.

[36] D. Schwartz, N. Youngs, and A. Britto, “The Ripple protocol consensus algorithm,”
Whitepaper, 2014, https://ripple.com/files/ripple consensus whitepaper.pdf (Ac-
cessed May 2018).

[37] F. Armknecht, G. Karame, A. Mandal, F. Youssef, and E. Zenner, “Ripple:
Overview and outlook,” in Trust and Trustworthy Computing, ser. TRUST, 2015,
pp. 163–180.

[38] A. D. Luzio, A. Mei, and J. Stefa, “Consensus robustness and transaction de-
anonymization in the Ripple currency exchange system,” in Distributed Computing
Systems, ser. ICDCS, 2017, pp. 140–150.

[39] C. Cachin and M. Vukolic, “Blockchain consensus protocols in the wild,” CoRR,
vol. abs/1707.01873, 2017.

[40] B. Chase and E. MacBrough, “Analysis of the XRP ledger consensus protocol,”
CoRR, vol. abs/1802.07242, 2018, http://arxiv.org/abs/1802.07242.

http://arxiv.org/abs/1802.07242
https://ripple.com/files/ripple
https://ripple.com/build/understanding-the
https://ripple.com/build/transactions
https://ripple.com/insights/xrp-ledger-decentralizes
https://ripple.com/insights/mitvalidator
https://www.earthport.com/news-insights/news/earthport-blockchain
https://www.bankinfosecurity.com/another-swift-hack-stole-12-million-a
http://www.reuters.com/article/us-usa
http://doi.acm.org/10.1145/2488388.2488468

108

[41] P. Moreno-Sanchez, N. Modi, R. Songhela, A. Kate, and S. Fahmy, “Mind your
credit: Assessing the health of the Ripple credit network,” in World Wide Web
Conference, ser. WWW, 2018, pp. 329–338.

[42] “Technical report on Ripple Flag,” Whitepaper, 2015, https://ripple.com/files/
GB-2015-04.pdf (Accessed May 2018).

[43] J. Young, “Ripple directs Bitstamp to freeze funds of former co-founder Jed Mc-
Caleb,” Cointelegraph blog, 2015, https://cointelegraph.com/news/ripple-directs-
bitstamp-to-freeze-funds-of-former-co-founder-jed-mccaleb (Accessed May 2018).

[44] B. R. (pseudonym), “The Ripple story,” BitMex blog, 2018, https://blog.bitmex.
com/the-ripple-story/ (Accessed May 2018).

[45] A. (pseudonym), “Ripple explodes monday morning setting all-
time best market cap - glitch or gain?” XRPChat forum, 2016,
https://www.xrpchat.com/topic/2187-ripple-explodes-monday-morning-
setting-all-time-best-market-cap-glitch-or-gain (Accessed May 2018).

[46] S. Barber, X. Boyen, E. Shi, and E. Uzun, “Bitter to Better — how to make
Bitcoin a better currency,” in Financial Cryptography and Data Security, ser. FC,
2012, pp. 399–414.

[47] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker,
and S. Savage, “A fistful of bitcoins: characterizing payments among men with
no names,” in Internet Measurement Conference, ser. IMC, 2013, pp. 127–140.

[48] M. Spagnuolo, F. Maggi, and S. Zanero, “Bitiodine: Extracting intelligence from
the Bitcoin network,” in Financial Cryptography and Data Security, ser. FC, 2014,
pp. 457–468.

[49] F. Reid and M. Harrigan, “An analysis of anonymity in the Bitcoin system,” in
Privacy, Security, Risk and Trust, ser. PASSAT, 2011, pp. 1318–1326.

[50] D. Ron and A. Shamir, “Quantitative analysis of the full Bitcoin transaction
graph,” in Financial Cryptography and Data Security, ser. FC, 2013, pp. 6–24.

[51] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity in Bitcoin using
P2P network traffic,” in Financial Cryptography and Data Security, ser. FC, 2014,
pp. 469–485.

[52] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation of clients
in Bitcoin P2P network,” in Computer and Communications Security, ser. CCS,
2014, pp. 15–29.

[53] “Becoming a Ripple gateway: Hot and cold wallets,” Ripple blog, https://ripple.
com/build/gateway-guide/#hot-and-cold-wallets (Accessed May 2018).

[54] “Issuing and operational addresses,” Ripple blog, https://ripple.com/build/
issuing-operational-addresses/ (Accessed May 2018).

[55] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals
of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951. [Online]. Available:
http://dx.doi.org/10.2307/2236703

http://dx.doi.org/10.2307/2236703
https://ripple.com/build
https://ripple
https://www.xrpchat.com/topic/2187-ripple-explodes-monday-morning
https://blog.bitmex
https://cointelegraph.com/news/ripple-directs
https://ripple.com/files

109

[56] D. Kaminsky, “Black ops of TCP/IP,” Black Hat slides, 2011, http:
//www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011 (Ac-
cessed May 2018).

[57] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation
onion router,” in USENIX Security Symposium, ser. USENIX Security, 2014, pp.
303–320.

[58] A. Biryukov and I. Pustogarov, “Bitcoin over Tor isn’t a good idea,” in Symposium
on Security and Privacy, ser. S&P, 2015, pp. 122–134.

[59] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “SilentWhispers:
Enforcing security and privacy in decentralized credit networks: Not every per-
missionless payment network requires a blockchain,” in Network and Distributed
System Security, ser. NDSS, 2017.

[60] R. Canetti, “Universally composable security: A new paradigm for cryptographic
protocols,” in Foundations of Computer Science, ser. FOCS, 2001, pp. 136–145.

[61] P. Moreno-Sanchez, T. Ruffing, and A. Kate, “PathShuffle: Credit mixing and
anonymous payments for Ripple,” in Privacy Enhancing Technologies Symposium,
ser. PETS, 2017, pp. 436–453.

[62] R. Canetti, “Universally composable signature, certification, and authentication,”
in Computer Security Foundations Workshop, ser. CSFW, 2004, p. 219.

[63] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2P mixing and unlinkable Bitcoin
transactions,” in Network and Distributed System Security Symposium, ser. NDSS,
2017.

[64] T. K. Srikanth and S. Toueg, “Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms,” Distributed Computing, vol. 2, no. 2, pp. 80–94,
1987.

[65] D. Dolev, R. Reischuk, and H. R. Strong, “Early stopping in byzantine agreement,”
Journal of the ACM, vol. 37, no. 4, pp. 720–741, 1990.

[66] A. Serjantov, R. Dingledine, and P. F. Syverson, “From a trickle to a flood:
Active attacks on several mix types,” in Information Hiding, ser. IH, 2002, pp.
36–52.

[67] “List of operations,” In: Stellar Documentation. Stellar Development Founda-
tion, https://www.stellar.org/developers/guides/concepts/list-of-operations.html
(Accessed May 2018).

[68] jedmccaleb (pseudonym), “Drop the concept of rippling in favor of long lived
offers,” GitHub issue, 2014, https://github.com/stellar/stellar-protocol/issues/6
(Accessed May 2018).

[69] “Ripple implementation,” Github repository, https://github.com/ripple (Accessed
May 2018).

[70] “ripple-lib: A JavaScript API for interacting with Ripple in Node.js,” Github
repository, https://github.com/ripple/ripple-lib (Accessed May 2018).

https://github.com/ripple/ripple-lib
https://github.com/ripple
https://github.com/stellar/stellar-protocol/issues/6
https://www.stellar.org/developers/guides/concepts/list-of-operations.html
www.slideshare.net/dakami/black-ops-of-tcpip-2011-black-hat-usa-2011

110

[71] P. Moreno-Sanchez, “PathJoin implementation,” Github repository, 2017, https:
//github.com/pedrorechez/PathJoin (Accessed May 2018).

[72] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in Symposium on Security and Privacy, ser.
S&P, 2013, pp. 397–411.

[73] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza,
“Zerocash: Decentralized anonymous payments from bitcoin,” in Symposium on
Security and Privacy, ser. S&P, 2014, pp. 459–474.

[74] N. van Saberhagen, “CryptoNote,” 2013, https://cryptonote.org/whitepaper.pdf.

[75] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and E. W. Fel-
ten, “Mixcoin: Anonymity for Bitcoin with accountable mixes,” in Financial
Cryptography and Data Security, ser. FC, 2014, pp. 486–504.

[76] G. Maxwell, “CoinJoin: Bitcoin privacy for the real world,” Post on Bitcoin
Forum, Aug. 2013, https://bitcointalk.org/index.php?topic=279249.

[77] L. Valenta and B. Rowan, “Blindcoin: Blinded, accountable mixes for Bitcoin,”
in BITCOIN Workshops, ser. BITCOIN, 2015, pp. 112–126.

[78] E. Heilman, F. Baldimtsi, and S. Goldberg, “Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions,” in BITCOIN Workshop,
ser. BITCOIN, 2016, pp. 43–60.

[79] E. Heilman, L. Alshenibr, F. Baldimtsi, A. Scafuro, and S. Goldberg, “Tumblebit:
An untrusted bitcoin-compatible anonymous payment hub,” in Network and
Distributed System Security Symposium, ser. NDSS, 2017.

[80] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle, “CoinParty:
Secure multi-party mixing of bitcoins,” in Conference on Data and Application
Security and Privacy, ser. CODASPY, 2015, pp. 75–86.

[81] G. Bissias, A. P. Ozisik, B. N. Levine, and M. Liberatore, “Sybil-resistant mixing
for bitcoin,” in Proceedings of the 13th Workshop on Privacy in the Electronic
Society, ser. WPES, 2014, pp. 149–158.

[82] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “Coinshuffle: Practical decentralized
coin mixing for bitcoin,” in European Symposium on Research in Computer
Security, ser. ESORICS, 2014, pp. 345–364.

[83] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts,” in
Symposium on Security and Privacy, ser. S&P, 2016, pp. 839–858.

[84] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized computation
platform with guaranteed privacy,” CoRR, vol. abs/1506.03471, 2015, http:
//arxiv.org/abs/1506.03471.

[85] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11,
pp. 612–613, 1979.

https://arxiv.org/abs/1506.03471
https://bitcointalk.org/index.php?topic=279249
https://cryptonote.org/whitepaper.pdf
https://github.com/pedrorechez/PathJoin

111

[86] O. Catrina and S. de Hoogh, “Improved primitives for secure multiparty integer
computation,” in Security and Cryptography for Networks, ser. SCN, 2010, pp.
182–199.

[87] P. Dandekar, A. Goel, R. Govindan, and I. Post, “Liquidity in credit networks:
A little trust goes a long way,” in Conference on Electronic Commerce, ser. EC,
2011, pp. 147–156.

[88] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,” Canadian
Journal of Mathematics, vol. 8, pp. 399–404, 1954.

[89] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow problem,”
J. ACM, vol. 35, no. 4, pp. 921–940, 1988.

[90] Y. Dinitz, “Dinitz’ algorithm: The original version and even’s version,” in
Theoretical Computer Science, 2006, pp. 218–240.

[91] P. F. Tsuchiya, “The landmark hierarchy: A new hierarchy for routing in very
large networks,” in Communications Architectures and Protocols, ser. SIGCOMM,
1988, pp. 35–42.

[92] B. Viswanath, M. Mondal, K. P. Gummadi, A. Mislove, and A. Post, “Canal:
Scaling social network-based sybil tolerance schemes,” in European Conference
on Computer Systems, ser. EuroSys, 2012, pp. 309–322.

[93] I. Pryvalov, “MPC shared library,” http://smpc.ml/, 2015.

[94] C.-P. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryp-
tology, 1991.

[95] D. R. Stinson and R. Strobl, “Provably secure distributed Schnorr signatures and
a (t, n) threshold scheme for implicit certificates,” in Australasian Conference
Information Security and Privacy, ser. ACISP, 2001, pp. 417–434.

[96] S. Makki, “Efficient distributed breadth-first search algorithm,” Computer Com-
munications, vol. 19, no. 8, pp. 628 – 636, 1996.

http://smpc.ml

VITA

112

VITA

Pedro Moreno Sanchez received his Ph.D. in the department of computer science

at Purdue University in August 2018. He worked as a research assistant under the

supervision of Aniket Kate. His doctoral research focused on the study and design of

secure, privacy-preserving and decentralized credit networks. Pedro received a B.S.

degree and M.S. degree in computer science from Universidad de Murcia in 2011 and

2013 respectively.

From June to December 2012, he worked as research intern at Philips Research

Europe, The Netherlands under the supervision of Oscar Garcia-Morchon and Rafael

Marin-Lopez. In Summer 2016, he worked as research intern at Ripple Labs, USA

under the supervision of Evan Schwartz and Stefan Thomas. After this, in Summer

2017, he worked as research intern at IBM Research-Zurich, Switzerland under the

supervision of Christian Cachin.

At Purdue, on the way to the Ph.D., he got the CERIAS/Intel Research Scholarship

from January to May 2017 and the Emil Stefanov Fellowship in computer science in

April 2017.

	Credit Network Payment Systems: Security, Privacy and Decentralization
	Recommended Citation

