636 research outputs found

    A Novel Hybrid CNN-AIS Visual Pattern Recognition Engine

    Full text link
    Machine learning methods are used today for most recognition problems. Convolutional Neural Networks (CNN) have time and again proved successful for many image processing tasks primarily for their architecture. In this paper we propose to apply CNN to small data sets like for example, personal albums or other similar environs where the size of training dataset is a limitation, within the framework of a proposed hybrid CNN-AIS model. We use Artificial Immune System Principles to enhance small size of training data set. A layer of Clonal Selection is added to the local filtering and max pooling of CNN Architecture. The proposed Architecture is evaluated using the standard MNIST dataset by limiting the data size and also with a small personal data sample belonging to two different classes. Experimental results show that the proposed hybrid CNN-AIS based recognition engine works well when the size of training data is limited in siz

    BoatNet: automated small boat composition detection using deep learning on satellite imagery

    Get PDF
    Tracking and measuring national carbon footprints is key to achieving the ambitious goals set by the Paris Agreement on carbon emissions. According to statistics, more than 10% of global transportation carbon emissions result from shipping. However, accurate tracking of the emissions of the small boat segment is not well established. Past research looked into the role played by small boat fleets in terms of greenhouse gases, but this has relied either on high-level technological and operational assumptions or the installation of global navigation satellite system sensors to understand how this vessel class behaves. This research is undertaken mainly in relation to fishing and recreational boats. With the advent of open-access satellite imagery and its ever-increasing resolution, it can support innovative methodologies that could eventually lead to the quantification of greenhouse gas emissions. Our work used deep learning algorithms to detect small boats in three cities in the Gulf of California in Mexico. The work produced a methodology named BoatNet that can detect, measure and classify small boats with leisure boats and fishing boats even under low-resolution and blurry satellite images, achieving an accuracy of 93.9% with a precision of 74.0%. Future work should focus on attributing a boat activity to fuel consumption and operational profile to estimate small boat greenhouse gas emissions in any given region

    Sea-Surface Object Detection Based on Electro-Optical Sensors: A Review

    Get PDF
    Sea-surface object detection is critical for navigation safety of autonomous ships. Electrooptical (EO) sensors, such as video cameras, complement radar on board in detecting small obstacle sea-surface objects. Traditionally, researchers have used horizon detection, background subtraction, and foreground segmentation techniques to detect sea-surface objects. Recently, deep learning-based object detection technologies have been gradually applied to sea-surface object detection. This article demonstrates a comprehensive overview of sea-surface object-detection approaches where the advantages and drawbacks of each technique are compared, covering four essential aspects: EO sensors and image types, traditional object-detection methods, deep learning methods, and maritime datasets collection. In particular, sea-surface object detections based on deep learning methods are thoroughly analyzed and compared with highly influential public datasets introduced as benchmarks to verify the effectiveness of these approaches. The arti

    Intelligent Graph Convolutional Neural Network for Road Crack Detection

    Get PDF
    This paper presents a novel intelligent system based on graph convolutional neural networks to study road crack detection in intelligent transportation systems. The visual features of the input images are first computed using the well-known Scale-Invariant Feature Transform (SIFT) extraction algorithm. Then, a correlation between SIFT features of similar images is analyzed and a series of graphs are generated. The graphs are trained on a graph convolutional neural network, and a hyper-optimization algorithm is developed to supervise the training process. A case study of road crack detection data is analyzed. The results show a clear superiority of the proposed framework over state-of-the-art solutions. In fact, the precision of the proposed solution exceeds 70%, while the precision of the baseline methods does not exceed 60%.acceptedVersio

    Artificial intelligence surgery: how do we get to autonomous actions in surgery?

    Get PDF
    Most surgeons are skeptical as to the feasibility of autonomous actions in surgery. Interestingly, many examples of autonomous actions already exist and have been around for years. Since the beginning of this millennium, the field of artificial intelligence (AI) has grown exponentially with the development of machine learning (ML), deep learning (DL), computer vision (CV) and natural language processing (NLP). All of these facets of AI will be fundamental to the development of more autonomous actions in surgery, unfortunately, only a limited number of surgeons have or seek expertise in this rapidly evolving field. As opposed to AI in medicine, AI surgery (AIS) involves autonomous movements. Fortuitously, as the field of robotics in surgery has improved, more surgeons are becoming interested in technology and the potential of autonomous actions in procedures such as interventional radiology, endoscopy and surgery. The lack of haptics, or the sensation of touch, has hindered the wider adoption of robotics by many surgeons; however, now that the true potential of robotics can be comprehended, the embracing of AI by the surgical community is more important than ever before. Although current complete surgical systems are mainly only examples of tele-manipulation, for surgeons to get to more autonomously functioning robots, haptics is perhaps not the most important aspect. If the goal is for robots to ultimately become more and more independent, perhaps research should not focus on the concept of haptics as it is perceived by humans, and the focus should be on haptics as it is perceived by robots/computers. This article will discuss aspects of ML, DL, CV and NLP as they pertain to the modern practice of surgery, with a focus on current AI issues and advances that will enable us to get to more autonomous actions in surgery. Ultimately, there may be a paradigm shift that needs to occur in the surgical community as more surgeons with expertise in AI may be needed to fully unlock the potential of AIS in a safe, efficacious and timely manner

    Image Classification of Marine-Terminating Outlet Glaciers using Deep Learning Methods

    Get PDF
    A wealth of research has focused on elucidating the key controls on mass loss from the Greenland and Antarctic ice sheets in response to climate forcing, specifically in relation to the drivers of marine-terminating outlet glacier change. Despite the burgeoning availability of medium resolution satellite data, the manual methods traditionally used to monitor change of marine-terminating outlet glaciers from satellite imagery are time-consuming and can be subjective, especially where a mélange of icebergs and sea-ice exists at the terminus. To address this, recent advances in deep learning applied to image processing have created a new frontier in the field of automated delineation of glacier termini. However, at this stage, there remains a paucity of research on the use of deep learning for pixel-level semantic image classification of outlet glacier environments. This project develops and tests a two-phase deep learning approach based on a well-established convolutional neural network (CNN) called VGG16 for automated classification of Sentinel-2 satellite images. The novel workflow, termed CNN-Supervised Classification (CSC), was originally developed for fluvial settings but is adapted here to produce multi-class outputs for test imagery of glacial environments containing marine-terminating outlet glaciers in eastern Greenland. Results show mean F1 scores up to 95% for in-sample test imagery and 93% for out-of-sample test imagery, with significant improvements over traditional pixel-based methods such as band ratio techniques. This demonstrates the robustness of the deep learning workflow for automated classification despite the complex characteristics of the imagery. Future research could focus on the integration of deep learning classification workflows with platforms such as Google Earth Engine (GEE), to classify imagery more efficiently and produce datasets for a range of glacial applications without the need for substantial prior experience in coding or deep learning

    A Deep Learning-Based Automatic Object Detection Method for Autonomous Driving Ships

    Get PDF
    An important feature of an Autonomous Surface Vehicles (ASV) is its capability of automatic object detection to avoid collisions, obstacles and navigate on their own. Deep learning has made some significant headway in solving fundamental challenges associated with object detection and computer vision. With tremendous demand and advancement in the technologies associated with ASVs, a growing interest in applying deep learning techniques in handling challenges pertaining to autonomous ship driving has substantially increased over the years. In this thesis, we study, design, and implement an object recognition framework that detects and recognizes objects found in the sea. We first curated a Sea-object Image Dataset (SID) specifically for this project. Then, by utilizing a pre-trained RetinaNet model on a large-scale object detection dataset named Microsoft COCO, we further fine-tune it on our SID dataset. We focused on sea objects that may potentially cause collisions or other types of maritime accidents. Our final model can effectively detect various types of floating or surrounding objects and classify them into one of the ten predefined significant classes, which are buoy, ship, island, pier, person, waves, rocks, buildings, lighthouse, and fish. Experimental results have demonstrated its good performance
    • …
    corecore