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Intelligent Graph Convolutional Neural Network
for Road Crack Detection
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Abstract— This paper presents a novel intelligent system based
on graph convolutional neural networks to study road crack
detection in intelligent transportation systems. The visual features
of the input images are first computed using the well-known
Scale-Invariant Feature Transform (SIFT) extraction algorithm.
Then, a correlation between SIFT features of similar images
is analyzed and a series of graphs are generated. The graphs
are trained on a graph convolutional neural network, and
a hyper-optimization algorithm is developed to supervise the
training process. A case study of road crack detection data is
analyzed. The results show a clear superiority of the proposed
framework over state-of-the-art solutions. In fact, the precision
of the proposed solution exceeds 70%, while the precision of the
baseline methods does not exceed 60%.

Index Terms— Graph convolutional neural network, road

crack detection, intelligent transportation systems, SIFT
extractor.
I. INTRODUCTION
NTELLIGENT transportation has attracted many

researchers in the last five years [1], [2], [3], [4].
In particular, deep learning [5], [6] has been showing a
lot of success in solving different intelligent transportation
applications such as anomaly detection [7], [8], and
prediction [9], [10]. One of the most important tasks of
traffic units and urban planners is road maintenance, and
the fundamental principles are timely detection and early
warnings. The road crack detection problem aims to identify
defects in roads from a large set of road images. As shown
in Fig. 1, the goal of the road crack detection problem is to
identify whether the road is cracked or not. In other words,
the idea is to separate cracked roads from normal ones.

In [11], an encoder-decoder based model for road crack
detection is proposed. The authors employed an attention
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mechanism to efficiently find visual features in road images.
A novel approach [12], which can detect multiple spatial-
frequency features, improves discrimination between high-
frequency features, while requiring less computational power.
According to existing literature on road crack detection, sev-
eral challenges need to be overcome [11], [12], [13]. For
instance, how can we build a good deep learning model
with high accuracy? Are we able to explore the various
dependencies between road images and use correlation for
training?

In this work, the problems of existing road crack detection
solutions are solved and a new framework combining both
data correlation and a graph convolutional neural network for
effective training is proposed. The main contributions of the
work are listed below:

1) Develop a new algorithm for generating graphs from a
set of similar images. The visual Scale-Invariant Feature
Transform (SIFT) features of the input images are deter-
mined and similar images are matched. Based on image
matching, a set of graphs representing similar images is
generated.

2) Develop a graph convolutional neural network (GCNN)
supervised by a genetic algorithm to optimize
hyper-parameters of a deep learning model.

3) Evaluate the proposed system on three datasets for road
crack detection. The results show clear superiority of the
developed framework compared to baseline solutions.

The rest of the paper is organized as follows. Section II
provides an intensive review of existing solutions for solv-
ing anomaly detection, and road crack detection problems.
Section III describes the main components of the pro-
posed framework including feature extraction, graph con-
struction, learning process, and hyper-parameters optimization.
Section IV shows experimental analysis, and finally Section V
concludes the paper.

This is the author accepted version of an article published in
IEEE Transactions on Intelligent Transportation Systems (volume: 24, issue: 8, August 2023)
https://doi.org/10.1109/TITS.2022.3215538


https://orcid.org/0000-0003-0135-7450
https://orcid.org/0000-0002-8127-7233
https://orcid.org/0000-0001-9851-4103
https://orcid.org/0000-0003-0920-0060

II. RELATED WORK

This paper is divided into two main topics: outlier detection
in intelligent transportation, and road crack detection. Recent
work on both topics is discussed and analyzed below.

A. Outlier Detection in Intelligent Transportation Systems

Zhu et al. [14] developed a Convolutional Neural Network
(CNN) in which traffic data observations are used to construct
a database of images, each image indicating a particular state
of the traffic situation in the city. Each image of traffic flow
is classified into two categories: normal and abnormal case.
This is done with the help of CNN so that anomalies can be
identified. Huang et al. [15] studied the factors that contribute
to traffic volume in an extensive metropolitan network. The
obvious characteristics of an outlier are evaluated to determine
whether or not they can serve as a signal of abnormal
traffic behavior. To achieve this goal, a deep autoencoder
learning model incorporates the spatiotemporal anomalies.
The proposed technique can identify the contours around the
zones that cause network anomalies, helping urban planners
to accurately detect such locations. Gu et al. [16] proposed
a sophisticated model for unusual passenger flows. The first
step is to use a hybrid k-means and hierarchical clustering
approach to identify passenger flow represented by time
series data. Using a threshold technique, anomaly detection
indexes are created to reflect the various outliers in passenger
flow. The various observed irregularities are reported to city
planners as alarms. Recent research has looked at anomaly
detection in the context of maritime traffic data. To find and
explain outliers in marine data, Kim et al. [17] used Shapley
additive explanations with anomaly detection. In this method,
attribution of characteristics of each marine observation is
calculated, followed by segmentation to identify clusters of
maritime observations, and each cluster is scored based on the
contribution of observations to that cluster. To find anomalies
in marine data, Han et al. [18] used a variational autoencoder
with long-short memory. Due to the incomplete labeling of
training data, the method is semi-supervised. This provides
a more accurate representation of the actual situations in
which sensors record typical behaviors. To capture the many
local anomalies from maritime observations, Abreu et al. [19]
developed a method based on visual analysis. Trip-outlier
scoring is used to score the maritime trajectories and assign
them an outlier score.

B. Road Crack Detection

Haciefendioglu et al. [20] used a deep learning-based object
detection algorithm to specifically detect cracks in concrete
roads under different recording, weather, and lighting condi-
tions. As a result, existing cracks can be detected quickly and
cost-effectively. Using a pre-trained Faster R-CNN, a descrip-
tive technique for detecting cracks in images of concrete
road surfaces is considered. Nguyen et al. [21] used a novel
technique based on a two-stage convolutional neural network
to detect defects on roads at the pixel level. It allows the
context of cracks in the detected area to be determined

in a second stage after removing noise or artifacts in the
first stage and isolating probable cracks to a limited area.
This is therefore more efficient than learning from the entire
noisy original image. Fang et al. [11] present an external
attention based TransUNet. It enables the transfer of detailed
texture information via skip connections from shallow layers
to comparable deep layers. Furthermore, the second-to-last
convolutional layer of the encoding component’s Transformer
Block, which is endowed with the ability to explicitly model
long-range dependencies of different regions within an image,
improves the structural representation capability of the frame-
work and reduces interference from shadows, noise, and other
unwanted elements. Fan et al. [12] developed RAO-UNet,
an encoder-decoder and residual attention module-based image
frequency relationship-based network for detecting cracks in
road images. RAO-UNet was able to learn many spatial
frequency features compared to other approaches, improving
differentiation of high frequency features while reducing the
computational cost. Alfarraj et al. [22] created an Internet
of Things (IoT) system using a bio-inspired deep learning
approach. The proposed method involves first capturing street
images with a smart mobile sensor, followed by processing
by a bio-inspired self-learning algorithm. a co-evolving deep
learning neural network.

C. Comparative Analysis and Discussions

From this brief literature review, we conclude that there are
three types of strategies for identifying road cracks and mar-
itime anomalies. The first group of statistical methods includes
those that subject typical behaviors to a statistical process
and classify remaining observations as anomalies. Approaches
based on similarity fall under the second group. These methods
are based on the separation of the different observations. While
anomalous observations are found in sparsely populated areas,
ordinary observations are found in crowded areas. Due to
difficulty in capturing the distribution of normal observations
and computing observations corresponding to them, statistical
methods are particularly sensitive to anomalies. Similarity-
based solutions used to develop non-parametric strategies
have been able to deal with this problem. However, they are
very sensitive to distance in computing the neighborhood.
The third group consists of deep learning-based methods
that use different deep architectures to address problems in
the first two categories, including recurrent neural networks
(RNN), convolutional neural networks (CNN), and autoen-
coder models. To distinguish outliers from typical behavior,
they train the data and apply a binary classifier. However,
all training data is considered in the learning phase. Even
when using computationally intensive methods, this results in
a low detection rate. These deep learning architectures also
have numerous layers and a large number of hyperparameters
that must be properly tuned. Accuracy can also be affected by
arbitrarily adjusting these hyperparameters without performing
a thorough analysis. In this paper, a hybrid fusion method is
developed that combines decomposition and CNN to effec-
tively explore maritime, and road cracks data for real-time
anomaly detection. This approach is motivated by the success
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IGCNN-RCD Framework Illustration: The visual features are first extracted from road images using SIFT. Then, the graph of road images is created

and trained with GCNN, using the genetic algorithm to find the optimal parameters for GCNN. The results of defective roads are sent to the road repair

company as an alarm.

of cluster-based algorithms [23], [24], [25] in solving complex
problems.

ITI. IGCNN-RCD: INTELLIGENT GRAPH
CONVOLUTIONAL NEURAL NETWORK FOR ROAD
CRACK DETECTION

A. Framework Overview

In this section, the IGCNN-RCD (Intelligent Graph Con-
volution Neural Network for Road Crack Detection) system
is explained in detail, as is shown in Fig. 2. IGCNN-RCD
consists of four steps:

1) Feature Extraction: It has the goal to extract relevant
features useful in the detection process. To efficiently
identify features of images, the well-known SIFT extrac-
tor algorithm is used.

2) Graphs Construction: After the extraction step, a graph
is constructed for the learning phase. The features are
used to match relevant images. The set of graphs is then
created from the matching process.

3) Learning Phase: The generated graphs are passed to the
GCNN (Graph Convolutional Neural Network) to learn
different defects of road images.

4) Hyper-parameters Optimization: At this point,
a clever method is provided to automatically determine
the ideal hyperparameters for the GCNN architecture.
The space of GCNN hyperparameters is explored using
the evolutionary algorithm.

B. Feature Extraction

Road images with high resolution and a large number of
pixels are captured by sensors and cameras in intelligent trans-
portation environments. Depending on the image, the number
of pixels can range from 250, 000 to 4, 000, 000. Extracting
relevant features from such images is a difficult problem in

computer vision, especially for machine learning-based algo-
rithms such as convolutional neural networks that suffer from
training time for high resolution images. To efficiently extract
relevant features, we developed the SIFT (Scale-Invariant
Feature Transform) extractor [26]. We first consider the set
of n images F = {Fy, F», ..., F,}. SIFT is used to identify
crucial frame features. The Gaussian kernel K, which serves
as the foundation for the scale space function S(Fj, o), is used
and described in Eq. 1.

S(Fi,o0) = K(Fi,0) * Fj. (1)

The spatial information of each potential key point is then
determined using the interpolation procedure. The stability of
the retrieved features is enabled by the generated spatially
interpolated data. The interpolation function or Taylor function
Y(F;, 0) is defined as in Eq. 2.

dy’ d’y
Y(Fi,a):D—i-d—FiFi +o.5FTd—Fi2 . )

Next, the descriptor vector for the keypoints is created by
creating different orientation histograms of the neighborhoods
around 4 x 4 pixels. SIFT features for each /;, say SF;, are
established after this process.

C. Graph Construction

After the feature extraction step, the set of relevant features
of each image /;, called SF;, is determined. This step is used
to prepare graphs for learning. Graphs of similar images are
constructed based on matched images. First, the set of matched
images is computed. Two images I; and I; are matched if and
only if the similarity between the two feature sets SF; and SF;
is less than a matching threshold. In this process, we used a
well-known Fast Library for Approximate Nearest Neighbors



(FLANN) matching algorithm [27]. After matching, a set of
graphs is generated. The list of matched images is scanned,
creating an edge for each matched tuple of images (/;, I;).
This process is repeated for all matched images. At the end,
a set of graphs is generated, each representing similar images
with a high matching rate between the relevant features of
each image pair.

D. Learning Phase

GCNN is a deep learning architecture that uses data orga-
nized in graphs. We would like to use the convolutional layer
of a CNN to work with any type of graph. Learning is based on
the collection of graphs created in the previous step. The value
of each node is updated based on information of its neighbors,
and features of each node are updated based on the information
of its neighbors. In the proposed GCNN, we can classify each
node independently, the graph as a whole, the edges, or we
can examine whether there is a connection between two nodes.
To design an efficient GCNN, we first create the adjacency
matrix A of the graph. For example, in a non-oriented graph,
A;j =1 1if and only if there is a connection between nodes i
and j, and A;; = 0 if there is no connection between i and j.
We also create the node matrix H before creating the matrix
shown in Eq. 3.

H =0 (ﬁ”AHW), 3)

where o represents a nonlinear function such as a Rectified
Linear unit (ReLu), A = A+1 is used to ensure that a node
is connected to itself, preventing the middle node from being
discarded. In addition, D indicates a degree matrix, W is a
linear layer used in the deep learning model, where this value
is a learnable node-wise joint linear transformation. D! can
be considered as a normalization approach for the adjacency
matrix, ensuring that features do not burst when computing
the sum. This is achieved by using the mean-pooling update
rule.

H=0¢ (5—1/2A5—1/2HW) )

Then, the updating rule for the graph convolutional neural
network (GCNN) is obtained. This is the graph convolutional
layer currently used in most studies. In a more open version,
where nodes can send any message along any edge, a node
then uses a function that is invariant to permutations to
aggregate all messages it has received. Let the message known
as e_i; be the one sent from node i to node j, computed using
the following message function f,:

— —
i = fe (hi 1)@ 5)

After that, the following readout function is applied to each
message that is received by a node in order to aggregate them:

- —
fo=hi=fo{ho D mji | ©)
JEN;
where the neighbors of a node i are referred to as its N;
neighbors. This results in a message-passing neural network,
or MPNN, which can in theory be used to any size graph but

in fact can only handle relatively small ones. In most cases, f,
and f, are referred to as tiny multilayer perceptrons (MLP).
A more comprehensive version would be the following:

— —

hp =0 | D a;Whj |, (7
JEN;

where a;; is a coefficient that is either defined explicitly which

causes some shortcomings, or

exXp (aij)
Gij ==—""—7, (8)
Y Yken; exp (aix)
where,
- —
ay =a (I, 1}, e) ©)

Note that a is a learnable, shared, self-attention mechanism.
This is called the graph attention network update rule.

E. Hyper-Parameters Optimization

Consider P = Py, P2, ..., Pp|}, the set of all parameters
used by the developed model, and D(P;) is the set of possible
values of P;. The configuration space C is represented by
all conceivable configurations, where each configuration is a
collection of the parameter values of P. In order to find the
best values for each parameter in P, each configuration in
C must be explored, which leads to a higher computational
cost and also increases the memory requirements for certain
parameters (e.g., the error rate always has the continuous
values). Moreover, the total number of configurations is quite
high due to the inverse relationship that exists between it

and the total number of parameters and the range of values
|P|
that can be assigned to each parameter, since [] |D(P;)|.

As the domain space of the parameter P;, which linlcludes all
possible values for each P; in the set P = {P1, P2, ..., Pip|},
we denote it as D(P;). Each configuration is a collection of
values for all parameters in P, and all these configurations
together form the configuration space C. To find the best
values for each parameter in P, each configuration in C must
be examined, which consumes a lot of computational and
memory resources, especially for parameters with continuous
values such as the error rate. Moreover, the total number of
configurations is quite high due to the inverse relationship
that exists between it and the total number of parameters,

as well as the range of values that can be assigned to each
|P|
parameter. It is constructed such that [ |D(P;)]| is displayed.

For example, if we consider only ZT,I 000 different values
for the epoch parameter (varied epoch from 1 to 1,000),
1, 000 different values for the error rate (varied error rate from
0.001 to 1.00), and 100 different values for the number of
batches (from 1 to 100), the number of all configurations in
C is 100 million configurations. In dealing with the above
use case, therefore, conventional enumeration-based methods
such as Branch and Bound and A* [28] would be downright
blocked. We propose an effective evolutionary computation
based approach to study the configurations in C to solve this



problem. In this research, we will adapt the genetic algorithm
to identify the best parameters for the GCNN model, which is
motivated by the effectiveness of genetic algorithms in solving
problems related to hyperparameter optimization [24], [29].
The following list defines the basic operations of the proposed
method:

1) Population Initialization: The initial population, repre-
sented by the collection of individuals, is the foundation
of any evolutionary computational algorithm. The poten-
tial values of each parameter in P define each individual.
For illustration, the solution (20, 0.75,74) shows the
setting where the epochs are set to 20, the error rate set
to 0.75, and the batch size set to 74. The population of
the proposed evolutionary computation algorithm should
have a fixed size or the same number of individuals. The
individuals in a population should be heterogeneous to
allow better exploration of the configuration space. The
initial population is produced by generating individuals
while optimizing the distance between them to ensure
this diversity. Therefore, the distance between the two
solutions (S and $3) is defined as in Eq. 10.

[Pl

D(S1,$2) = D |S{=Sil. (10)
i=1

Note that Si and Sé are the i’" value of the solutions
S1, and $7, respectively.

2) Crossover: This thoroughly investigates one area of
the configuration space. The next crossover operator
is used for each member of the current population.
The crossover point is chosen randomly between 1 and
|P|, so that each individual can be divided into its left
and right halves. The first child takes the left part of
the first individual and the right part of the second
individual, while the second child takes the right part
of the first individual and the left part of the second
individual. For example, if the crossover point is set to
2 and two individuals are considered, (20, 0.75, 74) and
(10, 0.65, 82), two additional individuals are produced,
the first of which is (20, 0.75, 82) and the second of
which is (10, 0.65, 74).

3) Mutation: The diversification process is enabled by the
mutation operator, which creates individuals outside the
existing range. Each individual has a parameter that
is updated and randomly selected. For example, con-
sider this individual generated by the crossover operator
(20, 0.75, 82). The following individual (15, 0.75, 12) is
generated by the mutation operator by changing the first
and third elements while the second element remains
unchanged.

Each individual is first created based on the population
initialization procedure and considering the heterogeneity cri-
teria. The configuration space is then explored using crossover
and mutation operators. Each individual is evaluated using
the learning function as a function of detection rate to keep
population size constant. Multi-objective optimization is not
required at this point because road crack detection is based
on a single function. The best individual is retained and the

Algorithm 1 IGCNN-RCD Algorithm

I: Input: I = {1, I, ..., I,}: the set of n road images used
for the training. I, = {1,}610, Inzew, e, I,Ifew}: the set of
k new road images used for the inference.

2: OQutput: O (I,¢y): the output value of the crack detection
of the new road images.

3. F <0

4: for each image I; € I do

5: F <« SIFT();

6: end for

7

8

9

: G < GraphConstruction(F);
: M < HyperOptimization(GCNN(G));
s Fpew < 0 )
10: for each image I}, € lyen do
1: Fyew < SIFT(1},,);
12: end for
13: Gpew < GraphConstruction(Fyep);
14: O(Lyew) < 9
15: for Gep € Gpew do _
16: O(Inew) < O(Inew) Y M(G{lew)§
17: end for
18: return O (1yey)

others are removed. Until the maximum number of iterations
is reached, this process is repeated.

The pseudocode can be found in Algorithm 1. The col-
lection of road images used for training is called the n
set, while the set of new road images used for inference is
called the & set (line 1). The process starts by extracting the
features of each image using the SIFT extractor as explained
in Section III-B (from line 3 to line 6). The graphs are
extracted from the set of relevant features as explained in
Section III-C (line 7). The graphs are trained in the object
detection model, as explained in Section III-D (line 8). In the
inference phase, the propagation of the weights of the trained
model M is performed for each graph generated from fresh
road photos. This step is followed by the inference step (from
line 9 to line 17). We note that the training phase is a very
time-consuming activity that involves the process of hyper-
optimization. This phase is performed only once, regardless of
the total number of images used for inference. The inference
step, on the other hand, consists of only two simple loops
and requires only a simple propagation of the learned model
during the training phase.

IV. PERFORMANCE EVALUATION

Large-scale experiments were conducted to validate the
developed framework. Two different types of data were used:
1) Road crack detection experiments, using three datasets
(CrackTree [30], CrackForest [31], and ALE [32]) for eval-
uation. 2) Other use cases for urban and maritime traffic data
to identify anomalies are also performed. For urban traffic
data, two datasets were used: Odense! and Beijing,2 and two

1 https://www.odense.dk/
Zhttps://www.beijingcitylab.com/



TABLE I
BEST PARAMETERS OF IGCNN-RCD

Dataset Matching threshold | #Epochs | Batch Size | Learning Rate
CrackTree200 0.52 85 16 0.005
CrackForest 0.59 115 32 0.012
ALE 0.60 120 16 0.007
Odense 0.75 80 8 0.003
Beijing 0.45 82 8 0.008
Aerial Maritime 0.70 150 64 0.006
Singapore Maritime 0.50 90 32 0.008
other datasets are used for maritime data: Aerial Maritime,? 90—
and Singapore Maritime.* T et
The learning task used in this experiment is outlier detec- 80 7 S
. . . . —— Maritime Aerial
tion. The input of IGCNN-RCD is the set of images and output — = Maritme Singapore
is binary values indicating whether the images are outliers T
or not (cracked or not cracked). The goal of this experiment N
is to show the ability of the developed model to distinguish (3 R
outliers from normal transportation images. In other words, I
the research question here is to what extent IGCNN-RCD e mmmmmmmmmmmmmmmmmTTmSmmoes
can distinguish the outlier images from the normal images. e
To answer this research question, the evaluation is performed | ____oc--m-m-=-=777777TTTOTOmm OO SO oo
using different measures: Area Under Curve (AUC), Precision 30 = - o - "
(P), Recall (R) and F-measure (F). Specifically, P and R are Number of Generations
defined as follows:
TP Fig. 3. Behavior of the proposed solution with different number of
P = (11)  generations.
TP+ FP
and, to verify the superiority of the proposed system. Two baseline
TP models were used for comparison (TransUNET [11] and
= m (12)  DELM [33]). TransUNET uses an external attention mech-

where T P represents the proportion of samples for which
both the true and expected labels are positive. The term F P
represents the number of samples with a positive anticipated
label but a negative true label. The number of samples with
positive true labels and negative anticipated labels is indicated
by the symbol FN. These metrics are typical metrics for
identifying the quality of outlier and road crack detection
algorithms.

A. Parameter Setting

The hyperparameters of the proposed model were extracted
after a large number of tests. By varying the number of gener-
ations of the genetic algorithm from 10 to 100, population size
from 10 to 50, crossover rate to {0.5,0.7, 0.9}, and mutation
rate to {0.2, 0.4}, the best parameters of the proposed model
were extracted and presented in Table I. These parameters
are used in the rest of the experiments. In addition, Fig. 3
the results of the proposed solution obtained by varying the
number of generations from 10 to 100, setting the population
size to 10, the crossover rate to 0.5, and the mutation rate
to 0.2.

B. Experiments on Road Cracked Data
Experiments were run with well-known benchmarks for
detecting road cracks: Cracktree200, Crack Forest, and ALE,

3 https://www.kaggle.com/ammarnassanalhajali/aerial-maritime
4https://www.kaggle.com/adnanenasser/singapore—maritime

anism. It allows the transfer of detailed texture information
from shallow layers to comparable deep layers via skip
connections. DELM considers the crack detection task as a
pixel-level classification and uses a U-Net based architecture
to solve it. Second, the probability of occurrence of cracks and
non-cracks is very different, resulting in a poorly conditioned
classifier and undesirable detection performance, especially
with a high false detection rate. Numerical results are shown
in Table II. From this table, we can see that the three methods
share certain common phenomena in the three datasets. All
methods have difficulty in Precision compared to Recall and
F-measure. DELM performs better than TransUNET in Recall,
while TransUNET outperforms DELM in both Precision and
F-measure. Although these two models benefit from their spe-
cific network architectures and optimization styles, IGCNN-
RCD performs better on all measures and in all scenarios.
These results are achieved thanks to the efficient combination
of graph construction, GCNN training and hyperparameter
optimization. Graph construction uses both SIFT features and
FLANN matching to explore the correlation between similar
images and create a highly connected graph of images. This
enables efficient training of the GCNN network. Moreover,
by exploring the GCNN parameter space, the optimal model
for detecting new crack road images can be found.

C. Experiments on Urban and Maritime Traffic Data

Intensive experimental analysis was conducted to evaluate
the proposed methodology using urban and maritime traffic
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TABLE II
RESULTS ON ROAD CRACK DETECTION

Dataset Methods P(%) | R(%) | F(%)
TransUNet 27 46 34
CrackTree200 DELM 22 88 35
IGCNN-RCD 37 94 53
TransUNet 40 77 53
CrackForest DELM 38 85 53
IGCNN-RCD 48 89 62
TransUNet 52 61 56
ALE DELM 27 92 42
IGCNN-RCD 55 95 70

data. We divide the data into different ranges (20%, 50%, 80%
and 100%) and determine the AUC measure for each range.
Two baseline algorithms are implemented. The first is a
convolutional neural network [34]. The images are trained
with the convolutional neural network by including feature
computation and outlier determination. The second algorithm
is based on traditional machine learning represented by the
support vector machine (SVM) [35]. The goal is to learn
the linear separation of outliers and normal images. In these
experiments, we also performed hyperparameter optimization
of SVM and CNN in order to provide a fair comparison
with IGCNN-RCD. The results of the experiments are an
average of 100 executions. As shown in Fig. 4, the results
show high gain in terms of recognition rate of IGCNN-RCD
compared to CNN and SVM, respectively. For example,
when 20% of the images are processed, the AUC rate of
all algorithms does not exceed 0.80; when the entire images
are processed, the AUC of IGCNN-RCD exceeds 0.85. The
success of IGCNN-RCD compared to the state-of-the-art is
mainly due to the methodology used in this study. Indeed,
it is a good choice to combine both feature extraction and
matching to build the graphs to be trained. In this way, it is
easier to find out different correlations between the set of
similar images, which is very helpful for the training process.
Further experiments were conducted to verify the success
of the IGCNN-RCD algorithm. We chose another database
based on maritime images. Maritime applications have been
of great interest to many researchers recently [36], [37], [38].

We chose maritime data because the computation of features
and, in particular, the generation of graphs from maritime
images is very complex and computing the similarity between
different maritime objects is not a simple task. Therefore,
the study of maritime data is a challenging task for all deep
learning architectures. We used the same AUC measure with
the same algorithms, namely CNN and SVM, and changed
the proportion of maritime data used from 20% to 100%. The
results in Fig. 4 again show the superiority of IGCNN-RCD
compared to CNN and SVM, regardless of the data used and
the number of images to be processed. These interesting results
underline the results found when processing urban traffic data.

V. CONCLUSION

This paper addresses outlier detection in transportation data
and proposes a novel approach based on graph convolutional
neural networks to solve challenging problems of existing deep
learning solutions. The SIFT extractor is used to discover
visual features from training images. The collection of training
graphs is created using the derived features, which are also
used to match similar images. Moreover, the hyperparameters
of the deep learning model are optimized using the genetic
algorithm and the training process is monitored. The proposed
system is applied to well-known transport benchmarks. The
results show that the proposed framework is useful compared
to the methods used as baseline for both conventional machine
learning and advanced deep learning-based methodologies.
In the future, we plan to apply the proposed framework to
more complex intelligent traffic data, such as trajectories and
time series. We also plan to apply the proposed solutions to
other intelligent transportation applications such as traffic flow
prediction and connected vehicles.
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