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ABSTRACT 

An important feature of an Autonomous Surface Vehicles (ASV) is its capability 

of automatic object detection to avoid collisions, obstacles and navigate on their own.  

Deep learning has made some significant headway in solving fundamental 

challenges associated with object detection and computer vision. With tremendous 

demand and advancement in the technologies associated with ASVs, a growing interest 

in applying deep learning techniques in handling challenges pertaining to autonomous 

ship driving has substantially increased over the years.  

In this thesis, we study, design, and implement an object recognition framework 

that detects and recognizes objects found in the sea. We first curated a Sea-object Image 

Dataset (SID) specifically for this project. Then, by utilizing a pre-trained RetinaNet 

model on a large-scale object detection dataset named Microsoft COCO, we further fine-

tune it on our SID dataset. We focused on sea objects that may potentially cause 

collisions or other types of maritime accidents. Our final model can effectively detect 

various types of floating or surrounding objects and classify them into one of the ten 

predefined significant classes, which are buoy, ship, island, pier, person, waves, rocks, 

buildings, lighthouse, and fish. Experimental results have demonstrated its good 

performance. 
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CHAPTER I - INTRODUCTION 

With the rapid growth in technology and computing advancement computers are 

now performing complex Artificial Intelligence tasks in the areas of natural language 

processing (NLP), fuzzy logic, robotics, neural networks and expert systems, and these 

areas are now being applied in our day to day activities. Virtual assistants, autonomous 

self-driving vehicles, image recognition, speech recognition and so many more are real-

life examples of them. 

Object recognition is a computer vision technique that involves identifying, 

detecting, and classifying objects in videos or images. Object detection is a subset of object 

recognition that goes further to localize and classify objects within an image, and this 

technique helps to address the task of predicting location and class of an object in an image 

as it poses to be an important problem in computer vision [1]. Recently, many object 

detection algorithms have produced significant advancement in performance as a result of 

leveraging machine learning, especially deep learning, techniques. 

There are two main types of object detectors. The first type is the two-stage 

detector, which generates areas of interest using a Region Proposal Network in the first 

stage, and then proceed to transmit the proposals through the pipeline for classification and 

bounding box regression [1]. Examples of two-stage detectors are Faster R-CNN (Region-

based Convolutional Neural Networks) or Mask R-CNN [2]. 

On the other hand, we also have one-stage object detectors which are often more 

efficient than the two-stage ones due to their simple architecture [3].  Modern one-stage 

object detectors [4] adopt a simple fully convolutional architecture [5], which produces 

classification probabilities and box offsets at respective spatial position, in terms of pre-
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defined anchor boxes [3].  Examples of these single-stage detectors are YOLO (You Only 

Look Once) [5], SSD (Singe Shot MultiBox Detector) [6] and RetinaNet [7]. 

In this thesis, the problems associated with object detection in the context of 

autonomous maritime vehicles are investigated, more categorically object detection in the 

scenario of various objects found in the sea, where the objects of interest were 

represented by 10 different classes.  

This aim of this research is to build an object detection model, using RetinaNet to 

identify, classify and localize classes of maritime images and Coco dataset to leverage 

features and evaluate what combination of features would provide the best accuracy and 

results for autonomous vehicles. 

 

1.1 Background 

Maritime accidents, although unpredictable, have been grouped into four categories 

based on the incidents that have occurred and been reported in the past. The categories are 

as follows: equipment failure, lack of proper training and human error, collision at sea and 

poor maintenance [8]. 

Human errors have been tagged as one of the main reasons for maritime accidents 

in the world. Hence, this is also why currently maritime vehicles are transitioning to reduce 

the extent of human errors’ impact, resulting in the creation and rise of autonomous 

maritime vehicles. Besides human errors, collision is a big issue that maritime faces; 

maritime transportation involves a wide range of objects that may collide each other while 

in the sea. These objects include other maritime vehicles, rocks, sea animals, anchors, 

mooring buoys and iceberg [9]. 
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Autonomous surface vehicles (ASVs) can be defined as an unmanned vessel or 

vehicle that performs a series of tasks in an unorganized environment, without intervention 

or control from human operators [10] to exhibit unpredictable dynamics. 

A key technology that has been recently applied to unmanned vehicles is visual 

recognition irrespective of the field; land, aerial and maritime or industry; research, 

military, and civil engineering. It is important for these vehicles to easily identify objects 

in their surroundings to be able to make informed decisions ranging from avoidance, 

following path, reading signs or interaction with the objects [11]. 

Table 1.1 Applications of Autonomous Surface Vehicles (ASVs) 

Areas of ASV Application Specific Application 

Research (Scientific)    

 

Robotic research, Sail drone 

Oceanography exploration Hydrographic survey, Seafloor mapping, 

Oceanographic data collection 

Environmentally sustainable missions Climate monitoring, Environmental 

surveys, Oil and gas 

Military & naval adaptation Seaborn targets, Anti-submarine drones & 

warfare 

Commercial transportation 

 

Passenger ferries, Commercial shipping 

Others Surveillance, Inspection of infrastructure, 

Seaweed farming 

 

Autonomous surface vehicles are applicable to a wide range of areas (as listed in 

Table 1) which include but are not limited to research in the sciences, oceanography 
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exploration, environmentally sustainable missions [12], military and naval adaptation, 

commercial transportation, and other applications. 

Object detection remains as one of the important research areas in computer vision, 

which has continuously been developing over the years. This importance also extends to 

ASVs as obstacle detection is of central importance to autonomous vehicles patrolling 

waterbodies [13].  Before further development, ASVs were constantly being worked on 

and minimize the need for human control to reduce and eliminate human errors, which will 

in turn achieve effective, reliable, and safe operations [14]. 

There are numerous factors that affect the results of object detection systems. The 

most significant factor that stands out is the feature description and learning algorithm  

[15].In the last few years, great progress has been made to handle these factors [16]. Older 

existing algorithms are now being outperformed by convolutional neural network (CNN) 

based deep learning technologies  [17]. R-CNN was introduced to the object detection field, 

and it has achieved more than 30% relative progress compared to existing algorithms in 

terms of precision.  R-CNN was designed to carry out region proposal generation and 

classification independently, unlike single-stage detection algorithms which supersede 

them by performing all the processes of object detection at the same time. YOLO and 

RetinaNet are two representative one-stage object detection algorithms, and both exhibit 

high speed. However, RetinaNet is even more accurate and efficient, because it has the 

speed of single-stage detectors as well as superior accuracy than previous either one-stage 

or two-stage detectors. For this reason, the RetinaNet algorithm and its network model are 

chosen for the object detection module in this project.  
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In this work, we propose and implement the use of one of the fastest object detectors 

in current related literature. This thesis focuses on object recognition for an autonomous 

driving ship. The focus was on neural networks-based approaches with an emphasis in 

convolutional neural networks-based deep learning techniques. A combination of COCO 

[18] dataset and our created Sea-object Image Dataset (SID) which consists of images of 

objects found in a maritime environment was used for training and experimentation. After 

training, an analysis was carried out to discuss the results from the multiples trainings, 

evaluate the limitations of the study and present future work ideas. 
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CHAPTER II – LITERATURE REVIEW 

In this chapter, background of definitions and explanations that are necessary to 

understand machine learning algorithms are provided, especially deep neural networks, and 

its subclass CNN, which are frequently used when it comes to image recognition.  

A description of a specific CNN-based object detection model called RetinaNet, 

and related works to the topic are also discussed later in this chapter. 

2.1 Machine Learning 

Machine learning is used to train machines to interpret pattern or extract specific 

information from data. With the numerous datasets available for different industries and 

challenges, the demand for machine learning remains on the rise. 

After a machine learning algorithm has recognized a pattern, classification takes place at a 

much faster rate than any human-controlled system can operate at. Although many studies 

have been carried out on how to train machines to learn by themselves [16] [19], the main 

purpose of machine learning is for the machines to learn from the data provided as input. 

2.1.1 Machine Learning Algorithms 

Although, there are numerous classes of machine learning algorithms as shown in Figure 

2.1, we discuss three major classes of machine learning algorithms categorized by how the 

algorithm is trained.  

• Supervised Learning: This algorithm requires external assistance, a ground-truth 

dataset and its focus is prediction. The ground-truth dataset is divided into training 

and testing datasets, while the training dataset has been labelled and the testing 

dataset needs to be classified or predicted. 
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The supervised learning algorithm learns patterns from the training dataset and 

further apply the patterns to the testing dataset for classification [20]. Three popular 

examples of supervised algorithm are decision trees, naive bayes, and support 

vector machines (SVM). 

 

Figure 2.1 Types of machine learning algorithms [21] 

 

• Unsupervised Learning:  Unsupervised learning is a classification algorithm that 

learns new features using unlabeled data. When data input is introduced, features 

that have been previously learned are used to recognize the current class of the data. 

Examples of this algorithm are Principal Component Analysis (PCA) and K-means. 

• Reinforcement Learning: Reinforcement learning algorithm learns by making 

decisions which are generally based on what next action to take, in such a way that 

the result is positive. For this type of algorithm, the machine has no idea on which 

actions to take until it’s in a situation to do so. This learning algorithm depends on 

two features which are trial and error, as well as search, and delayed outcome. 
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2.1.2 Machine Learning Process  

This outlines the 7 steps of machine learning [22].  

1. Data Collection: This process is research specific since relevant data depends on 

the project that is at hand [23]. Therefore, once you know what you want and the 

equipment in your hand, the first step would be to gather quality training data. 

Quality data is significant as it determines how well the model will perform. 

2. Data pre-processing: After gathering training data, transformation into the right 

format and loaded into the machine learning algorithm for training and then pre-

processed data is further split into two different datasets, that is the training and 

testing datasets. Feature extraction happens at this level and helps to reduce the 

possibility of overfitting to improve generalization. 

3. Choosing a model: Different algorithms work for different tasks. Therefore, 

depending on the task to be carried out a right model should be selected. 

4. Training: At this stage the model is built, and the process may be carried out once 

or repeatedly, depending on the algorithm. 

5. Evaluation: Once training is completed and the model has been built, the testing 

dataset is fed into the model for evaluation, just in the same way that the training 

dataset was trained. The classification accuracy is taken at this point. Results closer 

to a hundred percent indicates the possible perfect performance of the model. 

6. Parameter Tuning: Hyperparameter tuning takes place in this step. One or more 

parameters may be tuned to improve performance. Hyperparameters include 

learning rate, training steps, batch size etc. 
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7. Prediction: Using results from the testing data to have an idea of how the model 

will perform in the real world or a real-life scenario. 

2.2 Machine Learning Algorithms Used in Autonomous Vehicles 

The following are popular machine learning algorithms used in autonomous vehicles such 

as self-driving cars, ships etc.  

1. Decision Matrix Algorithm  

Decision matrix algorithm identifies and systematically analyzes the rate of 

performance between information and values set. This algorithm is mainly used to aid 

decision making, as the models independently train themselves to make predictions 

while reducing the probability of errors in decision making. The most popularly used 

decision matrix is AdaBoost [24].  

2. Clustering Algorithm 

The clustering algorithm works by locating and detecting objects in images that are 

usually not visible by the system [25]. This algorithm partitions an image data set into 

several disjoint groups or clusters, represented as a set of datapoints which are further 

used to classify the individual points into a specific group [26].  

3. Pattern Recognition 

The images obtained by the system using the Advanced Driver Assistance Systems 

sensors usually consist of data from all kinds of environment. This algorithm assists in 

filtering images to determine the instance of an object by first ruling out the data points 

that are not important [24]. The pattern recognition plays a major role in dataset since 

before objects can be classified, they must be recognized. In a lot of ways, the features 
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of the image (line segments, circular arcs) are combined to form the features that are 

utilized for recognizing an object. 

4. Regression Algorithm 

This algorithm is great for predicting events. The relation between two or more 

variables are evaluated by the algorithm and the effects are collated on distinct scales 

and are driven by the following metrics: 

• Shape of regression line 

• Type of dependent variable 

• Number of independent variables 

 Images play an important role in the Advanced Driver Assistance Systems for 

actuation. The biggest challenge of any algorithm is to create an image-based machine 

learning model for prediction and feature selection [27]. 

Regression algorithms are generally used for long learning and short prediction. 

Examples of regression algorithms used in autonomous cars are neural network 

regression, decision forest regression and Bayesian regression. 

2.3 Convolutional Neural Network 

Convolutional neural network (CNN) is a class of artificial neural network that has 

become dominant in the field of computer vision and its applications. This network model 

works best with two-dimensional image data, although it can still be used with one- and 

three-dimensional image data. The only significant difference between CNNs and ANNs 

is that the former is used mainly within images around pattern recognition. 
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The central layer of the model where CNN got its name from performs an operation called 

“convolution”. This operation extracts features by applying a convolutional filter on a raw/ 

feature image. 

CNN is designed for processing of data which comes in shape of high dimensional 

array, for instance pixels of an image. The key components that outline the performance of 

convolutional neural network are: 

• Local connection 

• Shared weights 

• Pooling  

• Use of multiple layers 

CNN automatically adapts to learn spatial features hierarchy through backpropagation by 

utilizing building block such as the convolutional layer, pooling layer, and the fully 

connected layers.  

 

Figure 2.2 An overview of CNN training process and architecture [28]. 
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The performance of the model in terms of weights and kernels can be calculated using 

loss function through forward propagation on the training dataset, while adjusting learning 

parameters in accordance to loss function through backpropagation 

2.4 Related Work 

Over the last several decades, maritime research in object detection has been 

developed particularly in unmanned surface vehicles operations. Information on vessels in 

the sea are usually obtained from systems like automatic identification system (AIS). 

However, this system is not available on all ships, which is why additional sensing methods 

such as navigation sensors, radars and so many more are required. 

 Han et al. [29] proposed algorithms for target detection and tracking by sensor 

fusion in their framework while benefitting from its applications in navigation and collision 

avoidance systems for autonomous vehicles. The proposed target tracking and autonomous 

avoidance algorithm was based on the fusion of detection sensors such as lidar, radar, 

infrared (IR) and electro-optical (EO) cameras to achieve a reliable detection and continual 

target tracking. The algorithm was applied in a USV system called “Aragon”, and the data 

from both the detection and the tracking combined was useful for the obstacle information 

systems used in collision avoidance. These sets of information also play a significant role 

in the collision avoidance maneuvering design. 

 The most successful detection algorithm in their study was the constant false alarm 

rate (CFAR), due to the reason that it could detect objects from the measurement of a sensor 

by minimizing any noise caused by factors such as windy/ rough sea, wave, sunlight, rain 

or fog on the water surface. Therefore, cell averaging constant false alarm rate (CA-CFAR) 

was utilized by the radar to fix any issues that may be related to noises. The experimental 
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results showed that the two active sensors lidar and radar provided more reliable 

performance when it came to detection in the marine environment in comparison to the 

cameras used as passive sensors. Their more reliable detection can be associated with the 

tuning of various hardware settings and navigation algorithms depending on the conditions 

for detecting targeted small-size vessels. 

 With the advancement of machine learning, some studies have suggested the use 

of deep reinforcement learning (DRL) for autonomous path planning of unmanned ships 

in new or unknown environments. Guo et al. [30]  proposed a deep deterministic policy 

gradient (DDPG) algorithm-based model which utilizes the interaction between the 

historical experience data and the environment, to train the agent on the optimal action 

strategy. Their research was motivated by the work of Zhu et al. [31] who proposed a car-

following framework for autonomous cars using DDPG. The autonomous cars in their 

framework learned the model from the environment based on a trial-and-error approach. 

Their experiments obtained good results and revealed that DDPG can understand the 

driver’s behavior and in turn assist in developing human-like autopilot algorithms and 

traffic flow models. 

Guo et al. [30] utilized certain knowledge of the DDPG framework proposed by 

Zhu et al. [31]  to suggest a path planning model for unmanned ships based on the DRL 

method that helps agents find the most efficient path independently. They combined the 

artificial potential field (APF) and DDPG to obtain an APF-DDPG autonomous path 

planning model with faster convergence and higher decision-making power. The 

traditional path planning algorithm resulted in low accuracy and redundancy because the 

historical experience data did not play a role in the training and improving the learning 
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efficiency of the algorithm, in contrast to the APF-DDPG based algorithm. The 

experimental results show that unmanned ships make reasonable actions in an unfamiliar 

environment, and it also highlights an improved DRL method over the classical one, which 

can be attributed to the combination of APF and DDPG. 

2.4.1 The Role of CNN in Autonomous Collision Avoidance 

In recent times, A deep neural network has proven to be very successful in many 

classification tasks is the Convolutional Neural Network [32]. The CNN have become very 

common to use in computer vision problems and applications [33], and they also give good 

results in various benchmarks for classification tasks [34]. In the paper by Sharif Razavian 

et al. [35] they experimented with a convolutional neural network for different recognition 

tasks, and came to the conclusion that, deep learning alongside CNN are essential as 

primary candidates in any visual or object recognition task. 

 A convolution neural is a special kind of linear operation. The architecture of a 

convolutional neural network is structured as a series of stages, whereas each stage consists 

of convolution and pooling layers as well as non-linearities [36], another motivation is that 

the convolutional neural network is a type of a deep fully connected network, which is 

easier to train and generalize better than a network with only fully connected layers [33]. 

The three-mechanisms associated with convolutional neural network are local 

receptive fields, weight sharing and subsampling. Each layer of a convolutional neuron is 

connected only to a local region of the input. 

 In contrast to a fully connected layer where each neuron is connected to each 

neuron in the previous layer. It is this region that is called the local receptive field.  
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The receptive field enables the neurons to extract features such as edges and corners in an 

image. In a convolutional layer, the neurons are organized in planes, which are called 

feature maps. The neurons that belongs to the same feature map are sharing weights. If we 

think of the neurons as feature extractors, all neurons in the same feature map will detect. 

2.4.2 Relationship Between Human Cognitive Abilities and Ship Collision 

Avoidance Algorithms  

Collision avoidance is a one of the major issues that mariners face. Therefore, the 

success of an autonomous ship navigation depends on the development of an efficient and 

effective real-time intelligent algorithms for collision avoidance. Most algorithms attempt 

to imitate the mariner’s cognitive abilities [37]. To better understand the relationship and 

differences between the captain in the ship and the intelligent navigation system, the 

following human operations that will be performed for the collision avoidance process 

should be put into consideration to make it easier to understand the factors that influence 

collision avoidance in ships: 

    Ship Type: Different types of ships vary in their maneuvers for collision 

avoidance, therefore for every ship type there’s a special training the captain and 

crew go through. The CA autonomous navigation algorithms ‘‘understand’’ ship 

type as ‘‘ship mathematical model’’. The ship mathematical models provide 

predictions of the ships behavior based on inertial but are often very simple and 

result to erroneous predictions, or predictions that’s are complex to run in real 

time. 
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Traffic Categories: With the different forms of traffic that happens on the sea, a 

vessel can    collide with an obstacle or another vessel. Therefore, traffic is divided 

into two types: 

1) Traffic confined within an environment like canals, port [38]. 

2) Traffic in open waterways 

Both types of traffic leaves room for additional complexity that may be caused by 

under-surface environment like wrecks, seabed level, animals, buoys as well as 

static and dynamic sea obstacles. 

    Weather: The effect of weather is different on each type of ship. Which means 

that different weather conditions require different maneuvers techniques from the 

pilot crew. The most important aspect is combining safety and collision avoidance 

concurrently. In most autonomous navigation algorithms, the sea weather 

conditions are rarely considered. 

    Navigation Technology: Algorithms for ship collision are generally considered 

to be equipped with GPS and Automatic Radar Plotting Aid (ARPA). Although, 

none of the algorithms put into consideration the navigational data, 

instrumentation, and communication for collision avoidance that modern ships 

now have available. 

      All the above factors discussed above require human intervention and operation 

for a collision free navigation. The operations are subjective to every personnel captain 

& crew based on their own cognitive abilities and training. Consequently, the 

investigation of human cognitive demands for collision avoidance is useful. 
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2.4.3 Soft Computing technique for Ship Collision Avoidance 

A hybrid system for collision avoidance and track-keeping was proposed by Hwang 

et al., 2001 [39]. The systems combine expert systems, fuzzy logic, state, and collision 

avoidance was carried out by the fuzzy expert system. It was designed to utilize the 

knowledge base of facts and rules with the aid of an inference engine. The inference engine 

was responsible for the simulation of the expert system decisions for ship collision 

avoidance. 

2.5 RetinaNet 

RetinaNet was formed using a combination of ResNet + Feature Pyramid Network 

(FPN), bounding box regression and subnetworks. Resnet and FPN provide the 

fundamental structure for feature extraction, while the subnetworks conduct two specific 

tasks which are bounding box regression and classifications. 

2.5.1 Design of RetinaNet 

The design of  RetinaNet shares similarities with other one-stage detectors by the 

introduction of ‘anchor’ concept introduced by Regional Proposal Network (RPN) [40] and 

use of feature pyramids introduced by Single Shot Detector (SSD) [6]and Feature Pyramid 

Network (FPN) [41].  

RetinaNet outperforms many typical two-stage detectors such as Faster R-CNN due 

to its state-of-the-art performance. Even as a one-stage detector, it has achieved comparable 

performance as two-stage detectors. Two stage detectors are usually applied to a smaller 

set of object location data whereas with one-stage detector produce simpler and faster 

output by utilizing a larger set of object location data.  We need to mention that two-stage 
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frameworks constantly achieve the highest accuracy on the COCO benchmark which is a 

challenging feat [18]. 

Results have shown that when RetinaNet is trained with focal loss it exceeds the 

accuracies of two-stage detectors and has a similar speed as previous one-stage detectors 

[3]. 

 

Figure 2.3  RetinaNet detector network Architecture showing ResNet, FPN and both 

subNets [7] 

2.5.2 ResNet 

Residual Network also known as ResNet, as demonstrated in Figure 2.6, was 

proposed by He et al. in 2015 [42]. ResNet was extended the year after and began to follow 

an ethical technique to include shortcut connections for every two layers of the VGG-style 

network [43]. In fact, ResNet was not the first network to utilize and implement shortcut 

connections: for instance, Highway Network established gated shortcut connection first 

[25]. ResNet outstandingly reduces the complexity of training using shortcut connections 

[44] and performs well with regards to generalization error. 

There are three types of shortcut connections. Shortcut Type 1 handles numbers 

that go as high as infinity when the number of layers increases or grows, and this type of 

shortcut is similar to having no shortcuts. When stacked with additional layers of residual 
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blocks, shortcut Type 2 results in smaller training error, unlike shortcut Type 1 or 3 which 

does not result in a smaller training error [42].    

2.5.3 Feature Pyramid Network (FPN) 

Feature pyramid network builds on image pyramid, which constitutes of top-down 

and bottom-up pathways. The top-down pathway creates higher resolution layers from the 

semantic layer [26], where the higher resolution is unsampled spatially but semantically 

stronger [45].  The bottom-up pathway utilizes ResNet to build the bottom-up pathway. It 

consists of convolutional modules (also known as convi, where i equals to 1 to 5) with each 

module having many layers. Moving up from the bottom- up pathway, spatial dimension 

decreases by half which results in doubling of the strides [26]. 

Feature pyramids are scale-invariant which means that a change in scale of an 

object counteracts by adjusting and changing its level in the pyramid. Additionally, the 

pyramid model enables the model to detect object irrespective of their range of scale. 

2.6 Class Imbalance 

Class Imbalance causes two major problems when it comes to training. The first problem 

talks about inefficient training that contribute to no useful learning signal due to easy 

negatives from most locations. The second problem can be attributed to easy negatives 

which overwhelm training and can lead to degeneration of models. The conventional 

solution to this problem is to introduce a negative mining processes [25] that samples more 

complex reweighing [46] . 
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Figure 2.4  Top-down and bottom-up pathways architecture in ResNet [26] 

Although in their study, [7] proposed that focal loss conventionally handles any 

case of imbalance that may come up using a one-stage detector. This allows for efficient 

training without sampling and cancels out all easy negatives from overwhelming loss and 

computed gradients 
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Figure 2.5 RetinaNet anchors plotted against MS-COCO highlighting class imbalance in 

some classes. (Left) Imbalance between Background and Foreground, (Right) Imbalance 

between foreground classes [2]. 

2.7 Focal Loss 

The major aim and importance of focal loss is to address the high rate of imbalance 

between foreground and background classes of one-stage object detection scenarios while 

training.  Cross entropy was introduced for binary classification, focal loss step-by-step 

equation is devised below [47]. 

𝐶𝐸 (𝑝, 𝑦) = {
− log(𝑝) ,      𝑦 = 1

− log(1 − 𝑝) ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                (1) 

𝑝𝑡 = {
𝑝,     𝑦 = 1

1 − 𝑝 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (2) 

CE (p, y) = CE (pt) = −𝑙𝑜𝑔 (pt)                                 (3) 

αt = {
𝛼,     𝑦 = 1

1 −  𝛼 ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (4)  

αt was added to the Equation (3) to fix the class imbalance problem. 

CE (pt) =  −αt * − 𝑙𝑜𝑔(pt)                             (5) 
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Equation (5) handles only the weight of positive and negative samples and does not 

consider hard examples. 

FL (pt) = − (1 − pt )
 γ 𝑙𝑜𝑔(pt)                         (6) 

Equation (6) represents the non-alpha form of focal loss equation. 

FL (pt) = − 𝛼𝑡  (1 − pt )
 γ 𝑙𝑜𝑔(pt)                             ( 7) 

Equation (7) represents the alpha form of focal loss equation. 
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CHAPTER III - METHODOLOGY 

In this brief chapter an introduction to the process employed in this work is 

highlighted. Details are provided from data curation dataset that was used for this thesis 

and discussion of results in the following chapters. 

One of the main aims of this thesis involves selecting and applying combination of 

augmentation techniques that will help increase the mAP scores and object classification 

accuracy of the RetinaNet algorithm on our SID. 

Several combinations of augmentations were iterated until a combination with the highest 

mAP score and object classification accuracy was obtained. 

 

3.1 Design of the Sea-object Image Dataset (SID) 

For a seamless training, the dataset has to meet some specifications like including 

an annotation of the images, with data files listing the labelled objects and the positions 

of their bounding box (xmin, ymin, xmax, ymax) in the images. The images in our dataset were 

resized to have the same aspect ratio for easy differentiation of fixated locations. 

In addition to our SID, Microsoft COCO was used because the large number classes 

available in the images are helpful for the pre-training of our object detection model. The 

categories of our interest that are already covered in the COCO dataset include: boats, 

people, and birds. 
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Figure 3.1 Label hierarchy showing classes from COCO-Stuff, divided into outdoor and 

indoor classes. [48] 

3.1.2 Class Selections of the Sea-object Image Dataset (SID) 

A brief study on the non-trivial objects around/in the sea was conducted first. The 

names of this type of objects consist the following: trees, rocks, clouds, apartment 

buildings, other buildings, boats, buoys, waves, persons, ships, birds, sea lions, seals, 

islands, piers, sharks, whales, ocean sunfish, oarfish, sun, and lighthouses. 
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After collecting the list of classes, an evaluation was performed next to see which 

classes were insignificant w.r.t ship-related collisions and which classes could be merged 

into one. Trees, cloud, birds, sea lions and seals were removed from the list as they have 

little to no impact on collision 

All the various types of fish were merged into a class called fish, while apartment 

buildings and other buildings were also combined together to form a class named 

building. It repeats the figure’s content. Keeping only one is enough.  

A final list was ultimately formed by only selecting those classes that are 

susceptible to cause a significant damage if a collision occurred between the 

corresponding objects and the ASV. Figure 3.2 highlights the ten classes that were 

selected for SID dataset. 

 

Figure 3.2 Ten classes of the Sea-object Image dataset (SID) 
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3.1.3 Data Scrapping 

A Web crawler was used to find and import images from the Internet to create SID. 

Since data scrapping remains one of the major sources of data for machine learning, it 

was exploited to get relevant images for the dataset. 

The Web crawler used was written in Python and had the capability to search 

across various websites on the Internet and download images once a keyword has been 

inputted into the code. 

3.1.4 Data Cleaning 

After the data scraping was carried out to collect the images, a data cleaning 

procedure was implemented to ensure that they are ready for use, consistent, and correct. 

This stage is the most time consuming and complicated as there is no specific technique 

that fits all types of the data. Therefore, depending on the class of the images obtained 

and their source, the cleaning process was different. 

A huge part of this process involved identifying and deleting corrupted images or 

file types, duplicates, and low-resolution images. Other processes in this step include: 

removing extra spaces in the names and spelling check. 

3.1.5 Labelling  

Microsoft Visual Object Tagging Tool (VoTT) was used to label the images for 

the Sea-object Dataset.VoTT is an open-source image annotation and labeling app written 

in TypeScript and used for labelling images and video assets. It allows importing of data 

from your local or cloud storage and exporting of labelled images back into your local or 

cloud storage depending on your choice. It facilitates end-to-end machine learning pipeline 
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and building of object detection models from labelled images or videos. 

This application can export labelled dataset in any format of your choice. The Sea-

object Dataset was exported in CSV format, although one can export to Azure custom 

vision service, Microsoft cognitive Toolkit (CNTK), Pascal VOC and TensorFlow 

Records. 

 

Figure 3.3 Labelling process of a fish in VoTT for the Sea-object Dataset 

 

 

Figure 3.4 Labelling process of a ship in VoTT for the Sea-object Dataset 
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Figure 3.5 Export settings available in Microsoft’s VoTT. 

 

After the labelling was completed and the annotation CSV file exported, the 

annotation file also went through data scrubbing, cleaning and manipulation using a 

Python data analysis library called pandas. Some of the involved processes include 

normalizing data points that didn’t look right, validating data accuracy, scrubbing for 

duplicates, identifying, and deleting columns or rows with single values or null cells. 

3.1.6 Training 

For training, the model uses the four points of the bounding box (xmin, ymin, 

xmax,ymax) from the annotation csv file to train. For the pre-training on the COCO dataset, 

the input images were of different sizes and the default RetinaNet aspect ratio of 800 x 

1333 was not altered for this round of training. 

For the fine-tuning of the pre-trained model based on our SID, the input images were 

resized to the 512 x 512 aspect ratio to ensure uniformity of the dataset and most 
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importantly uniformity of the of the anchor boxes. To improve the performance of our 

model, we also performed data augmentation before the fine-tuning.  

3.1.7 Variation of IoU Threshold 

Intersection of union (IoU) is a metric used in machine learning to measure how 

accurate the predicted bounding box made by the model with respect to the ground-truth 

bounding box [52]. The IoU threshold refers to the value that is computed with the 

presumption that scores lower than this value cannot be detected by the model. 

After every training, the IoU threshold was changed from the default value of 0.5 

to 1. This variation was used to determine the best prediction performance after training. 

It was observed that different thresholds had a non-trivial effect on the accuracy of the 

prediction. 

3.2 Evaluation Methodology 

To evaluate the object detector, two different test datasets were used. The first test 

dataset evaluates its performance without data augmentation, while the second test dataset 

specifically evaluates the impact of various data augmentation methods. 

Although there are many machine learning algorithm evaluation metrics, we focused 

mainly on the accuracy evaluation metric. 

3.3 Tools and Environment Used 

3.3.1 Google Colaboratory 

Google Colaboratory also known as “Colab” is product that allows users write and run 

python codes through their browsers just like Jupyter notebook. The major difference 

between Colab and Jupyter notebook is that the latter is open source while the other is not. 
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Colab is a cloud service that provides GPU to its users. It also enables users to develop 

deep learning, machine learning and data analysis projects and applications implementing 

libraries such as OpenCV, PyTorch, TensorFlow, Keras with access to HIGH-RAM 

runtime. 

3.3.2 Anaconda 

Anaconda collection of packages distributed for data science and machine learning 

projects. It is free, open source and comes with a package, an environment manager and 

conda. Each of these play a vital role in creating a project. 

The package consists of python, conda and over 150 packages libraries and their 

corresponding dependencies, which makes it easier when creating an environment for new 

projects. Conda assist in creating environments with different libraries, while the 

environment manager helps in modifying or handling various environments created a 

user. 

3.3.3 Pandas 

Anaconda collection of packages distributed for data science and machine learning 

projects. It is free, open source and comes with a package, an environment manager and 

conda. Each of these play a vital role in creating a project. 

The package consists of python, conda and over 150 packages/ libraries and their 

corresponding dependencies, which makes it easier when creating an environment for new 

projects. Conda assist in creating environments with different libraries, while the 

environment manager helps in modifying or handling various environments created a 

user. 
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3.3.4 Keras 

Keras is another one the powerful python libraries that handle deep learning models. It 

develops and evaluates deep learning models and allows for definition and training of 

neural network models. 

3.3.5 NumPy 

NumPy is one of the popular and powerful python libraries in the package, this is because it 

handles the multi-dimensional arrays and data structures. It goes beyond that as it is also 

used to perform some mathematical operations. 

3.3.6 TensorFlow 

TensorFlow serves as foundation to some libraries by wrapping those libraries on top of 

itself to simplify the process. It supports both GPU and CPU and offers API that makes some 

machine learning processes easier. 

3.3.7 Libraries  

The following are the libraries installed and used in the environments and their respective 

versions 

• Cython 

• Keras-resnet ==0.1.0 

• H5py 

• Keras 

• Matplotlip 

• Numpy>=1.14 

• Opencv-python>=3.3.0 



 

32 

• Pillow 

• Progressbar2 

• Tensorflow 

3.4 System Configuration 

The system used to carry out this research had the following configuration: 

• Tesla P100-PCIE-16GB GPU 

• Intel(R)Xeon(R) CPU @ 2.30 GHz 

• 26 GB RAM 

• Python 3.7 

• 200 GB Disk Space 

3.5 Implementation Details 

Our research was carried out with Keras library and was then built on top TensorFlow with 

a 16GB Tesla P100-PCIE GPU. Several settings were adjusted to get the best version of 

RetinaNet for our model. 

3.6 Definition of Terms  

To understand and interpret the results shown and discussed in chapter IV, some 

important terms would be defined to give a clearer picture of their meaning and why 

there are important. 

• Ground -truth 

Ground-truth refers to the bounding boxes of training and testing dataset 

respectively which are hand labeled. 
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• Prediction 

The output of a model when an input has been provided. 

• True Positive (TP) 

A true positive result occurs when the prediction which is said to be positive is 

true. 

• False Positive (FP) 

A false positive result occurs when the prediction which is said to be positive is 

false, meaning the model did not predict an object that was in the image. 

• True Negative 

A true negative occurs when the prediction which is said to be negative is true. 

• False Negative 

A true negative occurs when the prediction which is said to be negative is true. 

• Training Set 

A part of the dataset used for training the object detector. 

• Accuracy  

Accuracy is the proportion of correct predictions a model makes to the number of 

training examples. Accuracy is defined differently in multi-class classification 

from how it is defined in binary classification. In multi-class classification it is 

defined as, 

 Accuracy = 
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 

• Intersection over Union 

In machine learning, object detection tasks utilize IoU as a metric to evaluate 

models. It measures the accuracy of models to predict bounding boxes with respect 
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to ground-truth of the bounding box. Any algorithm that predicts bounding boxes 

as output can easily be evaluated using IoU [49]. The IoU for the predicted 

bounding box and the ground-truth bounding box is the ratio between the total area 

and the overlapping area. The value of IoU ranges from 0 to 1, with 0 indicating no 

overlap and 1 indicating that the predicted bounding box and ground- truth precisely 

have the same coordinates. 

Intersection over Union = 
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 

 

Below are examples of sample IoU scores and their respective bounding boxes. The green 

bounding box represents the ground truth, while the red bounding box represents the 

predicted bounding box. 
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IoU: 0.9                                                                  IoU: 0.7 

Condition: Excellent          Condition: Good 

    

 

 

 

 

 

 

IoU: 0.4         IoU: 0.0 

Condition: Poor        Condition: Very Poor 

 

Figure 3.6 Sample IoU scores and corresponding bounding box for each score 
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• Recall 

Recall calculates how the model correctly identifies the positives. 

Recall = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

• Precision 

Precision is used to measure classification models; it calculates this by identifying the 

frequency in which the model was able to predict the positive class correctly. 

  Precision = 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)
 

• Average Precision (AP) 

Average precision is a metric used in calculating the accuracy of object detectors by 

taking the average of the precision value for each result. The results are ranked where 

there’s an increase in recall compared to the previous result [52]. 

AP= ∑ [ Recalls(k) − 𝑅𝑒𝑐𝑎𝑙𝑙𝑠 (𝑘 + 1)] ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠(𝑘)
𝑘=𝑛−1

𝑘=0
 

 

Where Recalls (n) = 0 

Precisions (n) = 1 

Number of 

thresholds = n 

• Mean Average Precision (mAP) 

Mean average precision is the average of average precision (AP) which is measured 

by dividing the mean AP with the IOU threshold. 

mAP = ∑ [ AP 
𝑘=𝑛−1

𝑘=0
k 
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Where APK = the AP of class k 

 n = number of classes 

• Inference 

Inference is the operation that occurs when the trained model is applied to unlabeled 

examples to make predictions 

• Batch size 

Batch size refers to the number of training examples which is fixed during training 

and utilized in one iteration. 

• Epoch 

An epoch refers to the number of passes over the entire dataset. This simply means 

that all training examples in the dataset has been seen once. 
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CHAPTER IV – RESULTS AND ANALYSIS 

In this chapter, presentation of results from the implementation of the methodology 

shown in Chapter III, to analysis of the results is also discussed below. 

4.1 Distribution of Training Data  

Table 4.1 Training data distribution 

Class Number of labels 

Person 808 

Building 674 

Lighthouse 640 

Buoy 554 

Rock 386 

Pier 340 

Ship 322 

Wave 300 

Fish 296 

Island 137 

 

The table above shows the distribution of classes of our dataset, across all our classes. 

Smaller numbers in certain classes can be associated with lack of high-resolution images 

of those classes.  
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4.2 Model Performance 

In this section, the experiment workflow will be discussed followed by the 

performance of each model. 

4.2.1 Model Training and Experiment Workflow 

Six variational models of RetinaNet were trained and evaluated for this study, 

which is explained below by the procedure employed. 

1. Base Model - Base model is trained without any modification to the raw 

training data. 

2. Base Model + Unlabeled Images - Includes the initial images and 20% more 

unlabeled images. This was done to give the model clear examples of classes 

that it should not recognize, as it has already been trained with labels of classes 

and objects that should be detected. The goal is to show the model objects that 

should be ignored. This can potentially limit the number of false positives 

reported. 

3. Base Model + Augmented Images - Focuses on trying out various 

augmentation methods on the raw training set. Methods include Sharpen, Blur, 

Flip and Rain. 

4. Base Model + Resized - All input images were resized to 512 x 512. 

5. Base Model + Resized + Unlabeled Images + Augmentation – Model trained 

of resized original images, unlabeled images followed by augmentation. 

6. Base Model + Resized + Unlabeled Images - Same as the fifth case but 

without augmentation. 
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The diagram below shows the experiment workflow for the training of the six variational 

models. 

 

Figure 4.1 Workflow of model training and experiments  

 

4.2.2 Class-level Performance of the Six-model Variation 

In this section we evaluate the class-level performance, in terms of AP, for each of 

the six-model variation. 

From the base model, which is the model variation without any modification, using 

the dataset just as it is. It can be noticed that classes such as rock, wave, and buoy are doing 

poorly i.e. below average. Although more classes were above average compared to those 

that did poorly after the base training. 
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Figure 4.2 Results of model training showing AP of the ten classes and overall mAP from 

the six-variational models  

From the Base Model + Unlabeled sample training, the AP of Buoy, Wave, Rocks 

Island, Lighthouse and Pier noticeably improved, while person and building reduced by a 

few points. The overall performance mAP of this training went from 0.5069 of the previous 

model variation (Base Model) to 0.5735 for this Base Model + Unlabeled sample trained 

model.  

From the Base Model + Augmentation Sample training, the images were 

augmented using four main augmentation method which are sharpen, blur, flip and rain. 

With the four methods of augmentation applied to this training model, buoy and building 

were the classes with noticeable change in AP, and this shows in the overall performance 

Map which resulted to 0.5672, compared to the previous training model (Base Model + 

Unlabeled sample training) which resulted in an overall performance of 0.5735. 
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From the Base Model + Resize Sample training, Building, Island, Lighthouse, Pier, 

Rock, Ship and wave made significant improvement in their respective APs which 

significantly brought about an increase in overall Map of 0.5672 in the last model training 

(Base Model + Augmentation Sample) to 0.6118 in this current trained model. 

Results from the Base Model + Resize + Unlabeled Sample training brought about 

an increase in the AP of most of the classes and this in return increased the overall 

performance to 0.6256. 

Results from the Base Model + Resize + Unlabeled + Augmentation Sample 

training improved the overall performance from 0.6256 of the previous variation of the 

model (Base Model + Resize + Unlabeled Sample) to 0.6330, while increase of class AP 

is not significantly noticeable. 

 

 

Figure 4.3 Workflow of model training and experiment highlighting overall mAP of each 

Model. 
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4.3 Learning Curve 

  

             

Figure 4.4 Learning curve of the Base model versus the best performing model 

 

Loss function is one of the ways that a machine learning algorithm optimizes. It 

evaluates how an algorithm models the data that it was trained with [50].  If the prediction 

and the results after training differ from each other, then the loss function would end up 

with a relatively larger number.  

Figure 4.9 presents the classification loss of the Base Model (BM) and that of BM 

Resized + Unlabeled Images + Augmentation model variation. The learning curve 

compares the learning curve of the Base model, which resulted in a classification loss of 

about 0.3 compared to that of the best model that further reduced the loss of 0.26.  

Although 0.26 is not an ideal classification loss score, it is closer to 0 which 

indicates why the BM Resized + Unlabeled Images + Augmentation model variation, 

performs better in detection and in overall mAP. It shows that the loss function is proficient 

in decreasing error in predictions with the help of optimization function. 
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4.4 Detection from the Automatic Detector for Autonomous Ships 

 

 

Figure 4.5 An example rock object detected by the best model variation. 

 

 

Figure 4.6 An example ship object detected by the best model variation. 
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  (a)       (b) 

Figure 4.7 An example (a) fish and (b) island object detected by the best model variation. 

 

 

(a)       (b) 

Figure 4.8 An example (a) person and (b) pier object detected by the best model variation 
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   (a)      (b) 

Figure 4.9 An example (a) buoy and (b) lighthouse and building object detected by the 

best model variation. 

 

The results above from Figure 4.5 to 4.9 show various cases where the model 

trained on the Sea-object Image Dataset detects some of the classes. In Figure 4.10, the 

object ‘Rock’ is detected at an IoU score of 0.709, which translates to a 70% overlap 

between the predicted bounding box of the model and the ground-truth box. It is a really 

good detection and means that the two boxes overlap. 

In Figure 4.6, a Ship is detected at sea with an IoU score of 0.721, which translates 

to a 72% overlap between the predicted bounding box of the model and the ground-truth 

box. It is also a really good detection, with a significant overlap of both boxes. 
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In Figure 4.7, a Fish was detected diving out of the sea at an IoU score of 0.811 in 

image (a), which translates to an 81% overlap between the predicted bounding box of the 

model and the ground-truth box. It signifies an extremely good detection from the model 

as both boxes are more aligned within this IoU score range. An Island is detected in image 

(b) with an IoU score of 0.517, which translates to a 51% overlap between the predicted 

bounding box of the model and the ground-truth box. This detection can be categorized as 

‘less good’ than the previous detections, this is because generally IoU scores above 0.5 are 

considered an average/good prediction. 

In Figure 4.8, image (a) detects three persons with the respective IoU scores- 

0.837,0.923, 0.895, which translates to an 83%, 92% and 89% overlap between the 

predicted bounding box of the model and the ground-truth box. These are all excellent 

detections, with an equally as good overlap of both boxes. In image (b), A Pier is detected 

with an IoU score of 0.758, which translates to a 75% overlap between the predicted 

bounding box of the model and the ground-truth box, also signifying a good detection like 

the examples above. 

In the last example, Figure 4.9 detects a Buoy in image (a) at an IoU score of 0.841, 

which translates to an 84% overlap between the predicted bounding box of the model and 

the ground-truth box. Image (b) detects both a Lighthouse at an IoU score of 0.841 and 

0.538 for Building, which translates to an 84% and 53% overlap between the predicted 

bounding box of the model and the ground-truth box, which reflects a really good detection 

for lighthouse and an average good detection for building. 
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4.5 Discussion and Conclusion 

Augmentation provides improvement in model performance (11.31%) but at a 

great cost, often an increase directly proportional to the magnitude of augmented data. 

Although, this cost is not a factor when scaling. This is because compute resources will be 

available to handle the task that comes with this method. 

The introduction of unlabeled images presented a more noticeable increase in 

performance (12.53%) without an increase in cost in comparison to augmentation. 

Resizing all input images to the same size appears to have a positive effect on the 

performance of the model. This can be tied to the importance of anchor boxes in object 

detection models. 

A combination of all stated techniques increased performance by 24.24% 

compared to 22.78% without augmentation. A 1.46% increase at x4 resource requirement. 

Waves and rocks were particularly hard to detect as they can be easily mistaken for 

background. Object segmentation models may be best for detecting wave and rocks, as that 

method works best for irregular objects. 
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CHAPTER V – CONCLUSION & FUTURE WORK 

5.1 Summary 

An introduction to the background information of autonomous surface vehicles 

(ASVs), object detectors and CNN based object detectors, especially RetinaNet was 

introduced with background information, and then a proposal of the research project 

designing an object detector that would detect and recognize different classes of objects in 

the sea was discussed, with further explanation on the overall system design and 

methodology adapted. The experimental results have demonstrated that adding unlabeled 

images to the training set provided a 12.53% increase in mAP while the augmentation 

contributed to an increase of 11.31% in the performance.  

Overall, the combination of augmentation, resizing all inputs to the same size and 

addition of unlabeled samples provided the most improvement with a 24.24% increase 

compared to a combination that excludes augmentation at 22.78%. Classes such as island 

and buoy had the most improvement following the application of the techniques described. 

5.2 Challenges and Limitations 

• Lack of high-resolution images: 

While creating our SID, the first step involved scaling down the dataset due to a 

limited number of high-resolution images for some classes. To avoid the issue of 

class imbalance, a smaller dataset with classes having around the same number 

of images was created. Example of classes that had fewer high-resolution images 

are Fish, waves, islands among others. 
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5.3 Future Work 

• Use a newer dataset or larger dataset with high resolution images 

Training on a larger maritime dataset that include the classes trained on, with 

additional maritime classes will certainly improve the performance of our model. 

• Addition of features to help with collision avoidance and decision making 

It will be beneficial to design and implement a real-time RetinaNet-based object 

detector that both accurately and efficiently detect objects and even move further to 

make decisions based on the objects that were detected. 

5.4 Contribution 

In this work, the impact of input image size on model performance was explored. 

Literatures have explained that the higher the resolution of an image, the better the details 

learned. However, with varying image sizes, the anchor boxes which are pivotal to the 

detection of objects do not operate on the principle of one size fits all. As a result, we 

tested the impact of the sizes of input images on the selection of anchor boxes which 

resulted to better IoU and overall prediction performance. 

The effect of varying augmentation techniques was also investigated. Several 

augmentation techniques have been reported in literature to increase the size of training 

data. With object detection as with most machine learning tasks, usually the more training 

data available the better. However, a lot of these augmentation techniques have been 

reported to either increase false positive identifications or do not yield a performance 

improvement that is comparable to the effort employed. We had explored a set of 

techniques to find out which combinations best improve performance without expensive 
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tradeoffs.
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