1,943 research outputs found

    A multi-layer monitoring system for clinical management of Congestive Heart Failure

    Get PDF
    BACKGROUND: Congestive Heart Failure (CHF) is a serious cardiac condition that brings high risks of urgent hospitalization and death. Remote monitoring systems are well-suited to managing patients suffering from CHF, and can reduce deaths and re-hospitalizations, as shown by the literature, including multiple systematic reviews. METHODS: The monitoring system proposed in this paper aims at helping CHF stakeholders make appropriate decisions in managing the disease and preventing cardiac events, such as decompensation, which can lead to hospitalization or death. Monitoring activities are stratified into three layers: scheduled visits to a hospital following up on a cardiac event, home monitoring visits by nurses, and patient's self-monitoring performed at home using specialized equipment. Appropriate hardware, desktop and mobile software applications were developed to enable a patient's monitoring by all stakeholders. For the first two layers, we designed and implemented a Decision Support System (DSS) using machine learning (Random Forest algorithm) to predict the number of decompensations per year and to assess the heart failure severity based on a variety of clinical data. For the third layer, custom-designed sensors (the Blue Scale system) for electrocardiogram (EKG), pulse transit times, bio-impedance and weight allowed frequent collection of CHF-related data in the comfort of the patient's home. We also performed a short-term Heart Rate Variability (HRV) analysis on electrocardiograms self-acquired by 15 healthy volunteers and compared the obtained parameters with those of 15 CHF patients from PhysioNet's PhysioBank archives. RESULTS: We report numerical performances of the DSS, calculated as multiclass accuracy, sensitivity and specificity in a 10-fold cross-validation. The obtained average accuracies are: 71.9% in predicting the number of decompensations and 81.3% in severity assessment. The most serious class in severity assessment is detected with good sensitivity and specificity (0.87 / 0.95), while, in predicting decompensation, high specificity combined with good sensitivity prevents false alarms. The HRV parameters extracted from the self-measured EKG using the Blue Scale system of sensors are comparable with those reported in the literature about healthy people. CONCLUSIONS: The performance of DSSs trained with new patients confirmed the results of previous work, and emphasizes the strong correlation between some CHF markers, such as brain natriuretic peptide (BNP) and ejection fraction (EF), with the outputs of interest. Comparing HRV parameters from healthy volunteers with HRV parameters obtained from PhysioBank archives, we confirm the literature that considers the HRV a promising method for distinguishing healthy from CHF patients

    2021 ISHNE/ HRS/ EHRA/ APHRS collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia Pacific Heart Rhythm Society.

    Get PDF
    This collaborative statement from the International Society for Holter and Noninvasive Electrocardiology/ Heart Rhythm Society/ European Heart Rhythm Association/ Asia Pacific Heart Rhythm Society describes the current status of mobile health ("mHealth") technologies in arrhythmia management. The range of digital medical tools and heart rhythm disorders that they may be applied to and clinical decisions that may be enabled are discussed. The facilitation of comorbidity and lifestyle management (increasingly recognized to play a role in heart rhythm disorders) and patient self-management are novel aspects of mHealth. The promises of predictive analytics but also operational challenges in embedding mHealth into routine clinical care are explored

    Mobile Self-monitoring ECG Devices to Diagnose Arrhythmia (AR) that coincide with Palpitations: A Scoping Review

    Get PDF
    The use and deployment of mobile devices across society is phenomenal with an increasing number of individuals using mobile devices to track their everyday health. However, there is a paucity of academic material examining this recent trend. Specifically, little is known about the use and deployment of mobile heart monitoring devices for measuring palpitations and arrhythmia. In this scoping literature review, we identify the contemporary evidence that reports the use of mobile heart monitoring to assess palpitations and arrhythmia across populations. The review was conducted between February and March 2018. Five electronic databases were searched: Association for Computing Machinery (ACM), CINHAL, Google Scholar, PubMed, and Scopus. A total of 981 records were identified and following the inclusion and exclusion criteria, nine papers were formed the final stage of the review. The results identified a total of six primary themes: purpose, environment, population, wearable devices, assessment, and study design. A further 24 secondary themes were identified across the primary themes. These included detection, cost effectiveness, recruitment, type of setting, type of assessment, and commercial or purpose-built mobile device. This scoping review highlights that further work is required to understand the impact of mobile heart monitoring devices on how arrhythmias and palpitations are assessed and measured across all populations and ages of society. A positive trend revealed by this review demonstrates how mobile heart monitoring devices can support primary care providers to deliver high-levels of care, at a low cost to the service provider. This has several benefits: alleviation of patient anxiety, lowering the risk of morbidity and mortality, while progressively influencing national and international care pathway guidelines. Limitations of this work include the paucity of knowledge and insight from primary care providers and lack of qualitative material. We argue that future studies consider qualitative and mixed-methods approaches to complement quantitative methodologies and to ensure all actors’ experiences are recorded

    Postoperative Telemonitoring of Flap Physiology in Microvascular Free Tissue Transfer

    Get PDF
    Current methods of postoperative monitoring in microvascular free tissue transfer often prove inadequate in circumstances when complications arise. Acknowledging the room for improvement, a novel system for remote and continuous monitoring of temperature and Doppler ultrasound signals was developed. The system collects data from the transferred tissue, analyzes the data using novel signal-processing algorithms, and wirelessly uploads the results to a secure remote server. Data collected from healthy subjects in a controlled study as well as from a patient recovering from a bilateral breast reconstruction indicate the novel algorithms are capable of detecting arterial and/or venous occlusion from the recorded Doppler ultrasound signal

    The utility of handheld and wearable devices in the diagnosis of cardiac arrhythmias

    Get PDF
    The aim of this thesis is to highlight the existing body of literature on the utility of wearable and handheld devices in the diagnosis and management of cardiac arrhythmias. Furthermore, the thesis investigates the accuracy and utility of the AliveCor Kardia for the detection of cardiac arrhythmias in a systematic fashion

    Body sensor networks: smart monitoring solutions after reconstructive surgery

    Get PDF
    Advances in reconstructive surgery are providing treatment options in the face of major trauma and cancer. Body Sensor Networks (BSN) have the potential to offer smart solutions to a range of clinical challenges. The aim of this thesis was to review the current state of the art devices, then develop and apply bespoke technologies developed by the Hamlyn Centre BSN engineering team supported by the EPSRC ESPRIT programme to deliver post-operative monitoring options for patients undergoing reconstructive surgery. A wireless optical sensor was developed to provide a continuous monitoring solution for free tissue transplants (free flaps). By recording backscattered light from 2 different source wavelengths, we were able to estimate the oxygenation of the superficial microvasculature. In a custom-made upper limb pressure cuff model, forearm deoxygenation measured by our sensor and gold standard equipment showed strong correlations, with incremental reductions in response to increased cuff inflation durations. Such a device might allow early detection of flap failure, optimising the likelihood of flap salvage. An ear-worn activity recognition sensor was utilised to provide a platform capable of facilitating objective assessment of functional mobility. This work evolved from an initial feasibility study in a knee replacement cohort, to a larger clinical trial designed to establish a novel mobility score in patients recovering from open tibial fractures (OTF). The Hamlyn Mobility Score (HMS) assesses mobility over 3 activities of daily living: walking, stair climbing, and standing from a chair. Sensor-derived parameters including variation in both temporal and force aspects of gait were validated to measure differences in performance in line with fracture severity, which also matched questionnaire-based assessments. Monitoring the OTF cohort over 12 months with the HMS allowed functional recovery to be profiled in great detail. Further, a novel finding of continued improvements in walking quality after a plateau in walking quantity was demonstrated objectively. The methods described in this thesis provide an opportunity to revamp the recovery paradigm through continuous, objective patient monitoring along with self-directed, personalised rehabilitation strategies, which has the potential to improve both the quality and cost-effectiveness of reconstructive surgery services.Open Acces
    • …
    corecore