9,489 research outputs found

    Route selection for vehicle navigation and control

    Get PDF
    This paper presents an application of neural-fuzzy methodology for the problem of route selection in a typical vehicle navigation and control system. The idea of the primary attributes of a route is discussed, and a neural-fuzzy system is developed to help a user to select a route out of the many possible routes from an origin to the destination. The user may not adopt the recommendation provided by the system and choose an alternate route. One novel feature of the system is that the neural-fuzzy system can adapt itself by changing the weights of the defined fuzzy rules through a training procedure. Two examples are given in this paper to illustrate how the route selection/ranking system can be made adaptive to the past choice or preference of the user. ©2007 IEEE.published_or_final_versio

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Estimating meteorological visibility range under foggy weather conditions: A deep learning approach

    Get PDF
    © 2018 The Authors. Published by Elsevier Ltd. Systems capable of estimating visibility distances under foggy weather conditions are extremely useful for next-generation cooperative situational awareness and collision avoidance systems. In this paper, we present a brief review of noticeable approaches for determining visibility distance under foggy weather conditions. We then propose a novel approach based on the combination of a deep learning method for feature extraction and an SVM classifier. We present a quantitative evaluation of the proposed solution and show that our approach provides better performance results compared to an earlier approach that was based on the combination of an ANN model and a set of global feature descriptors. Our experimental results show that the proposed solution presents very promising results in support for next-generation situational awareness and cooperative collision avoidance systems. Hence it can potentially contribute towards safer driving conditions in the presence of fog

    Selected Papers from IEEE ICASI 2019

    Get PDF
    The 5th IEEE International Conference on Applied System Innovation 2019 (IEEE ICASI 2019, https://2019.icasi-conf.net/), which was held in Fukuoka, Japan, on 11–15 April, 2019, provided a unified communication platform for a wide range of topics. This Special Issue entitled “Selected Papers from IEEE ICASI 2019” collected nine excellent papers presented on the applied sciences topic during the conference. Mechanical engineering and design innovations are academic and practical engineering fields that involve systematic technological materialization through scientific principles and engineering designs. Technological innovation by mechanical engineering includes information technology (IT)-based intelligent mechanical systems, mechanics and design innovations, and applied materials in nanoscience and nanotechnology. These new technologies that implant intelligence in machine systems represent an interdisciplinary area that combines conventional mechanical technology and new IT. The main goal of this Special Issue is to provide new scientific knowledge relevant to IT-based intelligent mechanical systems, mechanics and design innovations, and applied materials in nanoscience and nanotechnology

    Towards fostering the role of 5G networks in the field of digital health

    Get PDF
    A typical healthcare system needs further participation with patient monitoring, vital signs sensors and other medical devices. Healthcare moved from a traditional central hospital to scattered patients. Healthcare systems receive help from emerging technology innovations such as fifth generation (5G) communication infrastructure: internet of things (IoT), machine learning (ML), and artificial intelligence (AI). Healthcare providers benefit from IoT capabilities to comfort patients by using smart appliances that improve the healthcare level they receive. These IoT smart healthcare gadgets produce massive data volume. It is crucial to use very high-speed communication networks such as 5G wireless technology with the increased communication bandwidth, data transmission efficiency and reduced communication delay and latency, thus leading to strengthen the precise requirements of healthcare big data utilities. The adaptation of 5G in smart healthcare networks allows increasing number of IoT devices that supplies an augmentation in network performance. This paper reviewed distinctive aspects of internet of medical things (IoMT) and 5G architectures with their future and present sides, which can lead to improve healthcare of patients in the near future

    Application of Artificial Intelligence and Meta-heuristic Algorithms in Civil Health Monitoring Systems

    Get PDF
    After the discovery and manufacturing of every accomplishment, the mankind tends to make it sustainable in terms of different aspects that one of them can be its durability. Nowadays, a science titled “health monitoring” has provided such a consideration in different fields. For example, civil engineering sciences, in various branches, aim to construct various civil engineering accomplishments, followed by the higher goals of making them durable and healthy. The present study tries to give an account about the various study fields like structural engineering, bridge construction, dam construction, hydraulic and on-beach constructions, road engineering and building, water resources management and so on along with the mentioning of the various methods extant for the implementation of such study fields. But, in between, there is an appropriate method that provides such objectives as cost-effectiveness, access to the entire required details, awareness of the civil infrastructures in order to estimate the remained lifetime of the structure in line with the continuation and/or change of the uses. Also, it has high precision and minimally influenced by the environment, so, it can be said that it has very little error in its collection of information. For instance, this method can be used to evaluate the ruination of the structures based on modal properties, which can have static or dynamic foundations such that the current state of the structure is compared to its ideal state to monitor the degree of the structure’s ruination or its soundness. In present study, it was tried to investigate the artificial intelligence science as one of the richest methods possessing all the prerequisites as well as having more traits in common with the various sub-disciplines of civil engineering so that it can be utilized more comprehensively and in a more centralized manner

    The path inference filter: model-based low-latency map matching of probe vehicle data

    Full text link
    We consider the problem of reconstructing vehicle trajectories from sparse sequences of GPS points, for which the sampling interval is between 10 seconds and 2 minutes. We introduce a new class of algorithms, called altogether path inference filter (PIF), that maps GPS data in real time, for a variety of trade-offs and scenarios, and with a high throughput. Numerous prior approaches in map-matching can be shown to be special cases of the path inference filter presented in this article. We present an efficient procedure for automatically training the filter on new data, with or without ground truth observations. The framework is evaluated on a large San Francisco taxi dataset and is shown to improve upon the current state of the art. This filter also provides insights about driving patterns of drivers. The path inference filter has been deployed at an industrial scale inside the Mobile Millennium traffic information system, and is used to map fleets of data in San Francisco, Sacramento, Stockholm and Porto.Comment: Preprint, 23 pages and 23 figure

    Next-gen traffic surveillance: AI-assisted mobile traffic violation detection system

    Full text link
    Road traffic accidents pose a significant global public health concern, leading to injuries, fatalities, and vehicle damage. Approximately 1,3 million people lose their lives daily due to traffic accidents [World Health Organization, 2022]. Addressing this issue requires accurate traffic law violation detection systems to ensure adherence to regulations. The integration of Artificial Intelligence algorithms, leveraging machine learning and computer vision, has facilitated the development of precise traffic rule enforcement. This paper illustrates how computer vision and machine learning enable the creation of robust algorithms for detecting various traffic violations. Our model, capable of identifying six common traffic infractions, detects red light violations, illegal use of breakdown lanes, violations of vehicle following distance, breaches of marked crosswalk laws, illegal parking, and parking on marked crosswalks. Utilizing online traffic footage and a self-mounted on-dash camera, we apply the YOLOv5 algorithm's detection module to identify traffic agents such as cars, pedestrians, and traffic signs, and the strongSORT algorithm for continuous interframe tracking. Six discrete algorithms analyze agents' behavior and trajectory to detect violations. Subsequently, an Identification Module extracts vehicle ID information, such as the license plate, to generate violation notices sent to relevant authorities
    corecore