562 research outputs found

    Mid-air haptic rendering of 2D geometric shapes with a dynamic tactile pointer

    Get PDF
    An important challenge that affects ultrasonic midair haptics, in contrast to physical touch, is that we lose certain exploratory procedures such as contour following. This makes the task of perceiving geometric properties and shape identification more difficult. Meanwhile, the growing interest in mid-air haptics and their application to various new areas requires an improved understanding of how we perceive specific haptic stimuli, such as icons and control dials in mid-air. We address this challenge by investigating static and dynamic methods of displaying 2D geometric shapes in mid-air. We display a circle, a square, and a triangle, in either a static or dynamic condition, using ultrasonic mid-air haptics. In the static condition, the shapes are presented as a full outline in mid-air, while in the dynamic condition, a tactile pointer is moved around the perimeter of the shapes. We measure participants’ accuracy and confidence of identifying shapes in two controlled experiments (n1 = 34, n2 = 25). Results reveal that in the dynamic condition people recognise shapes significantly more accurately, and with higher confidence. We also find that representing polygons as a set of individually drawn haptic strokes, with a short pause at the corners, drastically enhances shape recognition accuracy. Our research supports the design of mid-air haptic user interfaces in application scenarios such as in-car interactions or assistive technology in education

    Electrostatic Friction Displays to Enhance Touchscreen Experience

    Get PDF
    Touchscreens are versatile devices that can display visual content and receive touch input, but they lack the ability to provide programmable tactile feedback. This limitation has been addressed by a few approaches generally called surface haptics technology. This technology modulates the friction between a user’s fingertip and a touchscreen surface to create different tactile sensations when the finger explores the touchscreen. This functionality enables the user to see and feel digital content simultaneously, leading to improved usability and user experiences. One major approach in surface haptics relies on the electrostatic force induced between the finger and an insulating surface on the touchscreen by supplying high AC voltage. The use of AC also induces a vibrational sensation called electrovibration to the user. Electrostatic friction displays require only electrical components and provide uniform friction over the screen. This tactile feedback technology not only allows easy and lightweight integration into touchscreen devices but also provides dynamic, rich, and satisfactory user interfaces. In this chapter, we review the fundamental operation of the electrovibration technology as well as applications have been built upon

    Wearable haptic systems for the fingertip and the hand: taxonomy, review and perspectives

    Get PDF
    In the last decade, we have witnessed a drastic change in the form factor of audio and vision technologies, from heavy and grounded machines to lightweight devices that naturally fit our bodies. However, only recently, haptic systems have started to be designed with wearability in mind. The wearability of haptic systems enables novel forms of communication, cooperation, and integration between humans and machines. Wearable haptic interfaces are capable of communicating with the human wearers during their interaction with the environment they share, in a natural and yet private way. This paper presents a taxonomy and review of wearable haptic systems for the fingertip and the hand, focusing on those systems directly addressing wearability challenges. The paper also discusses the main technological and design challenges for the development of wearable haptic interfaces, and it reports on the future perspectives of the field. Finally, the paper includes two tables summarizing the characteristics and features of the most representative wearable haptic systems for the fingertip and the hand

    Doctor of Philosophy

    Get PDF
    dissertationThe study of haptic interfaces focuses on the use of the sense of touch in human-machine interaction. This document presents a detailed investigation of lateral skin stretch at the fingertip as a means of direction communication. Such tactile communication has applications in a variety of situations where traditional audio and visual channels are inconvenient, unsafe, or already saturated. Examples include handheld consumer electronics, where tactile communication would allow a user to control a device without having to look at it, or in-car navigation systems, where the audio and visual directions provided by existing GPS devices can distract the driver's attention away from the road. Lateral skin stretch, the displacement of the skin of the fingerpad in a plane tangent to the fingerpad, is a highly effective means of communicating directional information. Users are able to correctly identify the direction of skin stretch stimuli with skin displacements as small as 0.1 mm at rates as slow as 2 mm/s. Such stimuli can be rendered by a small, portable device suitable for integration into handheld devices. The design of the device-finger interface affects the ability of the user to perceive the stimuli accurately. A properly designed conical aperture effectively constrains the motion of the finger and provides an interface that is practical for use in handheld devices. When a handheld device renders directional tactile cues on the fingerpad, the user must often mentally rotate those cues from the reference frame of the finger to the world-centered reference frame where those cues are to be applied. Such mental rotation incurs a cognitive cost, requiring additional time to mentally process the stimuli. The magnitude of these cognitive costs is a function of the angle of rotation, and of the specific orientations of the arm, wrist and finger. Even with the difficulties imposed by required mental rotations, lateral skin stretch is a promising means of communicating information using the sense of touch with potential to substantially improve certain types of human-machine interaction

    Doctor of Philosophy

    Get PDF
    dissertationVirtual environments provide a consistent and relatively inexpensive method of training individuals. They often include haptic feedback in the form of forces applied to a manipulandum or thimble to provide a more immersive and educational experience. However, the limited haptic feedback provided in these systems tends to be restrictive and frustrating to use. Providing tactile feedback in addition to this kinesthetic feedback can enhance the user's ability to manipulate and interact with virtual objects while providing a greater level of immersion. This dissertation advances the state-of-the-art by providing a better understanding of tactile feedback and advancing combined tactilekinesthetic systems. The tactile feedback described within this dissertation is provided by a finger-mounted device called the contact location display (CLD). Rather than displaying the entire contact surface, the device displays (feeds back) information only about the center of contact between the user's finger and a virtual surface. In prior work, the CLD used specialized two-dimensional environments to provide smooth tactile feedback. Using polygonal environments would greatly enhance the device's usefulness. However, the surface discontinuities created by the facets on these models are rendered through the CLD, regardless of traditional force shading algorithms. To address this issue, a haptic shading algorithm was developed to provide smooth tactile and kinesthetic interaction with general polygonal models. Two experiments were used to evaluate the shading algorithm. iv To better understand the design requirements of tactile devices, three separate experiments were run to evaluate the perception thresholds for cue localization, backlash, and system delay. These experiments establish quantitative design criteria for tactile devices. These results can serve as the maximum (i.e., most demanding) device specifications for tactile-kinesthetic haptic systems where the user experiences tactile feedback as a function of his/her limb motions. Lastly, a revision of the CLD was constructed and evaluated. By taking the newly evaluated design criteria into account, the CLD device became smaller and lighter weight, while providing a full two degree-of-freedom workspace that covers the bottom hemisphere of the finger. Two simple manipulation experiments were used to evaluate the new CLD device

    HapBead: on-skin microfluidic haptic interface using tunable bead

    Get PDF
    On-skin haptic interfaces using soft elastomers which are thin and flexible have significantly improved in recent years. Many are focused on vibrotactile feedback that requires complicated parameter tuning. Another approach is based on mechanical forces created via piezoelectric devices and other methods for non-vibratory haptic sensations like stretching, twisting. These are often bulky with electronic components and associated drivers are complicated with limited control of timing and precision. This paper proposes HapBead, a new on-skin haptic interface that is capable of rendering vibration like tactile feedback using microfluidics. HapBead leverages a microfluidic channel to precisely and agilely oscillate a small bead via liquid flow, which then generates various motion patterns in channel that creates highly tunable haptic sensations on skin. We developed a proof-of-concept design to implement thin, flexible and easily affordable HapBead platform, and verified its haptic rendering capabilities via attaching it to users’ fingertips. A study was carried out and confirmed that participants could accurately tell six different haptic patterns rendered by HapBead. HapBead enables new wearable display applications with multiple integrated functionalities such as on-skin haptic doodles, mixed reality haptics and visual-haptic displays

    The Touch Thimble: Providing Fingertip Contact Feedback During Point-Force Haptic Interaction

    Get PDF
    Touching a real object with your fingertip provides simultaneous tactile and force feedback, yet most haptic interfaces for virtual environments can convey only one of these two essential modalities. To address this opportunity, we designed, prototyped, and evaluated the Touch Thimble, a new fingertip device that provides the user with the cutaneous sensation of making and breaking contact with virtual surfaces. Designed to attach to the endpoint of an impedance-type haptic interface like a SensAble Phantom, the Touch Thimble includes a slightly oversize cup that is suspended around the fingertip by passive springs. When the haptic interface applies contact forces from the virtual environment, the springs deflect to allow contact between the user\u27s fingertip and the inner surface of the cup. We evaluated a prototype Touch Thimble against a standard thimble in a formal user study and found that it did not improve nor degrade subjects\u27 ability to recognize smoothly curving surfaces. Although four of the eight subjects preferred it to the standard interface, overall the Touch Thimble made subjects slightly slower at recognizing the presented shapes. Detailed subject comments point out strengths and weaknesses of the current design and suggest avenues for future development of the device

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant R01 DC00117National Institutes of Health Grant R01 DC02032National Institutes of Health/National Institute of Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research Grant N61339-96-K-0002U.S. Navy - Office of Naval Research Grant N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-97-1-0635U.S. Navy - Office of Naval Research Grant N00014-97-1-0655U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202National Institutes of Health Grant RO1 NS33778Massachusetts General Hospital, Center for Innovative Minimally Invasive Therapy Research Fellowship Gran

    Multi-physics modelling and experimental validation of electrovibration based haptic devices

    Get PDF
    Electrovibration tactile displays exploit the polarisation of the finger pad, caused by an insulated high voltage supplied plate. This results in electrostatic attraction, which can be used to modulate the users' perception of an essentially flat surface and induce texture sensation. Two analytical models of electrovibration, based on parallel plate capacitor assumption, are demonstrably taken and assessed by comparisons with experimental results published in literature. In addition, an experimental setup was developed to measure the electrostatic force between the finger pad and a high voltage supplied plate in a static and out-of-contact state in order to support the use of parallel plate capacitor model. Development, validation, and application of a computational framework for modelling tactile scenarios on real and virtual surfaces rendered by electrovibration technique is presented. The framework incorporates fully parametric model in terms of materials and geometry of the finger pad, virtual and real surfaces, and can serve as a tool for virtual prototyping and haptic rendering in electrovibration tactile displays. This is achieved by controlling the applied voltage signal in order to guarantee similar lateral force cues in real and simulated surfaces
    • …
    corecore