8 research outputs found

    An accurate time constant parameter determination method for the varying condition equivalent circuit model of lithium batteries.

    Get PDF
    An accurate estimation of the state of charge for lithium battery depends on an accurate identification of the battery model parameters. In order to identify the polarization resistance and polarization capacitance in a Thevenin equivalent circuit model of lithium battery, the discharge and shelved states of a Thevenin circuit model were analyzed in this paper, together with the basic reasons for the difference in the resistance capacitance time constant and the accurate characterization of the resistance capacitance time constant in detail. The exact mathematical expression of the working characteristics of the circuit in two states were deduced thereafter. Moreover, based on the data of various working conditions, the parameters of the Thevenin circuit model through hybrid pulse power characterization experiment was identified, the simulation model was built, and a performance analysis was carried out. The experiments showed that the accuracy of the Thevenin circuit model can become 99.14% higher under dynamic test conditions and the new identification method that is based on the resistance capacitance time constant. This verifies that this method is highly accurate in the parameter identification of a lithium battery model

    Fuzzy Entropy-based State of Health Estimation for Li-Ion Batteries

    Get PDF

    A novel energy management strategy for the ternary lithium batteries based on the dynamic equivalent circuit modeling and differential Kalman filtering under time-varying conditions.

    Get PDF
    The dynamic model of the ternary lithium battery is a time-varying nonlinear system due to the polarization and diffusion effects inside the battery in its charge-discharge process. Based on the comprehensive analysis of the energy management methods, the state of charge is estimated by introducing the differential Kalman filtering method combined with the dynamic equivalent circuit model considering the nonlinear temperature coefficient. The model simulates the transient response with high precision which is suitable for its high current and complicated charging and discharging conditions. In order to better reflect the dynamic characteristics of the power ternary lithium battery in the step-type charging and discharging conditions, the polarization circuit of the model is differential and the improved iterate calculation model is obtained. As can be known from the experimental verifications, the maximize state of charge estimation error is only 0.022 under the time-varying complex working conditions and the output voltage is monitored simultaneously with the maximum error of 0.08 V and the average error of 0.04 V. The established model can describe the dynamic battery behavior effectively, which can estimate its state of charge value with considerably high precision, providing an effective energy management strategy for the ternary lithium batteries

    Model-free non-invasive health assessment for battery energy storage assets

    Get PDF
    Increasing penetration of renewable energy generation in the modern power network introduces uncertainty about the energy available to maintain a balance between generation and demand due to its time-fluctuating output that is strongly dependent on the weather. With the development of energy storage technology, there is the potential for this technology to become a key element to help overcome this intermittency in a generation. However, the increasing penetration of battery energy storage within the power network introduces an additional challenge to asset owners on how to monitor and manage battery health. The accurate estimation of the health of this device is crucial in determining its reliability, power-delivering capability and ability to contribute to the operation of the whole power system. Generally, doing this requires invasive measurements or computationally expensive physics-based models, which do not scale up cost-effectively to a fleet of assets. As storage aggregation becomes more commonplace, there is a need for a health metric that will be able to predict battery health based only on the limited information available, eliminating the necessity of installation of extensive telemetry in the system. This work develops a solution to battery health prognostics by providing an alternative, a non-invasive approach to the estimation of battery health that estimates the extent to which a battery asset has been maloperated based only on the battery-operating regime imposed on the device. The model introduced in this work is based on the Hidden Markov Model, which stochastically models the battery limitations imposed by its chemistry as a combination of present and previous sequential charging actions, and articulates the preferred operating regime as a measure of health consequence. The resulting methodology is demonstrated on distribution network level electrical demand and generation data, accurately predicting maloperation under a number of battery technology scenarios. The effectiveness of the proposed battery maloperation model as a proxy for actual battery degradation for lithium-ion technology was also tested against lab tested battery degradation data, showing that the proposed health measure in terms of maloperation level reflected that measured in terms of capacity fade. The developed model can support condition monitoring and remaining useful life estimates, but in the wider context could also be used as the policy function in an automated scheduler to utilise assets while optimising their health.Increasing penetration of renewable energy generation in the modern power network introduces uncertainty about the energy available to maintain a balance between generation and demand due to its time-fluctuating output that is strongly dependent on the weather. With the development of energy storage technology, there is the potential for this technology to become a key element to help overcome this intermittency in a generation. However, the increasing penetration of battery energy storage within the power network introduces an additional challenge to asset owners on how to monitor and manage battery health. The accurate estimation of the health of this device is crucial in determining its reliability, power-delivering capability and ability to contribute to the operation of the whole power system. Generally, doing this requires invasive measurements or computationally expensive physics-based models, which do not scale up cost-effectively to a fleet of assets. As storage aggregation becomes more commonplace, there is a need for a health metric that will be able to predict battery health based only on the limited information available, eliminating the necessity of installation of extensive telemetry in the system. This work develops a solution to battery health prognostics by providing an alternative, a non-invasive approach to the estimation of battery health that estimates the extent to which a battery asset has been maloperated based only on the battery-operating regime imposed on the device. The model introduced in this work is based on the Hidden Markov Model, which stochastically models the battery limitations imposed by its chemistry as a combination of present and previous sequential charging actions, and articulates the preferred operating regime as a measure of health consequence. The resulting methodology is demonstrated on distribution network level electrical demand and generation data, accurately predicting maloperation under a number of battery technology scenarios. The effectiveness of the proposed battery maloperation model as a proxy for actual battery degradation for lithium-ion technology was also tested against lab tested battery degradation data, showing that the proposed health measure in terms of maloperation level reflected that measured in terms of capacity fade. The developed model can support condition monitoring and remaining useful life estimates, but in the wider context could also be used as the policy function in an automated scheduler to utilise assets while optimising their health
    corecore