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Abstract—In this study, we train deep learning (DL) 
models to estimate the state-of-charge (SOC) of lithium-ion 
(Li-ion) battery directly from voltage, current, and battery 
temperature values. The deep fully convolutional network 
(FCN) model is proposed for its novel architecture with 
learning rate optimization strategies. The proposed model 
is capable of estimating SOC at constant and varying 
ambient temperature on different drive cycles without 
having to be re-trained. The model also outperformed other 
commonly used DL models such as the LSTM, GRU, and 
CNN on an open source Li-ion battery dataset. The model 
achieves 0.85% RMSE and 0.7% MAE at 25◦C and 2.0% 
RMSE and 1.55% MAE at varying ambient temperature (-20 
to 25◦C). 

Index Terms—State-of-charge, convolutional neural 
network, CNN, FCN, deep learning, lithium-ion battery.  

 

I. INTRODUCTION 

TATE-of-charge (SOC) is a crucial parameter in the battery 

management systems of electric vehicles (EV) that indicates 

the amount of charge left in its batteries [1]. Accurate SOC 

estimation is essential in ensuring the longevity and safety of 

the lithium-ion (Li-ion) batteries. The formal definition of SOC 

is the ratio of available capacity Q at time, t, to the nominal 

capacity 𝑄𝑛 [2] as given in Eq. (1). 

 

 
SOC =  

𝑄(𝑡)

𝑄𝑛
 

(1) 

 

With existing sensor advancements, the SOC cannot be 

practically measured outside of the laboratory with controlled 

environment. However, since the SOC correlates well with a 

few observable quantities such as battery voltage, current, 

temperature, and so forth, these quantities are often used to 

estimate the SOC [3]. Presently, researchers are adopting 

machine learning (ML) methods in which the battery model is 

learned directly from the battery data instead of being hand-

engineered in laboratories. Conventional ML methods such as 

Kalman filters [4], neural networks [5], fuzzy controllers [6], 

and various hybrid methods have been extensively explored 

throughout the literature. However, there has been a growing 

interest in using DL for battery modelling recently. Among 

notable DL related works include LSTM [7], GRU [8], DNN 

[9], CNN-LSTM [10] and so forth have proven to yield 

promising results. Most studies involve recurrent DL models 

which handles temporal data well. However, the computation 

cost of recurrent models is huge compared to its feedforward 

counterparts such as DNN or CNN. Additionally, recent 

advances in DL suggest that feedforward models can 

outperform recurrent models on a variety of benchmarks. This 

study proposes an optimised deep fully convolutional network 

(FCN) to estimate the SOC of a Li-ion battery. The following 

are main contributions of this work: 

• The proposed FCN outperforms recurrent models on the 

training and test set when evaluated on novel drive cycles 

absent in the training set with least computation cost. 

• Learning rate optimization strategies significantly 

improves the error rate of the unoptimized FCN model. 

This study also incorporates various recent DL training 

strategies and best practices including the use of state-of-the art 

optimizer and activation function. 

 

II. PROPOSED FCN MODEL 

A. FCN Architecture 

FCN is commonly used in computer vision tasks. However, 

it can be adapted to work with temporal data. In FCN, the 

convolution operation is applied across the time axis with a 1-

dimensional kernel known as temporal convolution. The FCN 

used in this study is constructed by stacking multiple temporal 

convolution layers atop one another. Fig. 1 illustrates the 

proposed FCN architecture in which input matrix are the battery 

voltage, Vk, current, Ik  , and temperature, Tk. Following that, four 

subsequent temporal convolutions are performed on the matrix 

by sliding each kernel across the time dimension as shown in 

Fig. 1. The convolution operations are performed with the order 

of the following kernel width size, w = [7, 5, 3, 1] and each 

convolution layer has number of kernels, n = [16, 32, 16, 1], 

respectively. Each convolution layer is followed by a batch 

normalization (BN) layer to accelerate training convergence and 

subsequently by an activation layer. We utilized a relatively new 

activation function known as the Mish activation [11]. The Mish 

activation has been shown to improve results in convolutional 

networks and provides a strong regularization effect on the 

model to reduce overfitting. We also include a global average 

pooling (GAP) layer instead of a fully connected layer for to 

reduce the number of parameters that leads to overfitting. To 

yield the output SOC, we run the resulting tensor from the GAP 

layer through a rectified linear unit (ReLU) clipped at a ceiling 

of 1.0. 
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B. Learning Rate Optimization 

Learning rate (LR) is arguably the most important 

hyperparameter that has a major influence on the model 

performance. Too small a LR results in lengthy training time. 

Vice versa, an overly large LR causes the model to not converge. 

 

 

Fig. 1: Proposed FCN architecture. 

This study adopts a search strategy to identify an optimal range 

of LR as proposed in [12]. During the searching, the training 

dataset is forward-passed through the model with exponentially 

increasing of LR. The above-mentioned search strategy is 

applied to minimize the loss function, ℒ as expressed in Eq. (2). 

The mean absolute error (MAE) is chosen as the loss function 

with Ridge regularization (L2),  

 

 

ℒ =
1

𝑁
∑(|𝑆𝑂𝐶𝑘 − 𝑆𝑂𝐶𝑘

∗|)

𝑁

𝑘=1⏟              
Loss term

+
𝜆

2𝑚
∑‖𝑤𝑗‖

2
𝑛

𝑗=1⏟        
L2 regularization term

 

(2) 

 

where, in the loss term, N is the total number of training 

samples, SOCk is the estimated SOC by the model at timestep k, 

𝑆𝑂𝐶𝑘
∗ is the ground truth SOC value at timestep, k. In the L2 

regularization term, n is the number of layers, wj is the weight 

matrix for layer j, m is the number of inputs, and λ is the 

regularization parameter. The outcome of the LR search is 

shown in Fig. 2. It can be observed that the loss function 

decreases at a different rate depending on the value of LR. The 

optimal LR value lies in the region where the loss decreases 

most rapidly. In our case, the optimal LR is within 10−4  to 

10−2. 

 
Fig. 2: Learning rate range finder. 

Once the optimal range of LR is determined, a policy is applied 

to vary the LR during training in a cyclical fashion, as illustrated 

in Fig. 3. In this policy, the training starts with the minimum LR 

value (10−4). As training progresses, the LR increases linearly 

until it reaches the maximum optimal LR (10−2). The cycle is 

repeated until the model converges. Cyclically varying the LR 

increases the training speed as well as allows the models to 

avoid getting stuck on local minima. All models in this study 

are trained with gradient descent optimization algorithm known 

as Rectified Adam (RAdam) [13]. RAdam has been shown to 

be less sensitive to the selection of initial learning rate and has 

demonstrated improved generalization error. 

 

Fig. 3: Cyclical LR policy during training. 

III. EXPERIMENTAL SETUP 

A. Dataset 

A Panasonic 18650PF lithium-ion battery cell with 

capacity of 2.9 Ah is employed in this research. The 

specification is presented in Table I [7]. Note that in this dataset, 

the discharging current is assigned as negative and charging 

current as positive. The dataset consists of 9 distinct drive 

cycles with over 100,000 timesteps of which seven are used in 

training and the remaining two as the test set. In this study, the 

training data was further split into 70/30 train/validation 

samples during training. Fig. 4 shows an unnormalized sample 

plot of the US06 dataset to illustrate the range of values for 

voltage, current, temperature and the available capacity of the 

battery. To ensure consistency and training stability, we re-

sampled all data to 1Hz sample rate and normalized them in the 

range of 0 to 1. 

 

B. Hyperparameters and Training 

All models were trained on a dual 1080Ti GPU with (11Gb 

memory each) on an Ubuntu 18.04 32Gb RAM machine with 

Tensorflow 2.2.0 DL library. To reduce the amount of GPU 

memory usage, we casted the dataset into a half-precision (16-

bit) floating-point format. This enables us to halve the amount 

of GPU memory usage and reduce computational complexity 

leading to speed up in training time. Halving the memory usage 

also allows to increase the batch size which further accelerates 

training. The batch size was kept at 1024 for all models. We 

have constructed a data window, W = 400 timesteps to train all 

models. The ground truth 𝑆𝑂𝐶𝑘
∗  is determined by using the 

Coulomb Counting formula with precisely calibrated sensor 

during the discharge process. 
 

𝑆𝑂𝐶𝑘
∗(𝑡) = 𝑆𝑂𝐶𝑘

∗(𝑡 − 1) +
𝐼(𝑡)

𝑄𝑛
 Δ𝑡 

(3) 
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where 𝑄𝑛  is the nominal battery capacity, 𝑆𝑂𝐶𝑘
∗(𝑡)  is the 

present timestep SOC,  𝑆𝑂𝐶𝑘
∗(𝑡 − 1) previous timestep SOC, 

and Δ𝑡 is the time interval. 
 

TABLE I: Panasonic 18650OF cell parameters [7]. 

Parameter Values 

Nominal open circuit voltage 3.6 V 

Capacity Min. 2.75 Ah / Typ. 2.9 Ah 

Min/max voltage 2.5 V / 4.2 V 

Mass/energy storage 48 g / 9.9 Wh 

Minimum charging temperature 10 ◦C 

Cycles to 80% capacity 500 (100% DOD, 25 ◦C) 

 

 

 
Fig. 4: Sample plot of the US06 test drive cycle sampled at ambient temperature, 

T = 10◦C. 

 

 In the model, we set λ = 0.001 and the loss function, L is 

optimized by the minibatch gradient descent with 

backpropagation. The weights and biases were updated using 

RAdam optimization as described in the previous subsection. To 

mitigate the effects of overfitting, the early stopping training 

scheme is adopted that halts training if the validation loss does 

not improve for 100 consecutive epochs. The maximum epoch 

was kept at 1000. The model with the lowest validation loss was 

selected as the best performing model. The performance of all 

models was evaluated with the Root Mean Squared Error 

(RMSE), and the Mean Absolute Error (MAE) given in the 

following equations: 

 

 

 

(4) 

 

 

(5) 

 

 IV. EXPERIMENTAL VALIDATION 

Results obtained by the proposed model is compared with 

other commonly used DL models such as the LSTM, GRU, and 

CNN. The LSTM and GRU models consist of one hidden layer 

with 32 and 36 units respectively. The CNN model used 

consists of a single temporal convolution layer with 22 filters 

and a kernel size of 5 followed by a max pooling layer with pool 

size 2. The number of hidden units and filters were selected such 

that all models consist of approximately the same number of 

parameters for a fair comparison. 

 

A. Estimation at Constant Ambient Temperature 

In this section, we trained and tested all models only on the 

drive cycles taken at room temperature (25◦C). Training data 

contains of drive cycles: Cycle 1,2,3,4, NN, UDDS, LA92 and 

testing data contains of drive cycles: US06 and HWFT. We 

observed (in Table III) that FCN outperformed all other models 

even without any optimization in achieving low RMSE and 

MAE during the testing phase. This is evident that the 

architecture of the FCN contributes to low error test error. In 

our proposed model, we performed LR optimization on the 

FCN model that has contributed to a significant error reduction 

in comparison to only FCN. The results prove that the LR 

optimization plays an important role in reducing test error. In 

summary, the proposed model is superior to other models under 

constant ambient temperature setting with respect to 

generalization capacity in obtaining the lowest error rates under 

testing phase. Fig. 5 illustrates the SOC estimation plot for all 

models trained under fixed ambient temperature. 

TABLE II: Computation cost for all models. 

 

 

 

 

 

 

 

  
       (a) US06 drive cycle.        (b) HWFT drive cycle. 

Fig. 5: Estimation at 25◦C ambient temperature. 

 

 

 

 

 

B.  Estimation at Variable Ambient Temperature 

In this section, training and testing of all models on the drive 

cycles are taken at temperature ranging from -20◦C to 40◦C. 

Training data consists of drive cycles: Cycle 1,2,3,4, NN, 

UDDS, LA92 and testing data consists of drive cycles: US06 

and HWFT, respectively. Table III shows the results on the 

training and test set of fixed ambient and variable ambient 

temperatures. Under the variable ambient temperature settings, 

we observe a similar pattern as before. FCN with no LR 

optimization already outperforms other models on the test error. 

The error rate on of the FCN decreases further (-0.45% RMSE, 

-0.31% MAE) with LR optimization. Fig. 6 illustrates the SOC 

estimation plots for all models at various ambient temperature 

values. However, upon careful observation, we note that the 

 
 
  
 
 
 
  
 
 

 
 
  
 
 
  
  
 

                

 
 
 

 
  
  
 
 

 
 
 
   
  
 
 
 
  
  

 
 

Model Parameters FLOPs Run-time(s) 

Proposed 4643 9226 0.001361 

FCN 4643 9226 0.001342 

GRU 4543 17772 0.001478 

LSTM 4711 18938 0.001368 

CNN 4055 20067 0.001028 
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error of the proposed model on the train set increases despite a 

decrease on the test set. This phenomenon can be attributed to 

the “regularization effect” which is common in machine 

learning where the error on the train set increases and vice-versa 

on the test set. In many machine learning problems, 

regularization is deliberately added using various techniques 

such as Dropout to avoid overfitting on the training set. In our 

experiment setup, the regularization effect is already present by 

training the models with the cyclical LR policy. This effect is 

unintended but desirable since it improves model performance 

by not overfitting the training set. Regularization effect by 

training models with cyclical LR policy has also been 

documented in the seminal work by L. N. Smith in [12]. Upon 

observation in Fig. 5 and Fig. 6, the proposed model can match 

the trend of the true value in the most drive cycles despite the 

trend is not included in training. Thus, it is concluded that the 

model is capable to follow the flat trend of the true SOC value. 

However, more data including trend in the training and testing 

will provide maximum efficiency of matching true and 

proposed SOC value.   

C. Computation Cost 

To evaluate the computation cost and performance, two 

established metrics are utilized such as floating-point operations 

per second (FLOPs) and run-time for all models. FLOPs 

measure the number of operations per second for a trained DL 

model which is a good indicator to show the complexity of a 

model. Run-time is the time that takes to run one forward-pass 

through a model. The runtime performance is dependent on the 

hardware the model is run on. In this study, all models were 

tested on a single GTX1080Ti GPU. Fig. 7 illustrates the 

computational cost comparison across all models with respect 

to the test set error. One advantage of using convolutional 

models is that they are less computationally intensive compared 

to recurrent models. As shown in Fig. 7, the proposed model is 

computationally efficient compared to the LSTM and GRU 

while still scoring the lowest on the RMSE and MAE. 

 

 

 

 

   

          (a) US06 at 0◦C.           (b) US06 at 10◦C.           (c) US06 at -10◦C. 

   
         (d) HWFT at 0◦C.           (e) HWFT at 10◦C.           (f) HWFT at -10◦C. 

 Fig. 6: Estimation at various varying ambient temperatures. 

 

 

 

 

 

 

 

 

 

 

TABLE III: Performance evaluation at fixed and varying ambient temperatures 

  Fixed ambient temperature (25◦C) Variable ambient temperature (-20 to 25◦C) 

Model Params. 
Training Error (%) Test Error (%) Training Error (%) Test Error (%) 

RMSE MAE MAX RMSE MAE MAX RMSE MAE MAX RMSE MAE MAX 

Proposed 4643 0.57 0.45 2.41 0.85 0.70 2.96 2.27 1.98 11.23 2.00 1.55 7.63 

FCN 4643 0.59 0.45 3.27 1.48 1.11 7.10 1.31 0.97 9.63 2.45 1.86 11.62 

GRU 4543 0.67 0.54 4.24 1.58 1.33 6.24 2.64 2.13 18.15 3.25 2.72 16.62 

LSTM 4839 0.59 0.46 5.04 1.70 1.40 10.41 2.34 1.53 24.47 3.61 2.32 20.05 

CNN 4759 0.84 0.63 7.84 2.17 1.88 5.63 2.28 1.65 17.31 3.88 2.76 18.06 
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Fig. 7: Test set error versus computation cost for all models. 

V. CONCLUSION & FUTURE WORKS 

We proposed a novel DL architecture capable of accurately 

estimating the SOC in a fixed and variable ambient temperature 

setting. The proposed model outperformed conventional DL 

models such as the LSTM, GRU, and CNN by scoring the 

lowest RMSE, MAE, and MAX metrics. We demonstrated that 

optimization in the LR leads to improvement in estimation 

error and generalization capability. Furthermore, we show that 

the proposed model is computationally efficient with the least 

FLOPs and run-time speed. In this study, the proposed 

feedforward deep FCN with appropriate hyperparameters 

combination and learning rate optimization can outperform 

conventional DL models on the SOC estimation task. However, 

the superiority of the proposed model has not been validated 

with other battery types and will be subject of our upcoming 

works. Also, more data inclusion is suggested in the training 

algorithm on the parameters, loss function and trend to improve 

the error rate and the trend of SOC estimation in the future 

works.  
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