157 research outputs found

    A Second Order Fully-discrete Linear Energy Stable Scheme for a Binary Compressible Viscous Fluid Model

    Get PDF
    We present a linear, second order fully discrete numerical scheme on a staggered grid for a thermodynamically consistent hydrodynamic phase field model of binary compressible fluid flow mixtures derived from the generalized Onsager Principle. The hydrodynamic model not only possesses the variational structure, but also warrants the mass, linear momentum conservation as well as energy dissipation. We first reformulate the model in an equivalent form using the energy quadratization method and then discretize the reformulated model to obtain a semi-discrete partial differential equation system using the Crank-Nicolson method in time. The numerical scheme so derived preserves the mass conservation and energy dissipation law at the semi-discrete level. Then, we discretize the semi-discrete PDE system on a staggered grid in space to arrive at a fully discrete scheme using the 2nd order finite difference method, which respects a discrete energy dissipation law. We prove the unique solvability of the linear system resulting from the fully discrete scheme. Mesh refinements and two numerical examples on phase separation due to the spinodal decomposition in two polymeric fluids and interface evolution in the gas-liquid mixture are presented to show the convergence property and the usefulness of the new scheme in applications

    Convergence Analysis and Error Estimates for a Second Order Accurate Finite Element Method for the Cahn-Hilliard-Navier-Stokes System

    Get PDF
    In this paper, we present a novel second order in time mixed finite element scheme for the Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard second order Crank-Nicholson method for the Navier-Stokes equations and a modification to the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and a trapezoidal rule are included to help preserve the energy stability natural to the Cahn-Hilliard equation. We show that our scheme is unconditionally energy stable with respect to a modification of the continuous free energy of the PDE system. Specifically, the discrete phase variable is shown to be bounded in ℓ∞(0,T;L∞)\ell^\infty \left(0,T;L^\infty\right) and the discrete chemical potential bounded in ℓ∞(0,T;L2)\ell^\infty \left(0,T;L^2\right), for any time and space step sizes, in two and three dimensions, and for any finite final time TT. We subsequently prove that these variables along with the fluid velocity converge with optimal rates in the appropriate energy norms in both two and three dimensions.Comment: 33 pages. arXiv admin note: text overlap with arXiv:1411.524

    Numerical approximation of a phase-field surfactant model with fluid flow

    Full text link
    Modelling interfacial dynamics with soluble surfactants in a multiphase system is a challenging task. Here, we consider the numerical approximation of a phase-field surfactant model with fluid flow. The nonlinearly coupled model consists of two Cahn-Hilliard-type equations and incompressible Navier-Stokes equation. With the introduction of two auxiliary variables, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. By certain subtle explicit-implicit treatments to stress and convective terms, we construct first and second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving only a sequence of linear elliptic equations, and computations of phase-field variables, velocity and pressure are fully decoupled. We further establish a rigorous proof of unconditional energy stability for the first-order scheme. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow, where the increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence
    • …
    corecore