744 research outputs found

    Energy Aware Channel Allocation with Spectrum Sensing in Pilot Contamination Analysis for Cognitive Radio Networks

    Get PDF
    Cognitive radio (CR) is an innovative and contemporary technology that has been making an effort to overcome the problems of bandwidth reduction by rising the usage of mobile cellular bandwidth connections. The reallocation and distribution of channels is a fundamental characteristic of cellular mobile networks (CMN) to exploit the consumption of CMS. Meanwhile, throughput maximization might lead to higher power utilization, the spectrum sensing system must tackle the energy throughput tradeoff. The spectrum sensing time should be defined by the residual battery energy of secondary user (SU). In that context, energy effective algorithm for spectrum sensing should be developed for meeting the energy constraint of CRN. This study designs a new quantum particle swarm optimization-based energy aware spectrum sensing scheme (QPSO-EASSS) for CRNs. Here, the presented QPSO-EASSS technique dynamically estimates the sensing time depending upon the battery energy level of SUs and the transmission power can be computed based on the battery energy level and PU signal of the SUs. In addition, in this work, the QPSO-EASSS technique applies the QPSO algorithm for throughput maximization with energy constraints in the CRN. The detailed set of experimentations take place and reported the improvements of the QPSO-EASSS technique compared to existing models

    A Survey of Deep Learning for Data Caching in Edge Network

    Full text link
    The concept of edge caching provision in emerging 5G and beyond mobile networks is a promising method to deal both with the traffic congestion problem in the core network as well as reducing latency to access popular content. In that respect end user demand for popular content can be satisfied by proactively caching it at the network edge, i.e, at close proximity to the users. In addition to model based caching schemes learning-based edge caching optimizations has recently attracted significant attention and the aim hereafter is to capture these recent advances for both model based and data driven techniques in the area of proactive caching. This paper summarizes the utilization of deep learning for data caching in edge network. We first outline the typical research topics in content caching and formulate a taxonomy based on network hierarchical structure. Then, a number of key types of deep learning algorithms are presented, ranging from supervised learning to unsupervised learning as well as reinforcement learning. Furthermore, a comparison of state-of-the-art literature is provided from the aspects of caching topics and deep learning methods. Finally, we discuss research challenges and future directions of applying deep learning for cachin
    • …
    corecore